Convex-like inequality, homogeneity, subadditivity, and a characterization of L^{p}-norm

by Janusz Matkowski and Marek Pycia (Bielsko-Biała)

Abstract

Let a and b be fixed real numbers such that $0<\min \{a, b\}<1<a+b$. We prove that every function $f:(0, \infty) \rightarrow \mathbb{R}$ satisfying $f(a s+b t) \leq a f(s)+b f(t)$, $s, t>0$, and such that $\lim \sup _{t \rightarrow 0+} f(t) \leq 0$ must be of the form $f(t)=f(1) t, t>0$. This improves an earlier result in [5] where, in particular, f is assumed to be nonnegative. Some generalizations for functions defined on cones in linear spaces are given. We apply these results to give a new characterization of the L^{p}-norm.

Introduction. We deal with the functional inequality

$$
f(a s+b t) \leq a f(s)+b f(t)
$$

where $a, b \in \mathbb{R}$ are fixed real numbers such that

$$
\begin{equation*}
0<\min \{a, b\}<1<a+b \tag{1}
\end{equation*}
$$

and f is a real function defined on $\mathbb{R}_{+}:=[0, \infty)$ or $(0, \infty)$. Our Theorem 2 says that if $f(0)=0, f$ is bounded above in a neighbourhood of 0 , and satisfies this inequality for all $s, t \geq 0$, then f must be a linear function. This improves a result of [6] where f is assumed to be nonnegative. Theorem 1, the main result of the first section, reads as follows: If $f:(0, \infty) \rightarrow \mathbb{R}$ satisfies the above inequality for all $s, t>0$, and $\lim \sup _{t \rightarrow 0+} f(t) \leq 0$, then $f(t)=f(1) t, t>0$.

In Section 2, using Theorems 1 and 2, we obtain their counterparts for functions defined on convex cones of a linear space. Namely, under some weak regularity conditions an analogue of the above inequality characterizes the Banach functionals.

[^0]Applying these results we give a new characterization of the L^{p}-norm (cf. Theorem 3).

1. Functions satisfying a convex-like inequality on $(0, \infty)$ and \mathbb{R}_{+}. The main theorem of this section is a refinement of a relevant result of [6] and reads as follows:

Theorem 1. Let $a, b \in \mathbb{R}$ be fixed and such that condition (1) holds. If $f:(0, \infty) \rightarrow \mathbb{R}$ satisfies

$$
\begin{equation*}
f(a s+b t) \leq a f(s)+b f(t), \quad s, t>0 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{t \rightarrow 0+} f(t) \leq 0, \tag{3}
\end{equation*}
$$

then $f(t)=f(1) t, t>0$.
Proof. There is no loss of generality in assuming that $a=\min \{a, b\}<1$.
Moreover, by (2),

$$
f\left(a s+b(a+b)^{n} t\right) \leq a f(s)+b(a+b)^{n} f(t), \quad s, t>0, n \in \mathbb{N}
$$

Consequently, we may also assume $b>1$. Now we prove the following
Claim. Under the conditions of Theorem 1 and $a<1<b$ there exists an $M>0$ such that

$$
\begin{equation*}
k a^{n} b^{m} f(t)+M \delta \geq f\left(k a^{n} b^{m} t+\delta\right) \tag{4}
\end{equation*}
$$

for all $t, \delta>0 ; n, m \in \mathbb{N}, n+m>0 ; k=0, \ldots,\binom{n+m}{m}$.
To show it, take $c>\max \left\{a+b, a^{-1}\right\}$. By (3) there exists a $t_{0}>0$ such that f is bounded above on the interval $I:=\left(t_{0}, c t_{0}\right)$. Thus, for some $M>0$,

$$
\begin{equation*}
f(t) \leq M t, \quad t \in I \tag{5}
\end{equation*}
$$

From (2), $f\left((a+b)^{n} t\right) \leq(a+b)^{n} f(t)$ for all $n \in \mathbb{N}$ and $t>0$. Hence

$$
f(t) \leq M t, \quad t \in \bigcup_{n=0}^{\infty}(a+b)^{n} I
$$

(For $I \subset \mathbb{R}$ and $\lambda \in \mathbb{R}$ we denote by λI the set $\{\lambda x: x \in I\}$.) Since $c>a+b$, the intervals $(a+b)^{n} I$ and $(a+b)^{n+1} I$ have a nonempty intersection, and, consequently, $\bigcup_{n=0}^{\infty}(a+b)^{n} I=\left(t_{0}, \infty\right)$. This proves that $f(t) \leq M t$ for all $t \in\left(t_{0}, \infty\right)$.

