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Abstract 

A convex nonsmooth optimization problem is replaced by a sequence of line search prob- 
lems along recursively updated rays. Convergence of the method is proved and applica- 
tions to  linear inequalities, constraint aggregation and saddle point seeking indicated. 

Key words: Nonsmooth optimization, subgradient methods, aggregation. 



Convex Optimization 
by Radial Search 

Yuri M. Ermoliev 
Andrzej Ruszczyriski 

1 The method 
The objective of this note is to present a new algorithmic concept for convex optimization 
problems of the form: 

minf(x) ,  x c I R n .  (1.1) 

We assume that the function f : lRn H lR U {+co) satisfies the following assumptions: 

( A l )  f is convex, closed and co-finite, i.e. sup,{(y,x) - f (x ) )  < co for all y E lRn; 

(A2) 0 E int dom f 

Consider the following met hod. 

ALGORITHM 1 

Step 0: Choose so E lRn and a E (0 , l ) ;  set k = 0. 

k Step 1: Find xk = -pksk by minimizing f along the ray {-ps : p > 0). 

Step 2: Find a subgradient gk E 8 f (xk) such that l(sk, gk)I 5 olsk12 if xk # 0 and 

(sk,gk) 5 alsk12 if xk = 0. 

Step 3: Set sk+' = (1 - rk)sk + r k g k ,  increase k by one and go to  Step 1. 

Our method employs line search, as some of the bundle methods of [3,4], but has a simple 
direction-generating rule, close to the subgradient averaging employed in some stochastic 
subgradient algorithms [I,  61. Moreover, we do not increment xk in successive directions, 
but we stay at one point (here 0) and we explore the space along selected rays. The 
method emerged from our recent work [2] on constraint aggregation schemes. 

Throughout the paper we shall assume the following conditions on the stepsizes {rk). 

(A3) 7 k  E [O, 11 ; 

(A4) r k  -+ 0; 

(A5) CEO r k  = co. 



We shall base our analysis on the following lemma (see [2]). 

Lemma 1.1. Let the sequences {Pk), {rk) ,  {Sk) and irk) satisfy the inequality 

(i) lim inf Sk > 0; 

(ii) for every subsequence {k;) c IN one has [liminf Pki > 01 + [liminf Ski > 01 ; 

(iii) r k  > 0, limrk = 0, r k  = m; 

(iv) l imrk/ rk  = 0, 

then limk,, ,Bk = 0. 

Proof. Suppose that liminf Sk = S > 0. Then (1.2) for large k yields ,L3k+l I. Pk - 
rkS/2 + r k  5 Pk - rkS/4. This contradicts (iii). Therefore liminf Sk = 0. By (ii) there 
is a subsequence {k;) such that Pki + 0. Suppose that there is another subsequence 
{sj) such that PSI > ,B > 0 for j = 0,1,2, .  . .. With no loss of generality we may 
assume that kl < sl < k2 < ~ 2 . .  .. By (i), (iii) and (iv), for all sufficiently large j there 
must exist indices rj E [kj, sj] such that PT1 > P/2 and P,,,, > PTl. But then, by (ii), 
liminf STJ = S > 0 and we obtain a contradiction with (1.2) for large j. 

Lemma 1.2. There exists a constant C such that for all k one has I g k l  5 C ( l  + Iskl). 

Proof. Denote fdn = min f (x).  By (A2), fd, > -m. For every E > 0 we have 

Using the conditions of Step 2 we obtain 

By (A2), the set Xo = {x E IRn : f (x )  5 f(0)) has a finite diameter d. Therefore 
pkJskl  5 d. Moreover, f is finite around 0, so for some small but fixed E > 0 and some 
C1, f (cgk/ l g k  1) I C1 for all k. The last inequality then implies that 

which yields the required result. 

Lemma 1.3. lim sk = 0- 
k,, 



Proof. By the conditions of Step 2, 

By Lemma 1.1, 
< C2(1 + 1 ~ ~ ) ) ~  < 2C2(1 + lskI2). 19 1 - 

Therefore, 
k+l < 1 - 2(1 - o)rk + ( 2c2  + I ) T : ) ~ S ~ \ ~  + 2C2r:. I S  I - (  

By (A4), for all sufficiently large k one has r k  1 (1 - 0)/(2C2 + I), SO 

The required result follows now from Lemma 1.1. 

