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Abstract. Estimation of mixture densities for the classical Gaussian com-
pound decision problem and their associated (empirical) Bayes rules is
considered from two new perspectives. The first, motivated by Brown
and Greenshtein (2009), introduces a nonparametric maximum likelihood
estimator of the mixture density subject to a monotonicity constraint on
the resulting Bayes rule. The second, motivated by Jiang and Zhang
(2009), proposes a new approach to computing the Kiefer-Wolfowitz non-
parametric maximum likelihood estimator for mixtures. In contrast to
prior methods for these problems, our new approaches are cast as con-
vex optimization problems that can be efficiently solved by modern inte-
rior point methods. In particular, we show that the reformulation of the
Kiefer-Wolfowitz estimator as a convex optimization problem reduces the
computational effort by several orders of magnitude for typical problems, by
comparison to prior EM-algorithm based methods, and thus greatly ex-
pands the practical applicability of the resulting methods. Our new pro-
cedures are compared with several existing empirical Bayes methods in
simulations employing the well-established design of Johnstone and Sil-
verman (2004). Some further comparisons are made based on prediction
of baseball batting averages. A Bernoulli mixture application is briefly
considered in the penultimate section.

1. Introduction

The recent revival of interest in empirical Bayes methods for compound
decision problems, e.g. Brown (2008), Brown and Greenshtein (2009), Efron
(2010, 2011), and Jiang and Zhang (2009, 2010), has renewed interest in
computational methods for nonparametric mixture models. Our primary
objective for this paper is to demonstrate the constructive role that modern
convex optimization methods can play in this context, both from practical
and theoretical viewpoints.
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2 Convex Optimization and Empirical Bayes

With this objective in mind, we focus primarily on the classical com-
pound decision problem of estimating an n-vector (µ1, · · · ,µn) of parame-
ters, under squared error loss, based on a conditionally Gaussian random
sample, Yi ∼ N(µi, 1) i = 1, · · · ,n, where the µi’s are assumed to be
drawn iid-ly from a distribution F; so that the Yi’s have the mixture den-
sity

g(y) =

∫
ϕ(y− µ)dF(µ).

For known F, and hence known g, the optimal prediction of the µ’s, under
squared error loss, is given by the Bayes rule

(1) δ(y) = E(µ|Y = y) = y+
g′(y)

g(y)
.

This formula is generally attributed to Robbins (1956), but Efron (2011)
notes that Robbins attributes it to M.C.K. Tweedie. Efron’s paper offers
a broad perspective on the significance, and limitations, of its use in em-
pirical Bayes applications; in particular, it points out that the exponential
family argument of van Houwelingen and Stijnen (1983) immediately en-
sures that (1) is nondecreasing in y, not only for the conditional Gaussian
case, but for more general one-parameter exponential families as well, re-
gardless of the prior distribution F.

From the practical point of view, Brown and Greenshtein (2009) show
that simple kernel density estimates of g can be employed to achieve at-
tractive performance relative to some other empirical Bayes procedures.
However, the monotonicity of the decision rule δ(y) suggests that also its
estimated version, δ̂(y), be monotone too—or equivalently, that

(2) 1
2
y2 + log ĝ(y)

be convex. As the unconstrained kernel density estimates do not deliver
this, van Houwelingen and Stijnen (1983) suggest a greatest convex mino-
rant estimator based on a preliminary histogram-type estimate of the den-
sity, g. Rather than taking this route and starting from a kernel estimate or
some form of histogram estimate we consider instead direct nonparametric
maximum likelihood estimation of the mixture density subject to the con-
straint (2); this not only ensures monotonicity, but also eliminates a need
to tune the bandwidth or equivalent quantity. The shape constraint itself
is a sufficient regularization device. A close link can be traced here to re-
cent work on maximum likelihood estimation of log-concave densities and
other shape constrained estimation problems.

While our original intent might have been to explore this idea and its
consequences for the performance of the associated empirical Bayes rules,
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our second and in our view equally promising focus has been motivated
by the work of Jiang and Zhang (2009), who show that good predictive
performance for the class of Gaussian compound decision problems can
be achieved by an implementation of the nonparametric maximum likeli-
hood estimator originally proposed by Kiefer and Wolfowitz (1956). The
implementation of Jiang and Zhang (2009) employed the EM algorithm,
a strategy initially proposed by Laird (1978). In place of this, we intro-
duce in Section 3 an alternative computational strategy based on convex
optimization—which delivers better predictive performance than that ob-
served by Jiang and Zhang (2009) based on EM, at dramatically reduced
computational cost. Contrary to our first proposal that directly estimates
the decision rule, the Kiefer-Wolfowitz estimator estimates rather the prior
F; the implied decision rule, obtained by substituting this estimate for
F, is automatically monotone—as the latter property holds regardless of
the form of the prior. Moreover, our new implementation of the Kiefer-
Wolfowitz estimator applies also to a broad class of mixture problems; it
includes the standard exponential family problems, but extends well be-
yond them, thus significantly increasing its appeal.

2. Shape Constrained Density Estimation

The recent upsurge in work on shape constrained estimation has ex-
plored a wide variety of settings, but work on shape constrained density
estimation has focused primarily on imposing log concavity and some
weaker forms of concavity restrictions—see, e.g. Cule, Samworth, and
Stewart (2010), Dümbgen and Rufibach (2009), Koenker and Mizera (2010),
and Seregin and Wellner (2010). Monotonicity of the Bayes rule would
seem to be a rather different constraint, but the essential nature of the
problems is very similar. As in the development in Koenker and Mizera
(2010), we consider maximizing the log likelihood,

n∑
i=1

log g(Yi),

over g; to ensure that the result is a probability density, we reparametrize
the problem in terms of h = log(y), so that g = eh is automatically positive,
and add a Lagrange term so that g integrates to 1. The whole task then
involves maximizing

n∑
i=1

h(Yi) −

∫
eh(y)dy

under the convexity constraint enforcing 1
2
y2 + h(y) to be in K, the cone

of convex functions on R. Evidently, this constraint is equivalent to the
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requirement that

K(y) = log
√

2π+ 1
2
y2 + h(y)

is in K. Rewriting in terms of K gives the objective function
n∑
i=1

K(Yi) +

n∑
i=1

logϕ(Yi) −

∫
eK(y)ϕ(y)dy.