Assume that for some $n \in \mathbb{N}$,

$$
f(t) \leq M t, \quad t \in a^{n} I,
$$

and take $s \in a^{n+1} I$. There exists an increasing sequence $\left(t_{k}\right)$ such that $t_{k} \in a^{n} I(k \in \mathbb{N})$, and $a t_{k} \rightarrow s$. From (2) we have

$$
\begin{aligned}
f(s) & =f\left(a t_{k}+b b^{-1}\left(s-a t_{k}\right)\right) \leq a f\left(t_{k}\right)+b f\left(b^{-1}\left(s-a t_{k}\right)\right) \\
& \leq M a t_{k}+b f\left(b^{-1}\left(s-a t_{k}\right)\right)
\end{aligned}
$$

According to (3),

$$
f(s) \leq M a\left(\lim _{k \rightarrow \infty} t_{k}\right)=M s, \quad s \in a^{n+1} I
$$

Hence, by induction,

$$
f(s) \leq M s, \quad s \in \bigcup_{n=0}^{\infty} a^{n} I
$$

Since the inequality $c>a^{-1}$ implies that $\bigcup_{n=0}^{\infty} a^{n} I=\left(0, c t_{0}\right)$, it follows that $f(t) \leq M t, t \in\left(0, c t_{0}\right)$. Thus we have proved

$$
\begin{equation*}
f(t) \leq M t, \quad t>0 \tag{6}
\end{equation*}
$$

We now show (4) by induction on $N:=n+m$. For $N=1$, (4) follows immediately from (2) and (6), for $k=0$ it reduces to (6). Take $N>1$, $k>0$, choose k_{1}, k_{2} such that

$$
k_{1}+k_{2}=k, \quad k_{1} \leq\binom{ n+m-1}{m}, \quad k_{2} \leq\binom{ n+m-1}{m-1}
$$

and suppose that

$$
\begin{aligned}
& k_{1} a^{n-1} b^{m} f(t)+(2 a)^{-1} \delta \geq f\left(k_{1} a^{n-1} b^{m} t+(2 a)^{-1} \delta\right) \\
& k_{2} a^{n} b^{m-1} f(t)+(2 a)^{-1} \delta \geq f\left(k_{2} a^{n} b^{m-1} t+(2 a)^{-1} \delta\right)
\end{aligned}
$$

Hence, in view of (2), we get

$$
\begin{aligned}
& k a^{n} b^{m} f(s)+M \delta \\
& \quad= a\left(k_{1} a^{n-1} b^{m} f(s)+M(2 a)^{-1} \delta\right)+b\left(k_{2} a^{n} b^{m-1} f(s)+M(2 a)^{-1} \delta\right) \\
& \quad \geq a f\left(k_{1} a^{n-1} b^{m} s+(2 a)^{-1} \delta\right)+b f\left(k_{2} a^{n} b^{m-1} s+(2 a)^{-1} \delta\right) \\
& \geq f\left(a k_{1} a^{n-1} b^{m} s+2^{-1} \delta+b k_{2} a^{n} b^{m-1} s+2^{-1} \delta\right)=f\left(k a^{n} b^{m} s+\delta\right)
\end{aligned}
$$

and the induction completes the proof of our claim.
Now note that the set

$$
\mathbb{D}:=\left\{k a^{n} b^{m}: m, n \in \mathbb{N}, m+n>0, k=0, \ldots,\binom{n+m}{m}\right\}
$$

is dense in $(0, \infty)$. Indeed, if $\log b / \log a$ is irrational, then, in view of Kronecker's Theorem, its subset $\left\{a^{n+1} b^{m}: m, n \in \mathbb{N}\right\}$ is dense in $(0, \infty)$. In the other case there exist $n, m \in \mathbb{N}$ such that $\log b / \log a=-n / m$, which means
that $a^{n} b^{m}=1$. Since for every $k, j \in \mathbb{N}$,

$$
k a^{j} b=k a^{k n+j} b^{k m+1} \in \mathbb{D}
$$

the set \mathbb{D} contains a dense subset $\left\{k a^{j} b: k, j \in \mathbb{N}\right\}$.
By the definition of \mathbb{D} we can write (4) in the following equivalent form:

$$
\begin{equation*}
\lambda f(t)+M \delta \geq f(\lambda t+\delta), \quad \lambda \in \mathbb{D}, t, \delta>0 \tag{7}
\end{equation*}
$$

Now, fix $s, t>0$ and take a sequence $\left(\lambda_{n}\right)$ such that $\lambda_{n} \in \mathbb{D}, \lambda_{n}<s(n \in \mathbb{N})$, $\lim _{n \rightarrow \infty} \lambda_{n}=s$. From (7) we have

$$
\lambda_{n} f(t)+M\left(s-\lambda_{n}\right) t \geq f\left(\lambda_{n} t+\left(s-\lambda_{n}\right) t\right)=f(s t), \quad n \in \mathbb{N}
$$

Letting $n \rightarrow \infty$ we obtain $s f(t) \leq f(s t)$, which obviously implies that $s f(t)=f(s t)$. Hence $f(s)=f(1) s, s>0$, which completes the proof.

