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Abstract

A special class of quadratic programming (QP) problems is considered in this paper. 
This class emerges in simulation of assembly of large-scale compliant parts, which 
involves the formulation and solution of contact problems. The considered QP prob-
lems can have up to 20,000 unknowns, the Hessian matrix is fully populated and 
ill-conditioned, while the matrix of constraints is sparse. Variation analysis and opti-
mization of assembly process usually require massive computations of QP problems 
with slightly different input data. The following optimization methods are adapted 
to account for the particular features of the assembly problem: an interior point 
method, an active-set method, a Newton projection method, and a pivotal algorithm 
for the linear complementarity problems. Equivalent formulations of the QP prob-
lem are proposed with the intent of them being more amenable to the considered 
methods. The methods are tested and results are compared for a number of aircraft 
assembly simulation problems.
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1 Introduction

In the last decade a new modeling approach has been developed and applied to vari-
ation simulation and assembly optimization in aerospace and automotive industry 
(see Lupuleac et al. 2010, 2011, 2019b; Dahlström and Lindkvist 2007; Lindau et al. 
2016; Yang et  al. 2016). This approach considers the contact interaction between 
compliant parts. By using the variational formulation (Galin 1961; Tu and Gazis 
1964; Lions and Stampacchia 1967; Kinderlehrer and Stampacchia 1980) and the 
substructuring (Turner et  al. 1956; Guyan 1965; Wriggers 2006; Petukhova et  al. 
2014), contact detection is reduced to a quadratic programming problem that allows 
for large-scale computations of contact problems during variation simulation and 
assembly optimization. Since the accuracy of the assembly model influences the 
simulation results, it is important to use fine FEM meshes that can reflect the most 
essential features of assemblies. Implementation of highly refined computational 
meshes and need for massive computations of problems with slightly different input 
data require choosing appropriately tailored solvers for the QP problem; that is the 
primary objective of the present paper.

The paper is organized as follows: in Sect.  2 the contact problem arising in 
assembly simulation is presented and its features are described; task-level paral-
lelization is also discussed. Section  3 is dedicated to the adaptation of numerical 
methods for solving the described contact problem. In Sect. 4 computational results 
for the adapted methods are provided and discussed for several problems of aircraft 
assembly simulation. Conclusions are presented in Sect. 5.

2  Formulation of contact problem

A finite element model of several parts fixed in an assembly jig is schematically 
shown in Fig. 1. This kind of assembly is of sandwich type, i.e., at least three parts 
are lap-joint. The assemblies with no intermediate parts are called simple (for 
instance, the assemblies consisting of two parts). The area where the parts overlap 
is called the junction area. The finite element meshes of the parts are assumed to 
be conformal. The nodes of the finite element model that are located in the junc-
tion area are denoted as computational nodes. These nodes are highlighted in Fig. 1. 
The degrees of freedom in the computational nodes considered in the analysis are 
arranged into the vector x ∈ ℝ

n , where n is the dimension of the problem. Although 

Fig. 1  Schematic outline of the 
assembly
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x usually contains only normal displacements, tangential displacements and rota-
tions can also be included.

Relative tangential displacements are assumed to be small; therefore, a node-to-
node contact model is used. According to this model only the predefined pairs of 
nodes can come in contact. Figure  2 depicts the corresponding pairs of nodes in 
the junction area connected with arrows. In sandwich-type assemblies some nodes 
can belong to two pairs simultaneously. The initial distance between corresponding 
computational nodes is given by the vector of initial gap  g ∈ ℝ

m , where m is the 
total number of contact pairs.

As a rule, the fasteners are modeled in two ways depending of their type. The 
temporary fasteners used in the aircraft assembly usually provide the fastening load 
by means of prestressed spring. Such fasteners are modelled by the loads applied to 
computational nodes. The permanent fastening elements (e.g., rivets or bolts) are 
modelled by constraining the relative displacements of parts in the corresponding 
computational nodes. In some cases, these two ways are combined by applying the 
normal fastening load while also constraining the relative tangential displacement of 
the assembled parts.