If the optimization task is expressed in the minimization form, we obtain
after omitting the constant terms the formulation,

(3) min
K

{−
∑

K(Yi) +

∫
eK(y)dΦ(y) | K ∈ K},

where Φ denotes the standard Gaussian distribution function. This form
differs from the prescription of Koenker and Mizera (2010) for the estima-
tion of a log-concave density only in the sign of K, and correspondingly in
the requirement that K be convex rather than concave; and in that the inte-
gration measure is dΦ(y) = ϕ(y)dy rather than dy. While it is fairly well-
known in the literature that this does not necessarily imply the same form
for the solutions K̂, one might expect at least a similar one; however, the
following theorem stipulates that although in both instances the solutions
are piecewise linear, the knots, the breakpoints of linearity in K̂, do not
necessarily occur at the observed yi, unlike in Theorem 2.1 of Koenker and
Mizera (2010) for the log concave case. As we are looking rather for a con-
vex interpolant with minimal integral for the concave majorant (and thus
interpolant) with minimal integral, the results exhibit analogous properties
to those of Groeneboom, Jongbloed, and Wellner (2001), who considered
maximum likelihood estimation of a probability density (with respect to
dy) that is convex and decreasing however, our problem, when recast as
(3), asks for the convexity of the logarithm of the density (with respect to
dΦ); so, unfortunately, their results are not directly applicable to our case
and we have furnished a brief, independent proof.

The similarity of (3) to the prescription of Koenker and Mizera (2010)
is advantageous in another respect: since the objective function of (3) is
convex, and minimized over the convex cone K, the problem is convex,
enabling us to provide a valuable dual formulation.

Theorem 1. The solution, K̂, of (3) exists and is piecewise linear. It admits a dual
characterization: eK̂(y) = f̂, where f̂ is the solution of

(4) max
f

{−

∫
f(y) log f(y)dΦ(y) | f =

d(Pn −G)

dΦ
,G ∈ K−},
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where K− denotes the polar cone associated with K, see e.g. Rockafellar (1970).
The estimated decision rule, δ̂, is piecewise constant and has no jumps at min Yi
and max Yi.

Remark 1. Since K̂(y) is piecewise linear and convex, the resulting Bayes
rule, δ̂(y) = K̂′(y), is piecewise constant and non-decreasing, yielding an
“empirical decision rule,” analogous to the empirical distribution function
and determined by maximum likelihood.

Remark 2. Note that ĝ(y) = ϕ(y)eK̂(y) = ϕ(y)f̂. In implementations we
have generally found that it is more numerically stable and computation-
ally efficient to work with the dual formulation and this is true here as
well. Expressing the negative of the dual objective function in terms of g,∫ (

g(y)

ϕ(y)
log

g(y)

ϕ(y)

)
ϕ(y)dy =

∫
g(y) log

g(y)

ϕ(y)
dy

reveals that the dual minimizes the Kullback-Leibler divergence between g
and ϕ, under the constraint

g =
d(Pn −G)

dy
, G ∈ K−.

This formulation can be further viewed as minimizing∫
g(y) log g(y) − g(y) logϕ(y)dy =

∫
g(y)K(y)dy

and after the elimination of the constant log
√

2π as maximizing

(5) −

∫
g(y) log g(y)dy− 1

2

∫
y2g(y)dy.

The latter is equivalent, in view of the independence of∫
yg(y)dy =

∫
yd(Pn −G)(y) =

∫
ydPn(y) −

∫
ydG(y) =

1

n

n∑
i=1

Yi

on g (the last term vanishing due to the fact that G ∈ K−), to the maxi-
mization of H(g) − 1

2
Var(g), where

H(g) = −

∫
g(y) log g(y)dy

and

Var(g) =

∫
y2g(y)dy− (

∫
yg(y)dy)2.
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Remark 3. The intervals of linearity of K̂ include (−∞,a) and [b,+∞) for
some a > min{Yi} and b 6 max{Yi}. Thus, unlike the case of log con-
cave density estimators that vanish off the convex hull of the observations,
solutions, ĝ have exponential tails.

Remark 4. What do densities, g, such that K(y) = − logϕ(y) + log g(y)
is piecewise linear and convex, look like? It is easy to show that such
densities have the form,

g(y) = c exp{−1
2

m∑
j=1

(y− µj)
2I(aj,aj+1](y)}

for some choice of constants, c and {(µj,aj) : j = 1, · · · ,m}. Such densities
may also be expressed as mixtures of truncated normal densities, and as
such do not fully comply with the features of the Gaussian mixture model.
A more fully compliant estimator is introduced in the next section.

We defer further implementation details regarding the discretization of
the problem to Section 4, and proceed immediately to the discussion of our
second approach based on the Kiefer-Wolfowitz nonparametric MLE.

3. Non-Parametric Maximum Likelihood

Jiang and Zhang (2009) have recently proposed a variant of the classical
Kiefer and Wolfowitz (1956) nonparametric MLE as another promising ap-
proach to estimation of an empirical Bayes rule for the Gaussian compound
decision problem.

In its original, infinite-dimensional, formulation the Kiefer and Wol-
fowitz (1956) nonparametric MLE solves,

(6) min

{
−

n∑
i=1

log

(∫
ϕ(yi − µ)dF(µ)

)}
,

where F runs over all mixing distributions. Once again, the objective func-
tion is convex, and is minimized over a convex set of F; hence again we
have a convex problem, and duality theory is again applicable.

Theorem 2. The solution, F̂, of (6) exists, and is an atomic probability measure,
with not more than n atoms. The locations, µ̂j, and the masses, f̂j, at these
locations can be found via the following dual characterization: the solution, ν̂, of

(7) max{

n∑
i=1

log νi |

n∑
i=1

νiϕ(Yi − µ) 6 n for all µ}



Koenker and Mizera 7

satisfies the extremal equations (n equations in less than n variables)

(8)
∑
j

ϕ(Yi − µ̂j)f̂j =
1

ν̂i
,

and µ̂j are exactly those µ where the dual constraint is active—that is, the con-
straint function in (7) is equal to n.

It may be interesting to compare the nonparametric MLE to the shape-
constrained approach proposed the previous section; while the latter re-
sults in the piecewise constant “empirical decision rule”, the nonparamet-
ric MLE rather comes with an “empirical prior distribution”: a piecewise
constant cumulative empirical distribution for the estimated prior.