Remark1. It is shown in [6] that every nonnegative function f satisfying (2) with a, b such that (1) holds must be linear. Obviously, this result is a consequence of Theorem 1.

Example 1. Take $a, b>0$ such that $a+b>1$, and $c>0$. Then every function $f:(0, \infty) \rightarrow \mathbb{R}$ such that $c \leq f(t) \leq c(a+b), t>0$, satisfies (2). This shows that the condition (3) in Theorem 1 is essential.

Note that (3) can be considerably weakened if (2) is assumed to hold for all nonnegative s and t. Namely, we have the following

Theorem 2. Let $a, b \in \mathbb{R}$ satisfy (1). If $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfies

$$
f(a s+b t) \leq a f(s)+b f(t), \quad s, t \geq 0
$$

and
(i) $f(0)=0$;
(ii) f is bounded above in a right vicinity of 0 ,
then $f(t)=f(1) t, t>0$.
This result is an immediate consequence of Theorem 1 and the following
Lemma 1. Let $a, b \in \mathbb{R}$ satisfy (1). Suppose that $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfies

$$
f(a s+b t) \leq a f(s)+b f(t), \quad s, t \geq 0
$$

Then
(i) $f(0) \geq 0$.
(ii) If, moreover, $f(0)=0$ and f is bounded above in a right vicinity of 0 , then condition (3) holds.

Proof. (i) is obvious. To prove (ii) suppose that, say, $a=\min \{a, b\}$ and observe that, by the boundedness above of f to the right of 0 , we have

$$
c:=\limsup _{t \rightarrow 0+} f(t)<\infty
$$

Setting in the assumed inequality $s=0$ and making use of the condition $f(0)=0$, we get $f(a t) \leq a f(t)$ for all $t \geq 0$. It follows that $c \leq a c$. Since $a<1$ we hence get $c \leq 0$, which was to be shown.

Example 2. The function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ given by $f(t)=t^{-1}, t>0$, and $f(0)=0$ satisfies (2) for all $a, b \in \mathbb{R}$ such that condition (1) holds. This shows that, in Theorem 2, the assumption of f being bounded above in a (right) neighbourhood of 0 is indispensable.

Example 3. Let $a, b>0$ be rational. Then every discontinuous additive function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies (2). It is well known that the graph of f is a dense subset of the plane (cf. for instance Aczél-Dhombres [1], p. 14). This also shows that the regularity assumptions in Theorems 1 and 2 are necessary.
2. Some generalizations for functions defined on cones. In this section, using Theorems 1 and 2, we prove their more general counterparts.

Let \boldsymbol{X} be a real linear space. A set $\boldsymbol{C} \subset \boldsymbol{X}$ is said to be a convex cone in \boldsymbol{X} iff $\boldsymbol{C}+\boldsymbol{C} \subset \boldsymbol{C}$ and $t \boldsymbol{C} \subset \boldsymbol{C}$ for all $t>0$.

A functional $\boldsymbol{p}: \boldsymbol{C} \rightarrow \mathbb{R}$ is called subadditive iff

$$
\boldsymbol{p}(\boldsymbol{x}+\boldsymbol{y}) \leq \boldsymbol{p}(\boldsymbol{x})+\boldsymbol{p}(\boldsymbol{y}), \quad \boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{C}
$$

and positively homogeneous iff

$$
\boldsymbol{p}(t \boldsymbol{x})=t \boldsymbol{p}(\boldsymbol{x}), \quad t>0, \boldsymbol{x} \in \boldsymbol{C}
$$

In the sequel the functionals satisfying both these conditions (the so-called Banach functionals) will appear frequently.

Denote by \boldsymbol{o} the zero vector of \boldsymbol{X}. If \boldsymbol{C} is a convex cone in \boldsymbol{X} and $\boldsymbol{o} \in \boldsymbol{C}$, then $t \boldsymbol{C} \subset \boldsymbol{C}$ for all $t \geq 0$.

