
Convex Neural Networks

Yoshua Bengio, Nicolas Le Roux, Pascal Vincent, Olivier Delalleau, Patrice Marcotte
Dept. IRO, Universit́e de Montŕeal

P.O. Box 6128, Downtown Branch, Montreal, H3C 3J7, Qc, Canada
{bengioy,lerouxni,vincentp,delallea,marcotte}@iro.umontreal.ca

Technical Report 1263
Département d’Informatique et Recherche Opérationnelle

July 19, 2005

Abstract

Convexity has recently received a lot of attention in the machine learning com-
munity, and the lack of convexity has been seen as a major disadvantage of many
learning algorithms, such as multi-layer artificial neural networks. We show that
training multi-layer neural networks in which the number of hidden units is learned
can be viewed as a convex optimization problem. This problem involves an infinite
number of variables, but can be solved by incrementally inserting a hidden unit at a
time, each time finding a linear classifiers that minimizes a weighted sum of errors.

1 Introduction
The objective of this paper is not to present yet another learning algorithm, but rather to
point to a previously unnoticed relation between multi-layer neural networks (NNs) (Rumel-
hart, Hinton and Williams, 1986), Boosting (Freund and Schapire, 1997) and convex
optimization. Much of our contributions concern the mathematical analysis of an algo-
rithm that is similar to previously proposed incremental NNs, withL1 regularization on
the output weights. However, this analysis helps to understand the underlying convex
optimization problem that one is trying to solve.

This paper was motivated by the unproven conjecture (based on anecdotal experi-
ence) that when the number of hidden units is “large”, the resulting average error is
rather insensitive to the random initialization of the NN parameters, i.e., the optimiza-
tion algorithm does not fall in “poor” local minima1. One way to justify this assertion
is that to really stay stuck in a local minimum, one must have second derivatives pos-
itive simultaneously in all directions. When the number of hidden units is large, it
seems implausible for none of them to offer a descent direction. Although this paper
does not prove or disprove the above conjecture, in trying to do so we found an inter-
estingcharacterization of the optimization problem for NNs as a convex program

1Another explanation is that it always falls in the same kind of minima, which means that a deeper global
minimum is difficult to reach by a descent method.

1

if the output loss function is convex in the NN output and if the output layer weights
are regularized by a convex penalty. More specifically, if the regularization is theL1

norm of the output layer weights, then we show that a “reasonable” solution exists,
involving a finite number of hidden units (no more than the number of examples, and
in practice typically much less). We present a theoretical algorithm that is reminiscent
of Column Generation (Chvátal, 1983), in which hidden neurons are inserted one at a
time. Each insertion requires solving a weighted classification problem, very much like
in Boosting (Freund and Schapire, 1997) and in particular Gradient Boosting (Mason
et al., 2000; Friedman, 2001).

Neural Networks, Gradient Boosting, and Column Generation

Denotex̃ ∈ Rd+1 the extension of vectorx ∈ Rd with one element with value 1.
What we call “Neural Network” (NN) here is a predictor for supervised learning of the
form

ŷ(x) =
m∑

i=1

wihi(x) (1)

where x is an input vector,hi(x) is obtained from a linear discriminant function
hi(x) = s(vi · x̃) with e.g. s(a) = sign(a), or s(a) = tanh(a) or s(a) = 1

1+e−a .
A learning algorithm must specify how to selectm, thewi’s and thevi’s. The classical
solution (Rumelhart, Hinton and Williams, 1986) involves (a) selecting a loss function
Q(ŷ, y) that specifies how to penalize for mismatches betweenŷ(x) and the observed
y’s (target outputs or target class, for example), (b) optionally selecting a regularization
penalty that favors “small” parameters, and (c) choosing a method to approximately
optimize the sum of the losses on the training dataD = {(x1, y1), . . . , (xn, yn)} plus
the regularization penalty. Note that in this formulation, an output non-linearity can
still be used, by inserting it in the loss functionQ. Examples of such loss functions
are the quadratic loss||ŷ − y||2, the hinge lossmax(0, 1 − yŷ) (used in SVMs), the
cross-entropy loss−y log ŷ − (1− y) log(1− ŷ) (used in logistic regression), and the
exponential losse−yŷ (used in Boosting).