Despite the number n appearing in the theorem, the atoms of F̂ are not
necessarily located at the datapoints; this is clear already in the example
of Laird (1978) (p. 809), whose theoretical underpinning can be derived
from the facts established in Theorem 2. Note that although the primal for-
mulation is infinite-dimensional in the objective (in F), the objective of the
dual formulation is finite dimensional (in ν), and infinite-dimensionality
appears only in the constraint. This offers a potential for certain refine-
ments: instead of a uniformly spaced grid supporting an atomic measure
meant to approximate F, we could instead work with an adaptive (and not
necessarily uniformly spaced) collection of test points where the dual con-
straint is enforced. In fact, if we knew the locations of maxima for the func-
tion appearing in the constraint, we could simply select these test points
at these locations. Such information is typically unavailable, but practical
implementations may seek to refine the solution in an iterative manner by
refining the grid in regions identified by preliminary estimation.

We defer consideration of such refinements for future work since the
fine grids described in the next section yield sufficient accuracy from most
practical points of view. It is clear that implementations of the primal
problem must discretize, thereby restricting F to a finite-dimensional ap-
proximation, as in the EM proposals of Laird (1978), and Heckman and
Singer (1984). Following these earlier authors, Jiang and Zhang (2009) pro-
posed a fixed point EM iteration that requires a grid {u1, ...um} containing
the support of the observed sample, yielding a sequence

f̂
(k+1)
j = n−1

n∑
i=1

f̂
(k)
j ϕ(Yi − uj)∑m

`=1 f̂
(k)
` ϕ(Yi − u`)

,

where ϕ(·) denotes the standard Gaussian density, and f̂
(k)
j denotes the

value of the estimated “prior” mixing density on the interval (uj,uj+1) at
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the kth iteration. At the conclusion of the iteration, the decision rule is
again, simply, the conditional expectation of µi given Yi,

δ̂(Yi) =

∑m
j=1 ujϕ(Yi − uj)f̂j∑m
j=1ϕ(Yi − uj)f̂j

.

Jiang and Zhang (2009) report good performance in their simulations
employing a design of Johnstone and Silverman (2004), with the sample
size n = 1000 and the ui’s equally spaced with m = 1000. However, repro-
ducing their results is not that straightforward: the EM iterations, while
simple, make very lethargic progress toward their objective of maximizing
the log likelihood,

L(f) =

n∑
i=1

log(

m∑
j=1

ϕ(Yi − uj)fj),

and the method is quite prohibitively slow even for moderately large sam-
ple sizes. To ameliorate the consequences of this slow convergence, Jiang
and Zhang (2009) suggest starting the iterations with a substantial point
mass at zero, rather than the perhaps more natural uniform mass points.
This modification delivers improved performance for the Johnstone and
Silverman (2004) simulation design by privileging µi = 0 at the expense of
a lack of equivariance.

We initially investigated a variety of schemes to accelerate the EM it-
erations along the lines of Varadhan and Roland (2008) and Berlinet and
Roland (2007), which while somewhat helpful did not significantly im-
prove the computational speed. The crucial insight came again only with
the realization that the task of maximizing L(f) is a convex problem.

4. Implementation

Both methods of the preceding section require some form of discrete
implementation to render them practical for data analysis.

4.1. Shape-constrained density estimator. A discrete formulation of our
shape-constrained MLE can be obtained by choosing a fine grid of points,
y1 < y2, · · · < ym, setting αi = h(yi) ≡ log g(yi) to be the unknown
function values of the mixture density and solving:

(9) max
α

{w>α−
∑

cie
αi | Dα+ 1 > 0},

The matrix D represents the finite difference version of the second deriv-
ative operator that appears in the variational form of the estimation prob-
lem. Here, as in Koenker and Mizera (2010), the accuracy of the Riemann
approximation of the integral is controlled by the fineness the grid, thereby
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increasing the number of estimated function values. We have typically
used equally spaced grids with m ≈ 300. The vector w is an evaluation
operator that simply allows us to recover and sum up the contributions to
the likelihood given the expanded vector of function values. In the corre-
sponding finite-dimensional dual problem, we write the diagonal matrix
of Riemann weights, ci, as C,

(10) min
ν

{
∑

cigi log gi + 1>ν | g = C−1(w+D>ν), ν > 0}.

In addition to the entropy term, the dual objective function now contains
a linear contribution not present in the log-concave formulation; neverthe-
less, the latter is consistent with the objective function of (4), corresponding
to the second term in (5).

The dual form of the estimator was implemented using two independent
convex programming algorithms both employing interior point methods:
the PDCO algorithm of Saunders (2003) and the Mosek methods of An-
dersen (2010). In Figure 1 we plot a typical realization of the constrained
density estimate and its corresponding Bayes rule δ̂(x) = K̂ ′(x) estimate.
This example is based on a sample of size 100 from the model described in
the introduction with the µi’s drawn from the uniformU[5, 15] distribution.
The Mosek and PDCO solutions are indistinguishable in such plots. An R
package REBayes, Koenker (2013), used for all the Mosek computations is
available from CRAN.

For those accustomed to looking at conventional kernel density esti-
mates, the density plot of Figure 1 is likely to appear rather bizarre, but
such are the consequences of the convexity constraint K ∈ K that has been
imposed. The fitted K̂ is piecewise linear and consequently log ĝ must be
piecewise quadratic. Careful examination of the piecewise constant Bayes
rule plot illustrates that, as already remarked, its jumps do not (necessarily)
occur at the observed data points represented by the “rug plot” appearing
on the x-axis. As estimates of the mixture density, g, such estimates may
look a bit strange, but their implied Bayes rules nevertheless conform to
the monotonicity requirement and perform quite well as we shall see in
Section 5.

4.2. Nonparametric maximum likelihood. Although the EM algorithm
has dominated the literature on nonparametric maximum likelihood esti-
mation of mixture models, others have undoubtedly recognized the advan-
tages that convex optimization brings to such problems. Indeed, Groene-
boom, Jongbloed, and Wellner (2008) have introduced an ingenious active
set method they call the “support reduction algorithm” and have illustrated
its performance with an application to a quantum non-locality experiment
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Figure 1. Estimated mixture density, ĝ, and corresponding
Bayes rule, δ̂, for a simple compound decision problem.
The target Bayes rule and its mixture density are plotted
as smooth (blue) lines. The local maxima give y for which
δ̂(y) = y.

that is closely related to the Gaussian mixture problem. In our experience
the Mosek implementation of interior point methods for such problems
has proven to be highly reliable and efficient, but a variety of other meth-
ods may eventually prove to be even better. For extremely large problems,
first order gradient descent methods are likely to dominate. For further
discussion of these aspects, we refer to Koenker and Mizera (2013).