Theorem 1.4. Assume (A1)-(A5). Then for the sequence {xk) generated by Algorithm 
1 one has 

liminf f (xk) = min f (5). 
zEIRn 

Proof. Consider the conjugate function f *(-) = max,{(x, a )  - f (x)) (see, e.g., [3, 51). It 
is convex and (by assumption) finite everywhere. From the convexity of f *  we get 

From Fenchel's equality (see, e.g. [5, Thm. 23.51) and conditions of Step 2 we obtain 

where d is the upper bound on (xkl = Combining the last two inequalities we 
obtain 

f*(skf l )  5 f*(sk) - r k ( f * ( s k )  + f (xk)  - odlskl). (I-4)  

By the continuity of f *, f *(sk) + f *(O)  = - fmin. Suppose that f (xk) 2 f ~ ,  + t for all k, 
where t > 0. Then (1.4), Lemma 1.3 and (A5) imply that f*(sk)  + -00, a contradiction. 
Therefore lim inf f (xk)  = fmi,. 

A stronger result can be obtained for the sequence of averages. 

Theorem 1.5. Let the assumptions of Theorem 1.4 be satisfied. Then for the sequence 
of averages 

?k+l  = (1 - r k ) s k  + rkx k , k = 0,1,2,.  . . , 
where {xk) is generated by Algorithm 1, one has 



Proof. From the convexity of f and f * we obtain 

f*(sk+') < (1 - r k )  f*(sk) + rkf*(gk). 

Adding both sides yields 

because f (xk)  + f*(gk) = (xk,gk) [5, Thm. 23.51. By the conditions of Step 2, (xk,gk) < 
pkal~k12 5 dlsk1, where d is the upper bound on Ixkl. Therefore, 

Since Isk 1 + 0 by Lemma 1.3, using Lemma 1.1 we conclude that 

With f *(sk) + f *(O)  = -ffi,, the required result follows from (1.5). 

2 Explicit non-negativity constraints 

The concept introduced in section 1 applies, of course, to constrained problems, because 
we allow +oo as the value of f .  For example, simple inequalities x > 0 can be dealt with 
by moving the center 0 to some 5 > 0. It is, however, more convenient to treat them 
explicitly. 

Consider the problem 
min f (x) 
120 

under the same assumptions as before. Then we can still apply the method described in 
section 1, with the following modifications. 

ALGORITHM 2 

Step 0: Choose so E IRn and a E (0 , l ) ;  set k = 0. 

Step 1: Find xk = pkdk by minimizing f along the ray {pdk : p 2 01, where dk is the 
projection of -sk onto the positive orthant: d: = max(0, -s:), j = 1, . . . , n. 

k k  Step 2: Find a subgradient gk E af(xk)  such that i(d , g  ) I  5 oldkI2 if xk # 0 and 

(dk,gk) > -aldk12 if xk = 0. 

Step 3: Set sk+l = (1 - 'rk)sk + r k g k ,  with r k  E [O, 11, increase k by one and go to Step 1. 

The convergence properties remain unchanged. 



Theorem 2.1. Let the assumptions of Theorem 1.4 be satisfied. Then for the sequence 
{ x k }  generated by Algorithm 2 one has 

lirn inf f ( x k )  = min f ( x ) .  
x > o  

Proof. We shall derive a counterpart of the key inequality (1.3). From the definition of 
dk one obtains 

-Sk+l < - ( 1  - 'Tk)dk - 'Tkg k . 

In the above vector inequality, for the components j such that -s$+' > 0 the absolute 
value of the right hand side is not less than /s:+'l, so 

where in the last inequality we used the conditions of Step 2. Proceeding exactly as in the 
proofs of Lemmas 1.2 and 1.3, we conclude that dk -+ 0 and igk}  is bounded. Then the 
sequence of averages { s k }  is bounded, too. Let 5 be any accumulation point of { s k } .  Since 
dk -+ 0, one must have 5 2 0. By the continuity of f * ,  for the corresponding subsequence 
we get 

where f-, = f ( a ) .  Consequently, 

lim inf f * ( s k )  2 - f-,. 

This combined with inequality (1.4),  in the same manner as in Theorem 1.4, yields the 
required result. 

We also have an analog of Theorem 1.5. 

Theorem 2.2. Let the assumptions of Theorem 1.4 be satisfied. Then for the sequence 
of averages 

?k+l - - ( ~ - T ~ ) Z ~ + ' T ~ X  k , k = O , 1 , 2  ,..., 
where { x k }  is generated by Algorithm 2, one has 

lim f ( s k )  = min f ( x ) .  
k 4 m  x>O 

Proof. Proceeding similarly to the proof of Theorem 1.5 we obtain relation (1.5),  which 
implies 

limsup ( f  (2') + f * ( s k ) )  5 0. (2.2) 

On the other hand, f ( i ik)  >_ f-,, so we must have limsup f * ( s k )  5 - f-,. This combined 
with (2.1) yields 

k lim f * ( s  ) = -f-,. 
k+w 

Our assertion follows now from (2.2). 



3 Applications 

Let us discuss some potential applications of the ideas introduced in this paper. 