Gradient Boosting has been introduced in (Friedman, 2001) and (Mason et al.,
2000) as a non-parametric greedy-stagewise supervised learning algorithm in which
one adds a function at a time to the current solutionŷ(x), in a steepest-descent fash-
ion, to form an additive model like that in eq. 1 but with the functionshi typically
taken in other kinds of sets of functions, such as those obtained with decision trees. In
a stagewise approach, when the(m + 1)-th basishm+1 is added, onlywm+1 is opti-
mized (by a line search), like inmatching pursuitalgorithms (Mallat and Zhang, 1993).
Such a greedy-stagewise approach is also at the basis of Boostingalgorithms (Freund
and Schapire, 1997), which is usually applied using decision trees as bases andQ the
exponential loss. It may be difficult to minimize exactly forwm+1 andhm+1 when
the previous bases and weights are fixed, so (Friedman, 2001) proposes to “follow the
gradient” in function space, i.e., look for a base learnerhm+1 that is best correlated
with the gradient of the loss on̂y(x) (that would be the residuêy(xi) − yi in the case
of the square loss). The algorithm analyzed here also involves maximizing the correla-
tion betweenQ′ (the derivative ofQ with respect to its first argument, evaluated on the
training predictions) and the next basishm+1. However, we follow a “stepwise”, less
greedy, approach, in which all the output weights are optimized at each step, in order
to obtain convergence guarantees.

2

Our approach adapts the Column Generation principle (Chvátal, 1983), a decompo-
sition technique initially proposed for solving linear programs involving a large num-
ber of variables and a relatively small number of constraints. In this framework, active
variables, or “columns”, are only generated as they are required to decrease the ob-
jective. In several implementations, the column-generation subproblem is frequently
a combinatorial problem for which efficient algorithms are available. In our case, the
subproblem corresponds to determining an “optimal” linear classifier.

2 Core Ideas
The starting idea behind this paper, expressed informally, is the following. Consider
the setH of all the possible hidden unit functions (i.e., of all the possible hidden unit
weight vectorsvi). Imagine a NN that has all the elements in this set as hidden units.
We might want to impose precision limitations on those weights to obtain either a
countable or even a finite set. For such a NN, we only need to learn the output weights.
If we end up with a finite number of non-zero output weights, we will have at the end
an ordinary feedforward NN. This can be achieved by using a regularization penalty on
the output weights that yields to sparse solutions, such as theL1 penalty. If in addition
the loss function is convex in the output layer weights (which is the case of squared
error, hinge loss,ε-tube regression loss, and logistic or softmax cross-entropy), then it
is easy to show that the overall training criterion is convex in the parameters (which
are now only the output weights). The only problem is that there are as many variables
in this convex program as there are elements in the setH, which may be very large.
However, we find that withL1 regularization, a finite solution is obtained, and that such
a solution can be obtained by greedily inserting one hidden unit at a time. Furthermore,
it is theoretically possible to check that the global optimum has been reached.

Definition 2.1. LetH be a set of functions from an input spaceX to R. Elements ofH
can be understood as “hidden units” in a NN. LetW be the Hilbert space of functions
fromH to R, with an inner product denoted bya · b for a, b ∈ W. An element ofW can
be understood as the output weights vector in a neural network. Leth(x) : H → R
the function that maps any elementhi of H to hi(x). h(x) can be understood as the
vector of activations of hidden units when inputx is observed. Letw ∈ W represent
a parameter(the output weights). The NN prediction is denotedŷ(x) = w · h(x). Let
Q : R × R → R be a convex cost function (convex in its first argument) that takes a
scalar predictionŷ(x) and a scalar target valuey and returns a scalar cost. This is
the cost to be minimized on example pair(x, y). Let D = {(xi, yi) : 1 ≤ i ≤ n}
a training set. LetΩ : W → R be a regularization functional that penalizes for the
choice of more “complex” parameters, and that is convex in its argument (for example
we could chooseΩ(w) = λ||w||1 according to a 1-norm inW, if H is countable). We
define theconvex NN criterionC(H, Q,Ω, D, w) with parameterw as follows:

C(H, Q,Ω, D, w) = Ω(w) +
n∑

t=1

Q(w · h(xt), yt). (2)

The following is a trivial lemma, but it is conceptually very important as it is the
basis for the rest of the analysis in this paper.