The approach we chose to implement proceeds as follows. Let {u1, ...,um}
be a fixed grid as above. Let A be the n by m matrix, with the elements
ϕ(Yi−uj) in the i-th row and j-th column. Consider the (primal) problem,

min{−

n∑
i=1

log(gi) | Af = g, f ∈ S},

where S denotes the unit simplex in Rm, i.e. S = {s ∈ Rm|1>s = 1, s > 0}.
So fj denotes the estimated mixing density estimate f̂ evaluated at the
grid point uj, and gi denotes the estimated mixture density estimate, ĝ,
evaluated at Yi. In this case it is again somewhat more efficient to solve the
corresponding dual problem,

max{

n∑
i=1

log νi | A
>ν 6 n1m, ν > 0},
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Estimator EM1 EM2 EM3 IP
Iterations 100 10, 000 100, 000 15
Time 1 37 559 1
L(g) - 422 0.9332 1.1120 1.1204 1.1213

Table 1. Comparison of EM and Interior Point Solutions: It-
eration counts, log likelihoods and CPU times (in seconds)
for three EM variants and the interior point solver.

and subsequently recover the primal solutions. For the present purpose of
estimating an effective Bayes rule, a relatively fine fixed grid like that used
for the EM iterations seems entirely satisfactory.

In Figure 3 we compare the “solutions” produced by the interior point
algorithm with those of the EM iteration for various limits on the number
of iterations. For the test problem for this figure we have employed a struc-
ture similar to that of the simulations conducted in the following section.
There is a sample of n = 200 observations, and a grid of m = 300 equally
spaced points; 15 of the observations have µi = 2, while the remainder
have µi = 0. It is obviously difficult to distinguish this mixture, yet re-
markably the procedure does find, in this particular sample, a mass point
near 2, as well as much more significant mass point near 0. A spurious
mass point near -1 is also identified. In Table 1 we report timing infor-
mation and the values of L(g) achieved for the four procedures illustrated
in the figure. Although the EM procedure makes steady progress toward
its goal, it leaves something to be desired even after 100,000 iterations, and
nearly 10 minutes of computation. By contrast, the interior point algorithm
as implemented in Mosek is both quicker and more accurate. See Koenker
and Mizera (2013) for more alternatives.

As another point of comparison, we illustrate in Figure 2 the Kiefer-
Wolfowitz estimate of the Bayes rule and the corresponding mixture den-
sity ĝ(y) for the example illustrated earlier in Figure 1. The estimated
mixing density has four points of support in this example, but the result-
ing Bayes rule illustrated in the left panel of the figure is much smoother
and somewhat more accurate than the piecewise constant rule produced
by the shape constrained estimator as we will see in the next section.

5. Simulation Performance

To compare performance of the shape constrained estimator with other
methods we have replicated the experiment described in Johnstone and
Silverman (2004), and also employed in both Brown and Greenshtein (2009)
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Figure 2. Estimated mixture density, ĝ, and corresponding
Bayes rule, δ̂, for a simple compound decision problem. The
target Bayes rule and its mixture density are again plotted
in dashed blue. In contrast to the shape constrained estima-
tor shown in Figure 1, the Kiefer-Wolfowitz MLE employed
for this figure yields a much smoother and somewhat more
accurate Bayes rule.

and Jiang and Zhang (2009). In this setup the µi’s have a simple discrete
structure: there are n = 1000 observations, k of which have µ equal to
one of the 4 values {3, 4, 5, 7}, the remaining n − k have µ = 0. There are
three choices of k as indicated in the table. Table 2 reports results of the
experiment. Each entry in the table is a sum of squared errors over the 1000
observations, averaged over the number of replications. Johnstone and
Silverman (2004) evaluated 18 different procedures; the last row of the table
reports the best performance, from the 18, achieved in their experiment
for each column setting. The performance of the Brown and Greenshtein
(2009) kernel based rule is given in the fourth row of the table, taken from
their Table 1. Two variants of the GMLEB procedure of Jiang and Zhang
(2009) appear in the second and third rows of the table. GMLEBEM is
the original proposal as implemented by Jiang and Zhang (2009) using
100 iterations of the EM fixed point algorithm, GMLEBIP is the interior
point version iterated to convergence as determined by the Mosek defaults.
The shape constrained estimator described above, denoted δ̂ in the table,
is reported in the first row. The δ̂ and GMLEBIP results are based on
1000 replications. The GMLEB results on 100 replications, the Brown and
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Figure 3. Comparison of estimates of the mixing density f:
The solid black very peaked density is the interior point so-
lution, GMLEBIP, the others as indicated by the legend rep-
resent the EM solutions with various iteration limits. After
100,000 EM iterations the peak near zero is about 8, while af-
ter 15 interior point iterations this peak is about 27. See Table
1 for further details on timings and achieved likelihoods.

Greenshtein results on 50 replications, and the Johnstone and Silverman
results on 100 replications, as reported in the respective original sources.

It seems fair to say that the shape constrained estimator performs com-
petitively in all cases, but is particularly attractive relative to the kernel
rule and the Johnstone and Silverman procedures in the moderate k and
large µ settings of the experiment. However, the GMLEB rules have a clear
advantage when k is 50 and 500.

To explore performance for smoother mixing distributions F, we briefly
reconsider a second simulation setting drawn from Brown and Greenshtein
(2009). The mixture distribution F has a point mass at zero, and a uni-
form component on the interval [−3, 3]. Two sample sizes are considered,
n = 10, 000 and n = 100, 000. In the former case we consider 100, 300,
and 500 uniforms, in the latter case there are 500, 1000, and 5000. In Table
3 we report performance of the shape constrained estimator and compare
it with the kernel estimator, now with bandwidth 1.05, taken from Brown
and Greenshtein (2009). The row labeled “strong oracle,” also taken from
Brown and Greenshtein (2009), is a hard-thresholding rule which takes
δ(X) to be either 0 or X depending on whether |X| > C for an optimal
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Estimator k = 5 k = 50 k = 500
µ =3 µ =4 µ =5 µ =7 µ =3 µ =4 µ =5 µ =7 µ =3 µ =4 µ =5 µ =7

δ̂ 37 34 21 11 173 121 63 16 488 310 145 22

δ̂GMLEBIP 33 30 16 8 153 107 51 11 454 276 127 18

δ̂GMLEBEM 37 33 21 11 162 111 56 14 458 285 130 18

δ̃1.15 53 49 42 27 179 136 81 40 484 302 158 48
J-S Min 34 32 17 7 201 156 95 52 829 730 609 505

Table 2. Risk of Shape Constrained Rule, δ̂ compared to: two
versions of Jaing and Zhang’s GMLEB procedure, one using
100 EM iterations denoted GMLEBEM and the other, GM-
LEBIP, using the interior point algorithm described in the
text, the kernel procedure, δ̃1.15 of Brown and Greenshtein,
and best procedure of Johnstone and Silverman. Sum of
squared errors in n = 1000 observations. Reported entries
are based on 1000, 100, 100, 50 and 100 replications, respec-
tively.