Linear inequalities 

Consider the system of linear inequalities 

and the associated optimization problem 

min I [ f ( . )  = ($ aijxj - bi)] 

The subproblem solved at Step 1 takes on the form 

Define the sets 

If J i  = 0 then E;=, aijs: > 0 for all i and one can find ji 2 0 such that -jisk solves (3 .1) .  
It remains to consider the case when J i  # 0 for a11 k. 

If pk > 0  there must exist r  E JF and t E Jk+ such that 

Denote a ,  = ( a , l , .  . . , a T n ) ,  at = ( a t l , .  . . , a tn )  and define 

X k  = (at , s k )  
(at - a, ,  s k )  ' 

Since a ,  E d f ( x k ) ,  at E d f ( x k )  and X k  E [0,  I ] ,  

is a subgradient of f  at xk.  By the definition of X k ,  ( s k , g k )  = 0 ,  i.e. gk satisfies the 
conditions of Step 2 with c = 0 .  



If pk = 0, then there must exist r E JL  such that b, 5 b;, i = 1, . . . , m. Taking gk = a, 
we have (gk, sk) 5 0 by the definition of J;. 

Constraint aggregation 

Consider the convex optimization problem 

min h(y ) (3.2) 

where h : IRm I+ IR is convex, Y C IRm is convex and compact, A is an n x m matrix, 
b E IRn. Its dual has the form 

max f(x),  x E IRn, 

where x is the vector of Lagrange multipliers and f : IRn I+ IR is the dual function defined 
as follows: 

f (x) = min {h(y) + (2, Ay - b ) )  . 
Y€Y 

Clearly, - f is convex and co-finite. Let us apply Algorithm 1 to the dual problem (with 
obvious modifications reflecting the change from minimization to maximization). Step 1 
takes on the form 

maxmin {h(y) + p(sk, Ay - b ) }  , 
vLO Y€Y 

which, under appropriate constraint qualification, is equivalent to the following optimiza- 
tion problem 

min h(y) (3.5) 

The subgradient gk satisfying the conditions of Step 2 is given by 

where y k  is the solution of (3.5)-(3.7). Finally, the subgradient averaging rule of Step 3 
can be written as 

k zk+' = (1 - rk)zk + TkY , (3.9) 

The algorithm (3.5)-(3.10) can be regarded as an iterative constraint aggregation proce- 
dure for solving (3.2)-(3.4): it replaces the constraints (3.3) by a single surrogate inequality 
(3.6). This idea has been analysed in [2]. 

If the original problem, instead of (3.3), has inequality constraints 



the dual problem has non-negativity constraints on x, so Algorithm 2 applies. The only 
modification with respect to (3.5)-(3.10) is that (3.10) is replaced by the projection: 

where ( v + ) ~  = max(0, vj), j = 1,. . . , n. In a similar way we can treat convex inequalities 
(see [2] for the details missing here, such as the constraint qualification condition, various 
modifications and extension, analysis of the rate of convergence, etc). 

Saddle point seeking 

The previous example can be in a straighforward manner generalized to the saddle point 
problem. Let L : IRn x Y I+ R be a convex-concave function. Assuming that L is strictly 
concave in its second argument, we can find a saddle point (2 ,c)  of L in the following 
way. First, we solve the problem 

to get 2 and then we define as the maximizer of L(2, a )  over Y. It turns out that Step 
1 of Algorithm 1 applied to  (3.11) takes on the form: 

By defining the function Ak(p, y) = L(-psk, y) we can equivalently formulate Step 1 as 
follows: find a saddle point (pk,  Y k )  of Ak on IR+ x Y. Moreover, if L is continuosly 
differentiable with respect to  the first argument, then gk = VxL(-pksk, y k )  satisfies the 
conditions of Step 2 with a = 0. 

References 

[I] Yu.M. Ermoliev, Methods of Stochastic Programming, Nauka, Moscow, 1976 (in Rus- 
sian) 

[2] Yu.M. Ermoliev, A. Kryazhimskii and A. Ruszczyfiski, "A constraint aggregation 
principle in convex optimization", working paper WP-95-015, International Institute 
for Applied Systems Analysis, Laxenburg, 1995. 

[3] J.-B. Hiriart-Urruty and C. Lemarkchal, Convex Analysis and Minimization Algo- 
rithms, Springer-Verlag, Berlin, 1993. 

[4] K.C. Kiwiel, Methods of Descent for Nondiflerentiable Optimization, Springer-Verlag, 
Berlin, 1985. 

[5] R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1973). 

[6] A. Ruszczyfiski, "A linearization met hod for nonsmoot h stochastic programming 
problems", Mathematics of Operations Research 12 (1987) 32-49. 