3

Lemma 2.2. The convex NN costC(H, Q,Ω, D, w) is a convex function ofw.

Proof. Q(w ·h(xt), yt) is convex inw andΩ is convex inw, by the above construction.
C is additive inQ(w · h(xt), yt) and additive inΩ. HenceC is convex inw.

Note that there are no constraints in this convex optimization program, so that at the
global minimum all the partial derivatives ofC with respect to elements ofw cancel.

Let |H| be the cardinality of the setH. If it is not finite, it is not obvious that an
optimal solution can be achieved in finitely many iterations.

Lemma 2.2 says that training NNs from a very large class (with one or more hidden
layer) can be seen as convex optimization problems, usually in a very high dimensional
space,as long as we allow the number of hidden units to be selected by the learning
algorithm . By choosing a regularizer that promotessparsesolutions, we obtain a
solution that has afinite number of “active” hidden units (non-zero entries in the output
weights vectorw). This assertion is proven below, in theorem 3.1, for the case of the
hinge loss.

However, even if the solution involves a finite number of active hidden units, the
convex optimization problem could still be computationally intractable because of the
large number of variables involved. There are several ways to address that issue, but in
the end we did not find one that yields an algorithm scaling as gracefully as stochastic
gradient descent on ordinary NNs while preserving strong guarantees on approaching
the global optimum.

One approach is to apply the principles already successfully embedded in Gradient
Boosting, but more specifically in Column Generation (an optimization technique for
very large scale linear programs), i.e., add one hidden unit at a time in an incremental
fashion. Theimportant ingredient here is a way to know that we have reached the
global optimum, thus not requiring to actually visit all the possible hidden units.
We show that this can be achieved as long as we can solve the sub-problem of finding
a linear classifier that minimizes the weighted sum of classification errors. This can
be done exactly only on low dimensional data sets but can be well approached using
weighted linear SVMs, weighted logistic regression, or Perceptron-type algorithms.

3 Finite Number of Hidden Neurons
In this section we consider the special case whereQ is the hinge loss,Q(ŷ, y) =
max(0, 1 − yŷ), andL1 regularization, and we show that the global optimum of the
convex cost involves at mostn + 1 hidden neurons.

The training criterion isC(w) = K‖w‖1 +
n∑

t=1

max (0, 1− ytw · h(xt)). Let us

rewrite this cost function as the constrained optimization problem:

min
w,ξ

L(w, ξ) = K‖w‖1 +
n∑

t=1

ξt s.t.

{
yt [w · h(xt)] ≥ 1− ξt (C1)

and ξt ≥ 0, t = 1, . . . , n (C2)

Using a standard technique, the above program can be recast as a linear program.
Definingλ = (λ1, . . . , λn) the vector of Lagrangian multipliers for the constraintsC1,

4

its dual problem(P) takes the form (in the case of a finite numberJ of base learners):

(P) : max
λ

n∑
t=1

λt s.t.

{
λ · Zi −K ≤ 0, i ∈ I

and λt ≤ 1, t = 1, . . . , n

with (Zi)t = ythi(xt). In the case of a finite numberJ of base learners,I = 1, . . . , J .
If the number of hidden units is uncountable, thenI a closed bounded interval ofR.