Estimator n = 10,000 n = 100,000
k =100 k =300 k =500 k =500 k =1000 k =5000

δ̂GMLEB 268 703 1085 1365 2590 10709

δ̂ 282 736 1136 1405 2659 10930

δ̃1.05 306 748 1134 2410 3810 10400
Oracle 295 866 1430 3335 5576 16994

Table 3. Empirical Risk of a gridded version of the GMLEB
rule, the Shape Constrained Rule, δ̂, compared to kernel pro-
cedure, δ̃1.05 of Brown and Greenshtein, and an oracle hard
threshholding rule described in the text. The first two rows
of the table are based on 1000 replications. The last two rows
are as reported in Brown and Greenshtein and based on 50
replications.

choice of C. Since the shape constrained estimator is quite quick we have
done 1000 replications, while the other reported values are based on 50
replications as reported in Brown and Greenshtein (2009). As in the pre-
ceding table the reported values are the sum of squared errors over the n
observations, averaged over the number of replications. Again, the shape
constrained estimator performs quite satisfactorily, while circumventing
difficult questions of bandwidth selection.

Given the dense form of the constraint matrix A, neither the EM or IP
forms of the GMLE methods are feasible for sample sizes like those of the
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experiments reported in Table 3. Solving a single problem with n = 10, 000
requires about one hour using the Mosek interior point algorithm, so the
EM implementation would be even more prohibitively time-consuming.
However, it is possible to bin the observations on a fairly fine grid and
employ a slight variant of the proposed interior point approach in which
the likelihood terms are weighted by the relative (multinomial) bin counts.
This approach, when implemented with a equally spaced grid of 600 points
yields the results in the first row of Table 3. Not too unexpectedly given
the earlier results, this procedure performs somewhat better than the shape
constrained rule, δ̂. Binning the observations for the GMLEB procedure
makes its computational effort comparable to the shape constrained MLE
overcoming the latter’s advantage due to the sparsity of its required lin-
ear algebra, and enabling us to do 1000 replications for both procedures
reported in Table 3.

6. Empirical Bayesball

The ultimate test of any empirical Bayes procedure is known to be: How
well does it predict second-half-of-the-season baseball batting averages?
To explore this question we adopt the framework of Brown (2008) and
Jiang and Zhang (2010), who use data from the 2005 Major League baseball
season.

Following prior protocol, we employ midseason batting averages, Ri1 =
Hi1/Ni1, for i = 1, · · · ,n1 to predict second half averages, Ri2 = Hi2/Ni2,
for i = 1, · · · ,n2. All players with more than ten at bats in the first three
months of the season S1 are used to construct predictions for their second
half average, provided they also have at least 10 at bats in the second half,
S1 ∩ S2. Thus, data on n1 = |S1| = 567 players in the first half is used to
predict performance of n2 = |S1 ∩ S2| = 499 players in the second half. The
transformation,

Yi = asin

(√
Hi1 + 1/4

Ni1 + 1/2

)
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is used to induce approximate normality and three measures of quadratic
loss are employed to judge performance of the predictions:

TSE =

∑n2

i=1[(Yi2 − Ŷi2)
2 − σ2i2]∑n2

i=1[(Yi2 − Ỹi2)
2 − σ2i2]

TSER =

∑n2

i=1[(Ri2 − R̂i2)
2 − Ri2(1 − Ri2)/Ni2]∑n2

i=1[(Ri2 − R̃i2)
2 − Ri2(1 − Ri2)/Ni2]

TWSE =

∑n2

i=1[(Yi2 − Ŷi2)
2 − σ2i2]/(4σ

2
i2)∑n2

i=1[(Yi2 − Ỹi2)
2 − σ2i2]/(4σ

2
i2)

,

where σ2it = 1/(4Nit), R̂i2 = sin2(Ŷi2) and Ỹi2 = Yi1 is the naı̈ve predictor.
We depart from the earlier constant mean, constant variability context to
consider linear regression models of the form:

Yi = z
>
i β+ ξi + ui,

where ui is (approximately) normally distributed with variance σ2i = 1/(4Ni1),
the ξi’s are iid from the unknown mixing density, f, and zi denotes a vec-
tor of covariates intended to capture systematic differences in the central
tendency of Yi; these covariates are limited in the present exercise to an
indicator of whether the player is a pitcher, the number of at bats taken in
the first half of the season, and possible interactions thereof.

In this setting, Jiang and Zhang (2010) considered five predictors of the
second half average, first two of them simply based on regression estima-
tion,

(LSE) δ̇i = z
>
i β̇, β̇ = (Z>Z)−1Z>y,

(WLSE) δ̈i = z
>
i β̈, β̈ = (Z>Ω−1Z)−1Z>Ω−1y, Ω = diag(1/σ2

i).

The third estimator is a James-Stein version of the WLSE:
(EBJS)

δ̌i =

(
1 −

p− 2∑
(z>i β̈)

2/σ2i

)
z>i β̈+

(
1 −

n− p− 2∑
(yi − z>i β̈)

2/σ2i

)
(yi − z

>
i β̈)

These three procedures were implemented independently in an effort to
check the sample selection and variable definitions. The remaining two
estimators are the EM implementations of the GMLEB estimator proposed
by Jiang and Zhang. The first is:

(GMLEB) δ̂i = z
>
i β̂+

∫
ξϕ((yi − z

>
i β̂− ξ)/σi)dF̂(ξ)∫

ϕ((yi − z>i β̂− ξ)/σi)dF̂(ξ)
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where

β̂ = argmaxb
∑

log(

∫
σ−1
i ϕ((yi − z

>
i b− ξ)/σi)dF̂(ξ))

F̂ = argmaxF
∑

log(

∫
σ−1
i ϕ((yi − z

>
i β̂− ξ)/σi)dF(ξ))

The second is a reweighted version of the first:

(WGMLEB) δ̃i = z
>
i β̃+ σi

∫
ζϕ(yi/σi − z

>
i β̃/σi − ζ)dF̃(ζ)∫

ϕ(yi/σi − z>i β̃/σi − ζ)dF̃(ζ)

where
β̃ = argmaxb

∑
log(

∫
ϕ((yi/σi − z

>
i b/σi − ζ))dF̃(ζ)

F̃ = argmaxF
∑

log(

∫
ϕ((yi/σi − z

>
i β̃/σi − ζ))dF(ζ)

In both cases iteration proceeds by simply alternating between the two
optimization problems, with the EM fixed point method employed for the
F̂ or F̃ solution; hence the acronyms GMLEBEM and WGMLEBEM.