Corollary 1. Let \boldsymbol{X} be a real linear space and $\boldsymbol{C} \subset \boldsymbol{X}$ a convex cone such that $\boldsymbol{o} \in \boldsymbol{C}$. Suppose that $a, b \in \mathbb{R}$ are fixed and $0<\min \{a, b\}<1<$ $a+b$. Then a function $\boldsymbol{p}: \boldsymbol{C} \rightarrow \mathbb{R}$ is subadditive and positively homogeneous if and only if
(i) $\boldsymbol{p}(\boldsymbol{o})=0$;
(ii) for every $\boldsymbol{x} \in \boldsymbol{C}$, the function $(0, \infty) \ni t \rightarrow \boldsymbol{p}(t \boldsymbol{x})$ is bounded above in a right vicinity of 0 ; and

$$
\begin{equation*}
\boldsymbol{p}(a \boldsymbol{x}+b \boldsymbol{y}) \leq a \boldsymbol{p}(\boldsymbol{x})+b \boldsymbol{p}(\boldsymbol{y}), \quad \boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{C} \tag{8}
\end{equation*}
$$

Proof. First suppose that \boldsymbol{p} satisfies (i), (ii), and (8). Then for every fixed $\boldsymbol{x} \in \boldsymbol{C}$ the function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ defined by $f(t):=\boldsymbol{p}(t \boldsymbol{x}), t \geq 0$, satisfies all the assumptions of Theorem 2. Consequently, $\boldsymbol{p}(t \boldsymbol{x})=f(t)=$ $f(1) t=t \boldsymbol{p}(\boldsymbol{x})$ for all $t \geq 0$, which means that \boldsymbol{p} is positively homogeneous.

Now the subadditivity of \boldsymbol{p} is a consequence of (8). Since the converse is obvious, the proof is complete.

In a similar way, applying Theorem 1, we get
Corollary 2. Let \boldsymbol{X} be a real linear space and $\boldsymbol{C} \subset \boldsymbol{X}$ a convex cone Suppose that $a, b \in \mathbb{R}$ are fixed and $0<\min \{a, b\}<1<a+b$. Then a function $\boldsymbol{p}: \boldsymbol{C} \rightarrow \mathbb{R}$ is subadditive and positively homogeneous if and only if it satisfies (8) and

$$
\limsup _{t \rightarrow 0+} \boldsymbol{p}(t \boldsymbol{x}) \leq 0, \quad \boldsymbol{x} \in \boldsymbol{C}
$$

Let \boldsymbol{X} be a real linear space, $\boldsymbol{C} \subset \boldsymbol{X}$ a convex cone in \boldsymbol{X} and $\phi: \boldsymbol{C} \rightarrow \mathbb{R}$. We say that ϕ is a linear functional on \boldsymbol{C} iff $\phi(\boldsymbol{x}+\boldsymbol{y})=\phi(\boldsymbol{x})+\phi(\boldsymbol{y})$ for all $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{C}$, and $\phi(t \boldsymbol{x})=t \phi(\boldsymbol{x})$ for all $t>0, \boldsymbol{x} \in \boldsymbol{C}$. Note that if $\phi \not \equiv 0$, then $\phi^{-1}(\{1\})=\{\boldsymbol{x} \in \boldsymbol{C}: \phi(\boldsymbol{x})=1\}$ is a nonempty convex subset of \boldsymbol{C}, and put $\operatorname{supp}(\phi):=\{\boldsymbol{x} \in \boldsymbol{C}: \phi(\boldsymbol{x}) \neq 0\}$.

The term "linear functional" is legitimate in view of the following
Remark 2. Let $\phi: C \rightarrow \mathbb{R}$ be additive and positively homogeneous on a cone $\boldsymbol{C} \subset \boldsymbol{X}$ such that $\boldsymbol{C} \cap(-\boldsymbol{C})=\{\boldsymbol{o}\}$. Denote by \boldsymbol{Y} the linear span of \boldsymbol{C}. It is easy to check that there exists a unique linear functional $\Phi: \boldsymbol{Y} \rightarrow \mathbb{R}$ such that $\left.\Phi\right|_{C}=\phi$.