Such an optimization problem satisfies all the conditions needed for using Theorem
4.2 from (Hettich and Kortanek, 1993). Indeed:
• I is compact (as a closed bounded interval ofR);
• F : λ 7→

∑n
t=1 λt is a concave function (it is even a linear function);

• g : (λ, i) 7→ λ · Zi −K is convex inλ (it is actually linear inλ);
• ν(P) ≤ n and is therefore finite (ν(P) is the largest value ofF attainable while
satisfying the constraints);
• for every set ofn + 1 pointsi0, . . . , in ∈ I, there exists̃λ such thatg(λ̃, ij) < 0 for
j = 0, . . . , n (one can takẽλ = 0 sinceK > 0).

Then, from Theorem 4.2 from (Hettich and Kortanek, 1993), the following theorem
holds:

Theorem 3.1. The solution of(P) can be attained with constraintsC ′
2 and onlyn + 1

constraintsC ′
1 (in the sense that there exists a subset ofn + 1 constraintsC ′

1 giving
rise to the same maximum as when using the whole set of constraints). Therefore, the
primal problem associated is the minimization of the cost function of a NN withn + 1
hidden neurons.

A similar result was obtained by (Rätsch, Demiriz and Bennett, 2001) in the context
of regression Boosting with aL1 regression loss and aL1 penalization for the weights
of the base learners.

4 Incremental Convex NN Algorithm
In this section we present a stepwise algorithm to optimize a convex NN, and show
that there is a criterion that allows to verify whether the global optimum has been
reached. This is a specialization of the minimization ofC(H, Q,Ω, D, w) in which
Ω(w) = λ||w||1 is theL1 penalty andH = {h : h(x) = s(v · x̃)} is the set of soft or
hard linear classifiers (depending on the choice ofs(·)).

5

Algorithm ConvexNN(D,Q,λ,s)

Input : training setD = {(x1, y1), . . . , (xn, yn)}, convex loss functionQ, and
scalar regularization penaltyλ. s is either thesignfunction or thetanhfunction.
(1) Setv1 = (0, 0, . . . , 1) and selectw1 = argminw1

∑
t Q(w1s(1), yt) + λ|w1|.

(2) Seti = 2.
(3) Repeat
(4) Let qt = Q′(

∑i−1
j=1 wjhj(xt), yt)

(5) If s = sign
(5a) train linear classifierhi(x) = sign(vi · x̃) with examples
{(xt, sign(qt))} and errors weighted by|qt|, t = 1 . . . n (i.e., maximize∑

t qthi(xt))
(5b) else (s = tanh)
(5c) train linear classifierhi(x) = tanh(vi · x̃) to maximize

∑
t qthi(xt).

(6) If
∑

t qthi(xt) < λ, stop.
(7) Selectw1, . . . , wi (and optionallyv2, . . . , vi) minimizing (exactly or ap-
proximately)C =

∑
t Q(

∑i
j=1 wjhj(xt), yt) + λ

∑
j=1 |wj | such that∂C

∂wj
= 0

for j = 1 . . . i.
(8) Return the predictor̂y(x) =

∑i
j=1 wjhj(x).

A key property of the above algorithm is that, at termination, the global optimum
is reached, i.e., no hidden unit functions (linear classifiers) can improve the objective.

In the case wheres = sign, we obtain a Boosting-like algorithm, i.e., it involves
finding a classifier which minimizes the weighted cost

∑
t qtsign(v · x̃t).

Theorem 4.1. Algorithm ConvexNN stops when it reaches the global optimum of
C(w) =

∑
t Q(w · h(xt), yt) + λ||w||1.

Proof. Let w be the output weights vector when the algorithm stops. Because the set of
hidden unitsHwe consider is such that whenh is inH,−h is also inH, we can assume
all weights to be non-negative. By contradiction, ifw′ 6= w is the global optimum, with
C(w′) < C(w), then, sinceC is convex in the output weights, for anyε ∈ (0, 1), we
haveC(εw′+(1− ε)w) ≤ εC(w′)+(1− ε)C(w) < C(w). Letwε = εw′+(1− ε)w.
For ε small enough, we can assume all weights inw that are stricly positive to be also
stricly positive inwε. Let us denote byIp the set of stricly positive weights inw (and
wε), by Iz the set of weights set to zero inw but to a non-zero value inwε, and byδεk

the differencewε,k − wk in the weight of hidden unithk betweenw andwε. We can
assumeδεj < 0 for j ∈ Iz, because instead of setting a small positive weight tohj , one
can decrease the weight of−hj by the same amount, which will give either the same
cost, or possibly a lower one when the weight of−hj is positive. Witho(ε) denoting a
quantity such thatε−1o(ε) → 0 whenε → 0, the difference∆ε(w) = C(wε)− C(w)