The same strategy can be adapted to find F̂ (or F̃) solutions via our in-
terior point implementation, and thus find predictions that we designate
as GMLEBIP and WGMLEBIP. We should stress that although the mixture
likelihood problem is convex for each value of the regression parameter, β,
the joint problem of optimizing over β and F is not convex, nevertheless
conventional optimizers can be used to obtain a sequence of alternating
iterations that improves the likelihood at each step.

Unfortunately, this is not the case for our shape-constrained Bayes rule,
for which an analogous strategy for the regression parameter falters on
the discontinuities of the ĝ influence function. Moreover, it is unclear how
the shape constrained estimator should be adapted to the variability of the
variances in the observations: when Yi ∼ N(0,σ2i) then the Bayes rule 1
becomes

(11) δ(yi) = yi + σ
2
i

g′(yi)

g(yi)
.

one must require that the corresponding K in

(12) Ki(yi) =
1
2
y2i + σ

2
i log g(yi)

be convex – for every σ2i . While it turns out that enforcing this only for the
largest σ2i ensures that it holds for all other σ2i , it seems that this is overly
restrictive for the bulk of the players who have a larger number of at bats,
and therefore smaller implied variances. In view of all the above, we have
excluded the shape-constrained Bayes rule from the present competition.
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Our comparison thus pits five estimators considered by Jiang and Zhang
against two variants of our interior point version of the Kiefer-Wolfowitz
estimator. Each of the estimators are paired with five different specifi-
cations of a regression design. In Table 4 we compare performance of
five methods for each of the five regression specifications and two interior
point implementations of the weighted and unweighted GMLEB proce-
dures. The results reported for the five Jiang and Zhang methods match
those reported in their Table 2. Somewhat surprisingly, however – given
the results presented in the preceding section – we find that the interior
point predictive performance is consistently worse than the EM results.

To explore this further, we report in Table 5 the likelihood values achieved
by the EM and IP methods for the WGMLEB procedures. Of course there
is nothing to assure us that estimators with better likelihoods will yield
better predictions out of sample, and the hubris of expecting it to do so
probably deserves the comeuppance observed in Table 4.

There are several tuning parameters that determine the stopping criteria
of the EM implementation employed. The predictive advantage manifested
by the EM estimates comes primarily from the effect of “early stopping” on
the estimated regression parameters. It has been conjectured by some that
early stopping of EM iterations can sometimes exert a beneficial regular-
ization, or smoothing, effect. This may well be true in some circumstances,
however we do not view this as very plausible in the present context. In-
stead, early EM stopping appears simply to produce a fortuitous location
shift in the regression parameter estimates that mimics a systematic differ-
ence between first and second half-season batting.

7. A Tacky Application

In a effort to dispel the impression that the applicability of the Kiefer-
Wolfowitz MLE is confined to Gaussian convolutions, we briefly reconsider
the following binomial mixture problem.

The example involves repeated rolls of a common thumb-
tack. A one was recorded if the tack landed point up and a
zero was recorded if the tack landed point down. All tacks
started point down. Each tack was flicked or hit with the
fingers from where it last rested. A fixed tack was flicked
9 times. The data are recorded in Table 1. There are 320
9-tuples. These arose from 16 different tacks, 2 “flickers,”
and 10 surfaces. The tacks vary considerably in shape and in
proportion of ones. The surfaces varied from rugs through
tablecloths through bathroom floors.

Beckett and Diaconis (1994) p. 108.
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Estimator TSE TSER TWSE
y ∼ 1
LSE 0.853 0.897 1.116
WLSE 1.074 1.129 0.742
EBJS 0.534 0.539 0.502
GMLEBEM 0.663 0.671 0.547
WGMLEBEM 0.306 0.298 0.427
GMLEBIP 0.686 0.700 0.593
WGMLEBIP 0.334 0.336 0.459
y ∼ AB
LSE 0.518 0.535 0.686
WLSE 0.537 0.527 0.545
EBJS 0.369 0.351 0.443
GMLEBEM 0.410 0.397 0.455
WGMLEBEM 0.301 0.291 0.424
GMLEBIP 0.424 0.418 0.490
WGMLEBIP 0.329 0.330 0.456
y ∼ Pitcher
LSE 0.272 0.283 0.559
WLSE 0.324 0.343 0.519
EBJS 0.243 0.244 0.426
GMLEBEM 0.259 0.266 0.429
WGMLEBEM 0.209 0.204 0.401
GMLEBIP 0.283 0.295 0.478
WGMLEBIP 0.231 0.234 0.426
y ∼ Pitcher+AB
LSE 0.242 0.246 0.477
WLSE 0.219 0.215 0.435
EBJS 0.183 0.175 0.390
GMLEBEM 0.191 0.183 0.387
WGMLEBEM 0.184 0.175 0.385
GMLEBIP 0.205 0.201 0.419
WGMLEBIP 0.203 0.203 0.412
y ∼ Pitcher ∗AB
LSE 0.240 0.244 0.476
WLSE 0.204 0.201 0.429
EBJS 0.171 0.162 0.386
GMLEBEM 0.178 0.170 0.382
WGMLEBEM 0.177 0.167 0.382
GMLEBIP 0.194 0.189 0.416
WGMLEBIP 0.206 0.206 0.414

Table 4. Midseason Prediction for all batters, (|S1|, |S1 ∩ S2|) = (567, 499)
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Model EM IP
y ∼ 1 −853.801 −851.107
y ∼ AB −854.733 −850.793
y ∼ Pitcher −844.234 −841.548
y ∼ Pitcher+AB −843.065 −838.970
y ∼ Pitcher ∗AB −843.258 −838.957

Table 5. Loglikelihood Values for the WGMLEBEM and
WGMLEBIP Estimators

Liu (1996) provides a Bayesian analysis of this data employing Dirichlet
process priors, and validates the resulting estimates by a comparison with
a Kiefer-Wolfowitz estimate again relying on the EM algorithm as a compu-
tational device. Following Liu (1996) we focus exclusively on the binomial
form of the data, so we have n = 320 and ni ≡ 9 in what follows. The
Kiefer-Wolfowitz estimator for this mixture problem has likelihood,

L(F) =

n∏
i=1

∫ 1
0

(
ni

yi

)
pyi(1 − pni−yi)dF(p).