Proposition. Let \boldsymbol{X} be a real linear space, $\boldsymbol{C} \subset \boldsymbol{X}$ a cone in \boldsymbol{X} such that $\boldsymbol{C} \cap(-\boldsymbol{C})=\{\boldsymbol{o}\}$, and $\phi: \boldsymbol{C} \rightarrow \mathbb{R}$ a linear functional on \boldsymbol{C} such that $\phi \geq 0$ on \boldsymbol{C}. Suppose that $a, b \in \mathbb{R}$ are fixed and $0<\min \{a, b\}<1<a+b$. If $H: \operatorname{supp}(\phi) \rightarrow \mathbb{R}$ satisfies

$$
H(a \boldsymbol{x}+b \boldsymbol{y}) \leq a H(\boldsymbol{x})+b H(\boldsymbol{y}), \quad \boldsymbol{x}, \boldsymbol{y} \in \operatorname{supp}(\phi),
$$

and

$$
\limsup _{t \rightarrow 0+} H(t \boldsymbol{x}) \leq 0, \quad \boldsymbol{x} \in \operatorname{supp}(\phi)
$$

then H is positively homogeneous and subadditive.
Moreover, the function $h: \phi^{-1}(1) \rightarrow \mathbb{R}$ defined by

$$
h(\boldsymbol{x}):=H(\boldsymbol{x}), \quad \boldsymbol{x} \in \phi^{-1}(1),
$$

is convex,

$$
H(\boldsymbol{x})=\phi(\boldsymbol{x}) h(\boldsymbol{x} / \phi(\boldsymbol{x})), \quad \boldsymbol{x} \in \operatorname{supp}(\phi),
$$

and
(9) $\quad \phi(\boldsymbol{x}+\boldsymbol{y}) h\left(\frac{\boldsymbol{x}+\boldsymbol{y}}{\phi(\boldsymbol{x}+\boldsymbol{y})}\right)$

$$
\leq \phi(\boldsymbol{x}) h\left(\frac{\boldsymbol{x}}{\phi(\boldsymbol{x})}\right)+\phi(\boldsymbol{y}) h\left(\frac{\boldsymbol{y}}{\phi(\boldsymbol{y})}\right), \quad \boldsymbol{x}, \boldsymbol{y} \in \operatorname{supp}(\phi) .
$$

Proof. It is easy to check that $\operatorname{supp}(\phi)$ is a convex cone in \boldsymbol{X}. Therefore the first conclusion is a consequence of Corollary 2.

To prove the remaining assertion note that $\boldsymbol{z} \in \phi^{-1}(1)$ if and only if there is an $\boldsymbol{x} \in \operatorname{supp}(\Phi)$ such that $\boldsymbol{z}=\boldsymbol{x} / \phi(\boldsymbol{x})$. Take any $\boldsymbol{x} \in \operatorname{supp}(\phi)$. By the positive homogeneity of H and the definition of h we have

$$
H(\boldsymbol{x})=\phi(\boldsymbol{x}) H(\boldsymbol{x} / \phi(\boldsymbol{x}))=\phi(\boldsymbol{x}) h(\boldsymbol{x} / \phi(\boldsymbol{x})) .
$$

Hence, the subadditivity of H gives (9). This inequality implies the convexity of h, and the proof is complete.

Remark 3. Taking in the Proposition $\boldsymbol{X}=\mathbb{R}^{k}, \boldsymbol{C}=\mathbb{R}_{+}^{k}, k \in \mathbb{N}$, and the functional $\phi: \boldsymbol{C} \rightarrow \mathbb{R}_{+}, \phi(\boldsymbol{x})=\phi\left(x_{1}, \ldots, x_{k}\right)=x_{i}$, the projection on the x_{i}-axis, $i \in\{1, \ldots, k\}$, we get the result proved in [5] (cf. also [6]). Moreover, it is shown in [5] that inequality (9) with ϕ being the projection characterizes the convex functions h defined on $(0, \infty)^{k-1}$ and generalizes Minkowski's and Hölder's inequalities. Thus inequality (9) may also be interpreted as a generalization of these two fundamental inequalities.
3. An application to a characterization of the L^{p}-norm. For a measure space (Ω, Σ, μ) denote by $\boldsymbol{S}=\boldsymbol{S}(\Omega, \Sigma, \mu)$ the linear space of all μ-integrable step functions $\boldsymbol{x}: \Omega \rightarrow \mathbb{R}$ and by $\boldsymbol{S}_{+}=\boldsymbol{S}_{+}(\Omega, \Sigma, \mu)$ the set of all nonnegative $\boldsymbol{x} \in \boldsymbol{S}$. If $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$are one-to-one, onto and $\varphi(0)=0$ then the functional $\mathbf{P}_{\varphi, \psi}: S \rightarrow \mathbb{R}$ given by the formula

$$
\mathbf{P}_{\varphi, \psi}(\boldsymbol{x}):=\psi\left(\int_{\Omega} \varphi \circ|\boldsymbol{x}| d \mu\right), \quad \boldsymbol{x} \in \boldsymbol{S}
$$