6

can now be written:

∆ε(w) = λ (‖wε‖1 − ‖w‖1) +
∑

t

(Q(wε · h(xt), yt)−Q(w · h(xt), yt))

= λ

∑
i∈Ip

δεi +
∑
j∈Iz

−δεj

+
∑

t

∑
k

(Q′(w · h(xt), yt)δεkhk(xt)) + o(ε)

=
∑
i∈Ip

(
λδεi +

∑
t

qtδεihi(xt)

)
+
∑
j∈Iz

(
−λδεj +

∑
t

qtδεjhj(xt)

)
+ o(ε)

=
∑
i∈Ip

δεi
∂C

∂wi
(w) +

∑
j∈Iz

(
−λδεj +

∑
t

qtδεjhj(xt)

)
+ o(ε)

= 0 +
∑
j∈Iz

(
−λδεj +

∑
t

qtδεjhj(xt)

)
+ o(ε)

since fori ∈ Ip, thanks to step(7) of the algorithm, we have∂C
∂wi

(w) = 0. Thus the
inequalityε−1∆ε(w) < 0 rewrites into∑

j∈Iz

ε−1δεj

(
−λ +

∑
t

qthj(xt)

)
+ ε−1o(ε) < 0

which, whenε → 0, yields (note thatε−1δεj does not depend onε sinceδεj is linear in
ε): ∑

j∈Iz

ε−1δεj

(
−λ +

∑
t

qthj(xt)

)
≤ 0 (3)

But,hi being the optimal classifier chosen in step (5a) or (5c), all hidden unitshj verify∑
t

qthj(xt) ≤
∑

t

qthi(xt) < λ

and forj ∈ Iz, ε−1δεj (−λ +
∑

t qthj(xt)) > 0 (rememberδεj < 0), contradicting
eq. 3.

Note that (Mason et al., 2000) prove a related global convergence result for the
AnyBoost algorithm, a non-parametric Boosting algorithm that is also similar to Gra-
dient Boosting (Friedman, 2001). Again, this requires solving as a sub-problem an
exact minimization to find a functionhi ∈ H that is maximally correlated with the
gradientQ′ on the output.

We will now show a simple procedure to select a hyperplane of which has the best
classification error possible.

Exact Minimization
In step (5a) we are required to find a linear classifier that minimizes the weighted

sum of classification errors. Unfortunately, this is an NP-hard problem (see theorem
4 in (Marcotte and Savard, 1992)). However, an exact solution can be easily found in
O(n3) computations, as shown below.

7

Proposition 4.2. Finding a linear classifier that minimizes the weighted sum of classi-
fication error can be achieved inO(n3) steps when the input dimension isd = 2.

Proof. We want to maximize
∑

i cisign(u · xi + b) with respect tou andb, theci’s
being inR.

Let us see what happens for afixed u. We can sort thexi’s according to their dot
product withu and denoter the function which mapsi to r(i) such thatxr(i) is in i-th
position in the sort. Depending on the value ofb, we will haven + 1 possible sums,
respectively−

∑k
i=1 cr(i) +

∑n
i=k+1 cr(i), k = 0, . . . , n. It is obvious that those sums

only depend on the order of the productsu · xi, i = 1, . . . , n. Whenu varies smoothly
on the unit circle, as the dot product is a continuous function of its arguments, the
changes in the order of the dot products will occur only when there is a pair(i, j) such
thatu · xi = u · xj . Therefore, there are at most as many order changes as there are
pairs of different points, i.e.,n(n − 1)/2. In the case ofd = 2, we can enumerate all
the different angles for which there is a change, namelya1, . . . , az with z ≤ n(n−1)

2 .
We then need to test at least oneu = [cos(θ), sin(θ)] for each intervalai < θ < ai+1,
and also oneu for θ < a1, which makes a total ofn(n−1)

2 possibilities.