Again it proves convenient to solve the dual problem, which takes the form:

max{

n∑
i=1

log νi |

n∑
i=1

νi

(
ni

yi

)
pyi(1 − pni−yi) 6 n, for all p ∈ [0, 1]}.

In effect, all that needs to be modified in our earlier formulation is the con-
struction of the A matrix. Indeed, given that the ni’s are all identical, we
can concentrate the likelihood into 10 distinct cell counts for the possible
values of yi, substantially reducing the computational effort per iteration
for both the interior point and EM procedures.

In Figure 4 we compare our convex optimization solution with several
EM solutions with various iteration limits. The point masses identified by
our convex optimization are, to two significant figures, the same as those
reported by Liu (1996), but the computational effort required to produce
them is vastly reduced relative to the EM solutions.

It is evident from the figure that the EM iterations are eventually moving
in the right direction, but at a glacial pace. While the convex optimiza-
tion requires only 0.012 seconds in R, the fixed point EM implementation
requires 599 seconds for 1,000,000 iterations and, as is clear from the fig-
ure, is still not very close to convergence by comparison with the solu-
tion provided by the interior point method after only 22 iterations. The
“accelerated” EM iteration called “squarem” as implemented in Varadhan
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Figure 4. Comparison of estimates of the mixing density f:
The solid black very peaked density is the interior point solu-
tion, the others as indicated by the legend represent the EM
solutions with various iteration limits. Even after 1,000,000
EM iterations the peak near 0.6 is about 40, while after 22
interior point iterations this peak is about 110. One million
EM iterations takes 10 minutes, but is substantially less accu-
rate than the interior point solution that required only 0.012
seconds.

(2011) yields a somewhat more accurate solution after 1,000,000 iterations,
although still not quite as precise as the interior point solution, and re-
quires only 138 seconds to compute. However, in our experience differ-
ences in computational effort of this magnitude, more than 10,000 to 1,
often make the difference between effective and ineffective statistical tools.
It should be stressed in conclusion that the differences in computational
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effort reported here are based on a relatively small problem with only a
few observations; larger problems yield even more dramatic differences.

8. Conclusion

We have seen that empirical Bayes rules based on maximum likelihood
estimation of Gaussian mixture densities subject to a shape constraint –
imposed to achieve monotonicity of the Bayes rule – provide some perfor-
mance improvements over unconstrained kernel based estimation meth-
ods. Likewise, Kiefer-Wolfowitz nonparametric maximum likelihood es-
timation of the mixing distribution offers good performance in our sim-
ulation settings. We have also seen that the computational burden of the
EM implementations of the Kiefer-Wolfowitz estimator can be dramatically
reduced by reliance on interior point methods for solving convex optimiza-
tion formulations of the Kiefer-Wolfowitz problem.

While the Kiefer-Wolfowitz approach seems to be typically preferable to
the monotonized Bayes rule estimator introduced in Section 2, we would
like to stress two advantages of the latter approach. First, because its con-
vexity constraint is simpler, involving sparser linear algebra, computation
is generally quicker. This is usually only noticeable in very large prob-
lems, but might be decisive in applications involving very large sample
sizes. Second, since the monotonized Bayes rule imposes a weaker form of
convexity constraint, it may have some advantages in misspecified settings
where the original Gaussian location mixture assumption fails to be satis-
fied. In Remark 4 following Theorem 1 we have characterized the class of
densities for which the piecewise constant Bayes rule is optimal and the
monotonized estimator is particularly appropriate.

We would like to again stress that our convex optimization formulation
of the Kiefer-Wolfowitz MLE is applicable to a wide variety of mixture
problems wherever parameter heterogeneity is plausible. For longitudinal
data and survival applications this is particularly germane, and we hope
to pursue such applications in future work. We have focused on settings in
which both empirical Bayes procedures rely on exclusively on maximum
likelihood methods, but there is clearly scope for introducing further reg-
ularization, other forms of prior information, that might lend additional
credibility were such information available as for example, in Bunea, Tsy-
bakov, Wegkamp, and Barbu (2010).

Appendix A

Proof. [Theorem 1] We start by demonstrating that every candidate so-
lution, K, can be replaced by another piecewise linear one, K̃, with no
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larger objective function of (3). By its convexity, K has one-sided deriva-
tives everywhere—in particular, at each Yi; we denote the latter by K′(Yi−)

and K′(Yi+). Let K̃ be a convex and piecewise linear function such that
K̃(Yi) = K(Yi) for all i, extending linearly left and right from every Yi, with
slopes (i) at min Yi both equal to K′(min Yi+); (ii) at maxYi both equal to
K′(maxYi−); and (iii) at every other Yi the left one equal to K′(Yi−) and the
right one to K′(Yi+) (thus every Yi is either contained in or borders a linear
piece.) In the objective function of (3), such a K̃ yields the same summation
term as K, but as K̃ minorizes K, that is the integral term for K̃ does not
exceed that for K.

In view of this it is evident that solutions are restricted to a finite-
dimensional class of piecewise-linear convex functions parametrized by
their (finite number of) slopes and an arbitrary function value at some
point, say, K(0). The proof of existence then proceeds via a standard conti-
nuity/compactness argument.

First, one has to assess continuity: if Km(0)→ K(0) (hereafter, we use m
for the integer index running to infinity) and the value of slopes converge
as well, then uniform continuity is guaranteed on bounded intervals; but
the continuity of the integral term in the objective of (3), if the integration
domain is the whole real line, may be in doubt. Fortunately, the specific
form of the integrand facilitates the continuity. Given an ε > 0, we can
always select a bounded closed interval that contains all the Yi’s, so that
the summation part of the objective is within ε/4 of its limit for m large
enough; inside the interval, the convergence is uniform, so for m large
enough, within ε/4 of its limit again; finally, on the linear tails one can see
via direct calculation that

(13)
∫
E

eamx+bmdΦ(x) = e
1
2
a2
m+bm

∫
E

e
1
2
(x−am)2dx,

which shows that such integrals (over various integration domains E) con-
verge whenever am → a and bm → b; hence each tail integral can be made
within ε/4 of its limit for m large enough.