is well defined. The goal of this section is to prove the following
Theorem 3. Let (Ω, Σ, μ) be a measure space with at least two disjoint sets of finite and positive measure. Suppose that $a, b \in \mathbb{R}$ are fixed numbers such that

$$
0<\min \{a, b\}<1<a+b
$$

and $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$are one-to-one, onto, continuous at 0 and $\varphi(0)=$ $\psi(0)=0$. If

$$
\mathbf{P}_{\varphi, \psi}(a \boldsymbol{x}+b \boldsymbol{y}) \leq a \mathbf{P}_{\varphi, \psi}(\boldsymbol{x})+b \mathbf{P}_{\varphi, \psi}(\boldsymbol{y}), \quad \boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{S}_{+},
$$

then $\varphi(t)=\varphi(1) t^{p}$ and $\psi(t)=\psi(1) t^{1 / p}(t \geq 0)$ for some $p \geq 1$.
Proof. Take any $\boldsymbol{x} \in \boldsymbol{S}_{+}$. Then there exist n pairwise disjoint sets $A_{1}, \ldots, A_{n} \in \Sigma$ of finite measure, and $x_{1}, \ldots, x_{n} \in \mathbb{R}_{+}$such that $\boldsymbol{x}=$ $\sum_{k=1}^{n} x_{k} \chi_{A_{k}} .\left(\chi_{A}\right.$ stands for the characteristic function of the set A.) From the definition of $\mathbf{P}_{\varphi, \psi}$ we have

$$
\mathbf{P}_{\varphi, \psi}(t \boldsymbol{x})=\psi\left(\int_{\Omega} \varphi \circ|t \boldsymbol{x}| d \mu\right)=\psi\left(\sum_{k=1}^{n} \varphi\left(t x_{k}\right) \mu\left(A_{k}\right)\right), \quad t>0 .
$$

The continuity of φ and ψ at zero and $\varphi(0)=\psi(0)=0$ imply that $\lim _{t \rightarrow 0+} \mathbf{P}_{\varphi, \psi}(t \boldsymbol{x})=0$. By Corollary 2 the functional $\mathbf{P}_{\varphi, \psi}$ is positively homogeneous, i.e.

$$
\begin{equation*}
\mathbf{P}_{\varphi, \psi}(t \boldsymbol{x})=t \mathbf{P}_{\varphi, \psi}(\boldsymbol{x}), \quad \boldsymbol{x} \in \boldsymbol{S}_{+}, t>0 \tag{10}
\end{equation*}
$$

and subadditive:

$$
\begin{equation*}
\mathbf{P}_{\varphi, \psi}(\boldsymbol{x}+\boldsymbol{y}) \leq \mathbf{P}_{\varphi, \psi}(\boldsymbol{x})+\mathbf{P}_{\varphi, \psi}(\boldsymbol{y}), \quad \boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{S}_{+} \tag{11}
\end{equation*}
$$

By our assumption on the measure space, there are two disjoint sets $A, B \in$ Σ of finite positive measure. Put $\alpha:=\mu(A)$ and $\beta:=\mu(B)$. Taking $\boldsymbol{x}:=$ $x_{1} \chi_{A}+x_{2} \chi_{B}$ with $x_{1}, x_{2} \geq 0$ in (10), we get

$$
\psi\left(\alpha \varphi\left(t x_{1}\right)+\beta \varphi\left(t x_{2}\right)\right)=t \psi\left(\alpha \varphi\left(x_{1}\right)+\beta \varphi\left(x_{2}\right)\right)
$$

Since ψ and φ are bijective we can write this equation in the following equivalent form:
(12) $\quad \alpha \varphi\left(t \varphi^{-1}\left(x_{1}\right)\right)+\beta \varphi\left(t \varphi^{-1}\left(x_{2}\right)\right)$

$$
=\psi^{-1}\left(t \psi\left(\alpha x_{1}+\beta x_{2}\right)\right), \quad t>0, x_{1}, x_{2} \geq 0
$$

Substituting here first $x_{2}=0$, and next $x_{1}=0$ we get

$$
\begin{align*}
& \alpha \varphi\left(t \varphi^{-1}\left(x_{1}\right)\right)=\psi^{-1}\left(t \psi\left(\alpha x_{1}\right)\right), \quad t>0, x_{1} \geq 0 \tag{13}\\
& \beta \varphi\left(t \varphi^{-1}\left(x_{2}\right)\right)=\psi^{-1}\left(t \psi\left(\beta x_{2}\right)\right), \quad t>0, x_{2} \geq 0 . \tag{14}
\end{align*}
$$