It is possible to generalize this result in higher dimensions, and as shown in (Mar-
cotte and Savard, 1992), one can achieveO(log(n)nd) time.

Approximate Minimization
For data in higher dimensions, the exact minimization scheme to find the optimal

linear classifier is not practical. Therefore it is interesting to consider approximate
schemes for obtaining a linear classifier with weighted costs. Popular schemes for do-
ing so are the linear SVM (i.e., linear classifier with hinge loss), the logistic regression
classifier, and variants of the Perceptron algorithm. In that case, step (5c) of the algo-
rithm is not an exact minimization, and one cannot guarantee that the global optimum
will be reached. However, it might be reasonable to believe that finding a linear clas-
sifier by minimizing a weighted hinge loss should yield solutions close to the exact
minimization. Unfortunately, this is not generally true, as we have found out on a sim-
ple toy data set described below. On the other hand, if in step (7) one performs an
optimization not only of the output weightswj (j ≤ i) but also of the corresponding
weight vectorsvj , then the algorithm finds a solution close to the global optimum (we
could only verify this on 2-D data sets, where the exact solution can be computed eas-
ily). It means that at the end of each stage, one first performs a few training iterations
of the whole NN (for the hidden unitsj ≤ i) with an ordinary descent mechanism (we
used conjugate gradients but stochastic gradient descent would work too), optimizing
thewj ’s and thevj ’s, and then one fixes thevj ’s and obtains the optimalwj ’s for these
vj ’s (using a convex optimization procedure). In our experiments we used a quadratic
Q, for which the optimization of the output weights can be done with the LASSO or
adaptive ridge regression (Tibshirani, 1995; Grandvalet, 1998).

Let us consider now a bit more carefully what it means to tune thevj ’s in step
(7). Indeed, changing the weight vectorvj of a selected hidden neuron to decrease the
cost isequivalent to a change in the output weightsw’s. More precisely, consider
the step in which the value ofvj becomesv′j . This is equivalent to the following
operation on thew’s, whenwj is the corresponding output weight value: the output
weight associated with the valuevj of a hidden neuron is set to 0, and the output

8

weight associated with the valuev′j of a hidden neuron is set towj . This corresponds
to an exchange between two variables in the convex program. We are justified to take
any such step as long as it allows us to decrease the costC(w). The fact that we are
simultaneously making such exchanges on all the hidden units when we tune thevj ’s
allows us to move faster towards the global optimum.

Experimental Results
We performed experiments on the 2-D double moon toy dataset (as used in (Delal-

leau, Bengio and Le Roux, 2005)), to be able to compare with the exact version of the
algorithm. In these experiments,Q(w · h(xt), yt) = [w · h(xt) − yt]2. The set-up is
the following:
• Select a new linear classifier, either (a) the optimal one or (b) an approximate using
the Pocket Perceptron algorithm (Gallant, 1990).
• Optimize the output weights using the LASSO regression (Tibshirani, 1995; Grand-
valet, 1998).
• In case (b), tune both input and output weights by conjugate gradient descent onC
and finally re-optimize the output weights using the LASSO.
• Optionally, remove neurons whose output weight has been set to 0.

Note that incremental algorithms using variants of the Perceptron algorithm have
been proposed before, e.g. (Mézard and Nadal, 1989). Note also that the Ratchet ver-
sion of the Pocket Perceptron algorithm can be proven to converge to the optimal linear
classifier (minimizing the number of errors) in finite time (Muselli, 1997).