Once continuity of the objective function is established, it is sufficient
to show the existence of nonempty compact sublevel set. Putting K(y) ≡
0 yields the objective of (3) equal to 1; hence we will look now at the
(nonempty) sublevel set of all parameters (that is, all slopes and K(0)) that
yield the objective function 6 1. We have seen that this set is nonempty; by
continuity, it is closed; it remains to show that it is also bounded.

The latter will be accomplished if the following is verified for any se-
quence of parameter vectors: whenever at least one component of them
does not stay bounded, then the objective function ultimately exceeds 1.
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One can always pass to subsequences in the process, to assert that bounded
sequences actually converge, and unbounded diverge either to +∞ or −∞.
As shown in Section 2, the origin, 0, can be without any loss of generality
put inside the convex hull of the Yi’s, say, in the midpoint between min and
max. Suppose thus we have a sequence Km parametrized by vectors that
do not stay bounded, and such that Km all yield values of the objective (3)
not exceeding 1. As the integral term of this objective is always nonnega-
tive, we have that −

∑
Km(Yi) 6 1. It follows that Km(0) has to be bounded

from above: as every Km is a convex function, it can be minorized by an
affine function whose intercept is Km(0); the formula (13) then shows that
the integral term (integration domain E is the whole real line now) in the
objective is minorized by

e
1
2
a2
m+Km(0),

which, if Km(0) → +∞, would drive the integral term to +∞ even if am
stays bounded; at the same time, the summation term stays bounded by 1.
It is possible for Km(0) to diverge to −∞—but not when the other param-
eters, slopes, stay bounded, for then one can find C such that for every
i,

Km(Yi) 6 Km(0) + C

and consequently

−1 > −
∑

Km(Yi) > −nKm(0) − nC.

Hence, in any case the slopes must not remain bounded; as they values
are ordered in the increasing sense, this means that either the maximal
slope, on the right-hand tail, diverges to +∞, or the minimal slope, on the
left-hand tail, diverges to −∞; or both.

Now, let Y1 = Ymin, Yn = Ymax, d = (Yn − Y1)/2, and consider Km(Y1)
and Km(Yn); one of them must remain bounded from −∞, for if both of
them would be 6 −1/n, then as well Km(Yi) 6 −/n for all i, and then
−
∑
Km(Yi) > 1. Suppose that the one bounded from below is Km(Yn),

and also that it the right-hand slope that diverges,

(14)
Km(Yn) − Km(0)

d
→ +∞.

Then the application of the formula (13), with integration domain E =
[Yn,∞), yields the integral term in (13) converging to 1; at the same time,
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the term in the exponent in front of the integral is

(Km(Yn) − Km(0))
2

2d2
+ Km(0)

=
(Km(Yn) − Km(0) − 2d2)(Km(Yn) − Km(0))

2d2
+ Km(Yn),

which diverges to +∞, as (14) implies that Km(Yn) − Km(Y0) → +∞, and
at the same time, Km(Yn) stays bounded away from −∞.

If the latter still takes place, but the right-hand slope does not diverge
to +∞, then, as the line passing through Km(Yn) minorizes the whole Km,
we obtain that Km(Y1) must be bounded from below. At the same time,
it is now the left-hand slope that must diverge to −∞; the proof of the
divergence of the integral is then analogous.

Finally, to backtrack in our logical tree, assume now it is not Km(Yn)
that does not stay bounded from −∞, but rather Km(Y1), then we have
again that left-hand slope must diverge to −∞ (otherwise Km(Yn) would
be bounded from −∞ by an analogous argument as above); this situation
was already encountered. Having exhausted all possibilities, we conclude
that the sequence of parameter vectors cannot diverge to infinity with m
when the objective function stays bounded from above by 1; hence the
sublevel set is nonempty and compact, which yields the existence of the
solution, K̂, of (3).

The established form of K̂ implies the form of the estimated density,
as well as that of the decision rule. The proof of the duality result is a
straightforward modification of Theorem 3.1 and Corollary 3.1 of Koenker
and Mizera (2010); in particular, the change of K to −K results in the
change of the sign at G in the dual constraint, and Corollary 4A from
Rockafellar (1971) is used in its more general form (already formulated
there). We omit the details.

Proof. [Theorem 2] The statements of the theorem can be essentially estab-
lished by piecing together various results from Lindsay (1983); however,
some care should be exercised. First of all, Lindsay (1983) assumes that the
parametric space is compact. Our parametric space is the whole real line,
R, hence not a compact; nevertheless, adding one point ∞ to it—that is,
considering the one-point “circular” compactification, Ṙ, instead—makes
the road passable.

Lindsay (1983) works with “atomic likelihood vectors” : in our case,
these are defined for every µ ∈ R as

(fµ(y1), . . . , fµ(yn)) = (φ(y1 − µ), . . . ,φ(yn − µ)).
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Compactifying R with ∞, we have to define the atomic likelihood vector
for µ =∞; given that the limit of φ(y−µ) for µ going to either −∞ or +∞
is 0, it is natural to define

(15) (f∞(y1), . . . , f∞(yn)) = (0, . . . , 0).

“Mixture likelihood vectors” then correspond to terms appearing in (6); in
particular, Theorem 3.1 of Lindsay (1983) asserts that the solution, F̂, and
is an atomic probability with at most n atoms. To finish the proof of this
part, we have to show that ∞ will not be one of these atoms. But, if the
contrary would be true, one could take the mass from∞, which due to (15)
contributes nothing to the overall likelihood, and put it instead into some
other atom of F̂ whose contribution is positive; this would increase the
value of the overall likelihood, a contradiction with the claim that F̂ is the
MLE. While this cannot be done if∞ would be the only atom of F̂ (that is,
if all the mass will be concentrated in ∞), note that in such case the value
of the objective function in (6) is +∞, which certainly is not an optimal
value, as can be demonstrated by taking any other F, say, concentrated in
some point of R.

What Lindsay (1983) calls “mixture maximum likelihood” (and denotes
by f̂) is in our notation, for given locations of the atoms, µ̂j,∑

j

ϕ(Yi − µ̂j)f̂j.

Theorem 5.1 of Lindsay (1983) asserts that ν̂i, given by (8), are solutions
for his Problem 2 (page 90)—which is nothing but the dual formulation (7),
albeit again with a slight difference that it is formulated for the compact
parameter space. This means that the constraint in (7) is supposed to be
satisfied for all µ ∈ Ṙ; however, for µ = ∞ it is satisfied automatically,
due to (15), thus requiring it only for µ ∈ R does not change the prob-
lem. Finally, our statement about the locations of the atoms is justified by
Theorem 4.1.C of Lindsay (1983), in view of his formula (4.1).
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