The relations (13) and (14) allow us to write (12) in the form
$\psi^{-1}\left(t \psi\left(\alpha x_{1}\right)\right)+\psi^{-1}\left(t \psi\left(\beta x_{2}\right)\right)=\psi^{-1}\left(t \psi\left(\alpha x_{1}+\beta x_{2}\right)\right), \quad t>0, x_{1}, x_{2} \geq 0$,
or, equivalently,

$$
\psi^{-1}\left(t \psi\left(x_{1}\right)\right)+\psi^{-1}\left(t \psi\left(x_{2}\right)\right)=\psi^{-1}\left(t \psi\left(x_{1}+x_{2}\right)\right), \quad t>0, x_{1}, x_{2} \geq 0
$$

Thus, for every $t>0$, the function $\psi^{-1} \circ(t \psi)$ is additive. Since it is nonnegative, it follows that for every $t>0$ there is an $m(t)>0$ such that

$$
\begin{equation*}
\psi^{-1}(t \psi(u))=m(t) u, \quad u>0 \tag{15}
\end{equation*}
$$

Writing an analogous equation for every $s>0$ we have

$$
\psi^{-1}(s \psi(u))=m(s) u, \quad u>0
$$

Composing separately the functions on the left- and the right-hand sides of these equations we obtain

$$
\psi^{-1}(s t \psi(u))=m(s) m(t) u, \quad u>0
$$

Replacing t by st in (15) we get

$$
\psi^{-1}(s t \psi(u))=m(s t) u, \quad u>0
$$

The last two equations imply that $m(s t)=m(s) m(t), s, t>0$, i.e. m : $(0, \infty) \rightarrow(0, \infty)$ is a solution of the multiplicative Cauchy equation. Putting
$u=1$ in (15) we get $m(t)=\psi^{-1}(t \psi(1)), t>0$. It follows that m is a bijection of $(0, \infty)$, and, of course, the inverse function to m,

$$
m^{-1}(t)=\psi(t) / \psi(1), \quad t>0
$$

is multiplicative. The continuity of ψ at 0 implies that there exists a $p \in \mathbb{R}$, $p \neq 0$, such that $m^{-1}(t)=t^{1 / p}$ for all $t>0$. Hence

$$
\psi(t)=\psi(1) t^{1 / p}, \quad t>0
$$

Inserting this into (13) we have $\alpha \varphi\left(t \varphi^{-1}\left(x_{1}\right)\right)=\alpha x_{1} t^{p}$ for all $t>0$ and $x_{1} \geq 0$. Taking $x_{1}:=\varphi^{-1}(1)$ we obtain

$$
\varphi(t)=\varphi(1) t^{p}, \quad t>0
$$

Now, for the above power functions φ and ψ, (11) reduces to the classical Minkowski inequality. It follows that $p \geq 1$. This completes the proof.

Remark 4. To prove that (13) and (14) imply that φ and ψ are the inverse power functions we could apply some results proved in [4].

A similar result holds if $\mathbf{P}_{\varphi, \psi}$ satisfies the opposite inequality to that of Theorem 3. One should emphasize that, in this case, the regularity assumptions on functions φ and ψ are superfluous. Namely, we have

Theorem 4. Let (Ω, Σ, μ) be a measure space with at least two disjoint sets of finite positive measure. Suppose that $a, b \in \mathbb{R}$ are fixed with $0<$ $\min \{a, b\}<1<a+b$, and $\varphi, \psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$are one-to-one, onto, and $\varphi(0)=0$. If

$$
\begin{equation*}
\mathbf{P}_{\varphi, \psi}(a \boldsymbol{x}+b \boldsymbol{y}) \geq a \mathbf{P}_{\varphi, \psi}(\boldsymbol{x})+b \mathbf{P}_{\varphi, \psi}(\boldsymbol{y}), \quad \boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{S}_{+} \tag{16}
\end{equation*}
$$

then $\varphi(t)=\varphi(1) t^{p}$ and $\psi(t)=\psi(1) t^{1 / p}(t \geq 0)$ for some $p, 0<p \leq 1$.
Proof. Since $-\mathbf{P}_{\varphi, \psi}$ satisfies the opposite inequality to (16) and $\left(-\mathbf{P}_{\varphi, \psi}\right)(\boldsymbol{x}) \leq 0$ for all $\boldsymbol{x} \in \boldsymbol{S}_{+}$, Corollary 2 implies that $\mathbf{P}_{\varphi, \psi}$ is positively homogeneous, and superadditive on \boldsymbol{S}_{+}, i.e.

$$
\begin{equation*}
\mathbf{P}_{\varphi, \psi}(\boldsymbol{x}+\boldsymbol{y}) \geq \mathbf{P}_{\varphi, \psi}(\boldsymbol{x})+\mathbf{P}_{\varphi, \psi}(\boldsymbol{y}), \quad \boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{S}_{+} \tag{17}
\end{equation*}
$$

Arguing in the same way as in the proof of Theorem 3 we show that the function $m:(0, \infty) \rightarrow(0, \infty), m(t)=\psi^{-1}[t \psi(1)], t>0$, is multiplicative on $(0, \infty)$.