Using the approximate algorithm yielded for 100 training examples an average
penalized (λ = 1) squared error of 17.11 (over 10 runs), an average test classification
error of 3.68% and an average number of neurons of 5.5 . The exact algorithm yielded
a penalized squared error of 8.09 and an average test classification error of 5.3%. A
penalty ofλ = 1 was nearly optimal for the exact algorithm whereas a smaller penalty
further improved the test classification error of the approximate algorithm. Besides,
when running the approximate algorithm for a long time, it converges to a solution
whose quadratic error is extremely close to the one of the exact algorithm.

5 Conclusion
We have shown that training a NN can be seen as a convex optimization problem,
and have analyzed an algorithm that can exactly or approximately solve this problem.
We have shown that the solution with the hinge loss involved a number of non-zero
weights bounded by the number of examples, and much smaller in practice. We have
shown that there exists a stopping criterion to verify if the global optimum has been
reached, but it involves solving a sub-learning problem involving a linear classifier with
weighted errors, which can be computationally hard if the exact solution is sought, but
can be easily implemented for toy data sets (in low dimension), for comparing exact
and approximate solutions.

The above experimental results are in agreement with our initial conjecture: when
we are allowed to change all the hidden unit weights we are much less likely to stall
in the optimization procedure, because there are many more ways to descend on the
convex costC(w). They also suggest based on experiments in which we can compare

9

with the exact sub-problem minimization that applying AlgorithmConvexNNwith an
approximate minimization for adding each hidden unitwhile continuing to tune the
previous hidden unitstends to yield to fast convergence to the global minimum. What
can get us stuck in a “local minimum” (in the traditional sense, i.e., of optimizingw’s
andv’s together) is simply theinability to find a new hidden unit weight vector that
can improve the total cost (fit and regularization term) even if there exists one.

Acknowledgments

The authors thank the following for support: NSERC, MITACS, and the Canada Re-
search Chairs. They are also grateful for the feedback and stimulating exchanges with
Sam Roweis, Nathan Srebro, and Aaron Courville.

References

Chvátal, V. (1983).Linear Programming. W.H. Freeman.

Delalleau, O., Bengio, Y., and Le Roux, N. (2005). Efficient non-parametric function induc-
tion in semi-supervised learning. InProceedings of the Tenth International Workshop on
Artificial Intelligence and Statistics.

Freund, Y. and Schapire, R. E. (1997). A decision theoretic generalization of on-line learning
and an application to boosting.Journal of Computer and System Science, 55(1):119–139.

Friedman, J. (2001). Greedy function approximation: a gradient boosting machine.Annals of
Statistics, 29:1180.

Gallant, S. (1990). Perceptron-based learning algorithms.

Grandvalet, Y. (1998). Least absolute shrinkage is equivalent to quadratic penalization. In
Niklasson, L., Boden, M., and Ziemske, T., editors,ICANN’98, volume 1 ofPerspectives
in Neural Computing, pages 201–206. Springer.

Hettich, R. and Kortanek, K. (1993). Semi-infinite programming: theory, methods, and applica-
tions. SIAM Review, 35(3):380–429.

Mallat, S. and Zhang, Z. (1993). Matching pursuit with time-frequency dictionaries.IEEE
Trans. Signal Proc., 41(12):3397–3415.

Marcotte, P. and Savard, G. (1992). Novel approaches to the discrimination problem.Zeitschrift
für Operations Research (Theory), 36:517–545.

Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. (2000). Boosting algorithms as gradient
descent. InAdvances in Neural Information Processing Systems 12, pages 512–518.

Mézard, M. and Nadal, J.-P. (1989). Learning in feedforward layered networks: The tiling
algorithm.Journal of Physics A, 22:2191–2204.

Muselli, M. (1997). On convergence properties of pocket algorithm.IEEE Transactions on
Neural Networks, 8:623–629.

Rätsch, G., Demiriz, A., and Bennett, K. P. (2001). Sparse regression ensembles in infinite and
finite hypothesis spaces.

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning representations by back-
propagating errors.Nature, 323:533–536.

Tibshirani, R. (1995). Regression shrinkage and selection via the lasso.Journal of the Royal
Statistical Society B, 58:267–288.

10