As in the proof of Theorem 3, take disjoint sets $A, B \in \Sigma$ of finite positive measure, and put $\alpha:=\mu(A)$ and $\beta:=\mu(B)$. Substituting, in (17), $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{S}_{+}$ such that

$$
\boldsymbol{x}:=x_{1} \chi_{A}+x_{2} \chi_{B}, \quad \boldsymbol{y}:=y_{1} \chi_{A}+y_{2} \chi_{B}, \quad x_{1}, x_{2}, y_{1}, y_{2} \geq 0,
$$

we get
$\psi\left(\alpha \varphi\left(x_{1}+y_{1}\right)+\beta \varphi\left(x_{2}+y_{2}\right)\right) \geq \psi\left(\alpha \varphi\left(x_{1}\right)+\beta \varphi\left(x_{2}\right)\right)+\psi\left(\alpha \varphi\left(y_{1}\right)+\beta \varphi\left(y_{2}\right)\right)$
for all $x_{1}, x_{2}, y_{1}, y_{2} \geq 0$. Take arbitrary $s, t \geq 0$. Putting

$$
x_{1}=\varphi(s / \alpha)^{-1}, \quad x_{2}=y_{1}=0, \quad y_{2}=\varphi(t / \beta)^{-1}
$$

and making use of the assumption that $\varphi(0)=0$, we get

$$
\psi(s+t) \geq \psi(s)+\psi(t), \quad s, t \geq 0
$$

Hence ψ is increasing, and, consequently, a homeomorphism of \mathbb{R}_{+}. It follows that the multiplicative function m is a homeomorphism of $(0, \infty)$.

Now, by an argument as in the proof of Theorem 3, we show that there exists a $p \in \mathbb{R}, p \neq 0$, such that $\psi(t)=\psi(1) t^{1 / p}$ and $\varphi(t)=\varphi(1) t^{p}, t>0$. Substituting these functions into (16) we obtain the "companion" of the Minkowski inequality which is known to hold only for $p \in(0,1]$. This concludes the proof.

Remark 5. Theorems 3 and 4 can be interpreted to be converses of the Minkowski inequalities (cf. [7] and [8] where converses of Minkowski's inequality other than Theorem 3 are given).

References

[1] J. Aczél and J. Dhombres, Functional Equations in Several Variables, Encyclopedia Math. Appl. 31, Cambridge University Press, Cambridge, Sydney, 1989.
[2] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. 31, Amer. Math. Soc., Providence, R.I., 1957.
[3] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's equation and Jensen's inequality, Prace Nauk. Uniw. Śl. 489, Polish Scientific Publishers, 1985.
[4] J. Matkowski, On a characterization of L^{p}-norm, Ann. Polon. Math. 50 (1989), 137-144.
[5] -, A functional inequality characterizing convex functions, conjugacy and a generalization of Hölder's and Minkowski's inequalities, Aequationes Math. 40 (1990), 168-180.
[6] -, Functional inequality characterizing nonnegative concave functions in $(0, \infty)$, ibid. 43 (1992), 219-224.
[7] -, The converse of the Minkowski's inequality theorem and its generalization, Proc. Amer. Math. Soc. 109 (1990), 663-675.
[8] -, L^{p}-like paranorms, in: Selected Topics in Functional Equations and Iteration Theory, Proc. Austrian-Polish Seminar, Graz, 1991, Grazer Math. Ber. 316 (1992), 103-135.

DEPARTMENT OF MATHEMATICS
RAFOWA 21
TECHNICAL UNIVERSITY
43-300 BIELSKO-BIAłA, POLAND
WILLOWA 2
43-309 BIELSKO-BIAłA, POLAND

[^0]: 1991 Mathematics Subject Classification: Primary 26D15, 26A51, 39B72; Secondary 46E30.

 Key words and phrases: functional inequality, subadditive functions, homogeneous functions, Banach functionals, convex functions, linear space, cones, measure space, integrable step functions, L^{p}-norm, Minkowski's inequality.

 Research supported by the State Committee for Scientific Research (Poland), Grant No. 2 P301 05303.