By using the substructuring the contact problem can be reformulated in QP form 
(see Lupuleac et al. 2011, 2019a for details):

where f ∈ ℝ
n is the vector of loads (for example, loads from fastening elements), 

K ∈ ℝ
n×n is the reduced stiffness matrix computed using finite element analysis, and 

A ∈ ℝ
n×m ( n ≥ m ) is a linear operator that defines the contact pairs.

As a rule, contact problems arising in assembly simulation have a number of 
unknowns that varies from 1000 to 20,000. The mechanical properties of the struc-
ture, the influence of assembly jig type, and the configuration of the joining parts are 
described by the stiffness matrix K and the constraint matrix  A . When performing 
a series of computations, these matrices do not change. This feature is exploited to 
define some auxiliary matrices based on matrices K and A once for every assembly 
model. Matrix  K is symmetric, positive-definite and ill-conditioned. It has block-
diagonal structure with fully populated blocks. The number and the size of the 
blocks are defined by the number of assembled parts and the number of considered 
degrees of freedom in computational nodes in each part. Matrix  A , which defines 

(1)
min

1

2
xTKx − f Tx,

s.t. ATx − g ≤ 0,

Fig. 2  Cross section of the 
assembly
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the pairs of nodes that can come in contact, is sparse in the considered problems: 
every column of the matrix contains 1 or 2 non-zero elements.

The analysis of assembly quality involves the simulation of shape variations of the 
joined parts. The shape variations are caused by tolerances in manufacturing, position-
ing, fixating, etc. In industrial applications (e.g., see Lupuleac et al. 2019b) the variation 
simulation is realized by generation of the large number of initial gap vectors g (cloud 
of gaps) and subsequent massive solving of contact problem (1). Such an approach can 
be considered as generalization of the Method of Influence Coefficients proposed in 
Liu and Hu 1997.

2.1  Equivalent formulations of the QP problem

Considering that the matrices K and A are usually the same for the series of computa-
tions during aircraft assembly simulation and optimization, problem (1) can be refor-
mulated in a form that is more attractive from a computational point of view. Specifi-
cally, the size of the QP problem can be reduced and the form of the constraint matrix A 
can be simplified. Consider two different reformulations of problem (1): dual problem 
and relative problem.

The dual formulation of problem (1) is given by

where � ∈ ℝ
m is the vector of Lagrange multipliers corresponding to contact forces 

in the junction area, Q = ATK−1A ∈ ℝ
m×m is a symmetric positive-definite fully 

populated matrix, p = ATK−1f − g ∈ ℝ
m and s = −

1

2
f TK−1f ∈ ℝ

1 (Lupuleac et al. 
2013).

The relative formulation of problem (1) is based on a vector of relative displace-
ments in the junction area defined as u = A

T
x ∈ ℝ

m and may be obtained through 
the minimax form of the problem. First, an additional relation should be derived from 
optimality conditions. By multiplying the stationarity condition Kx − f + A� = 0 with 
A

T
K

−1 we get

Excluding � the relation that binds variable x to u is obtained:

Substutuing x to the Lagrangian function L(x,�) =
1

2
xTKx − f Tx + (ATx − g)T� 

yields:

Then the minimax form of the problem is

(2)
max −

1

2
�

TQ� + pT� + s,

s.t. � ≥ 0,

u − ATK−1f + Q� = 0.

x = K−1f − K−1AQ−1
(ATK−1f − u) = K−1AQ−1u.

L(u,�) =
1

2
uTQ−1u − f TK−1AQ−1u + (u − g)T�.
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Calculating the maximum, we obtain a relative formulation of problem (1):

where K̃ = (A
T
K

−1
A)−1 ∈ ℝ

m×m is a symmetric positive-definite fully populated 
matrix and f̃ = K̃ATK−1f ∈ ℝ

m.
All the listed formulations of the QP problem are equivalent and their solutions 

are connected by the following formulas:

Two more formulations arise when applying the Newton projection method and 
pivotal algorithm for aircraft assembly problems. The Newton projection method is 
only applicable if the constraint matrix is the identity (see Sect. 3.3 for details). To 
solve the primal problem (1) with general constraints ATx − g ≤ 0 a change of vari-
ables is proposed. If the total number of constraints is less than the number of vari-
ables, extra rows are added to the matrix AT to make it square. The proposed idea is 
to add unit vector rows in such a way that the new matrix becomes nondegenerate. 
This technique allows to keep the constraint matrix sparse. Thus, a new variable 

x̃ = Ã
T

x =

[

A, a
m+1,… , a

n

]T

x is introduced and a change of variables in the func-

tional F(x) = F(Ã
−1

x̃) is made. Finally, fictitious constraints 
[

a
m+1,… , a

n

]T

x ≤ +∞ 
are introduced, and problem (1) is reformulated as follows:

where g̃ = [gT
,+∞]T.

The pivotal algorithm considered in the paper is used to solve linear complemen-
tarity problems LCP (q, M) that consists in finding the vectors w, z ∈ ℝ

N such that

for given a vector q ∈ ℝ
N and a matrix M ∈ ℝ

N×N or in concluding that no such pair 
of vectors w, z exists; N denotes the dimension of the LCP (q, M ). How the problems 
(1)–(3) can be formulated as LCP the reader may find in Sect. 3.4.

The basic information about the formulations (1)–(4) such as the number of vari-
ables, the number of constraints, type of constraints and structure of Hessian, is pre-
sented in Table 1. The details of the LCP formulations are described in Sect. 3.4.

min
u≤g

max
�≥0

L(u,�).

(3)min
1

2
uT K̃u − f̃

T

u,

s.t. u − g ≤ 0,

x = K−1
(f − A�),

� = f̃ − K̃u.

(4)min
1

2
x̃T Ã

−1
KÃ

−T

x̃ − f T Ã
−T

x̃,

s.t. x̃ − g̃ ≤ 0,

(5)
w = q + Mz,

zTw = 0,

w ≥ 0, z ≥ 0
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2.2  Speci�cs of parallelization for considered problems

The most important computational feature of the contact problem arising in vari-
ation simulation is the need to carry out many similar computations for the same 
large-sized assembly model; namely, to calculate the displacements for different 
sets of forces F = {fj}

p and for different variants of the initial gap G = {gi}
k . The 

total number of the serial computations can reach up to 10
6  runs during varia-

tion simulation and assembly optimization for each assembly model. Usually, 
both variation simulation and assembly optimization can be parallelized by tasks 
(Pogarskaia et al. 2018): each task refers to solving a particular QP problem (see 
Fig. 3). Thus, parallelization of QP solvers is not needed and is therefore not con-
sidered in this paper.

Task parallelization gives a rise to another computational feature. Namely, the 
effect of the dependence of computation time on input data for different solv-
ers is enhanced. For some numerical methods the number of active constraints at 
the optimum n

act
 affects computation time significantly, thus becoming an essen-

tial characteristic of optimization problem when computation time is analysed. 

Table 1  Comparison of equivalent formulations

*Equal to the number of joined parts

Number of vari-
ables

Number of con-
straints

Type of constraints Number of 
blocks in 
Hessian

Primal (1) n m Linear inequality *

Primal (4) n n Bound 1

Dual (2) m m Bound 1

Relative (3) m m Bound 1

Fig. 3  Task parallelization of computational process for an assembly model
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Table 2 presents the dependence of the number of active constraints n
act

 for prob-
lem (1) on input data. An increase in the number of installed fasteners leads to an 
increase in the number of active constraints n

act
 . Variation of the vector of initial 

gap generally does not affect n
act

 much. Note that in the remainder of the text 
n

act
 is the number of active constraints for problem (1), (3) and (4) and for prob-

lem (2) is equal to m − n
act

.

3  Adaptation of QP methods for solving the contact problem

The paper is devoted to adaptation and comparison of various types of quadratic 
programming methods applied to the contact problem. The following four widely 
used quadratic programming methods are considered: the interior-point method, the 
active set method, Newton projection method, and complementary pivot algorithm.

The interior-point method is a polynomial-time algorithm that has proved its effi-
ciency in practice (Gondzio and Grothey 2006; Byrd et al. 1999; Mehrotra 1992). It 
allows to solve a wide range of optimization problems such as linear, convex quad-
ratic-programming, second-order cone programming, and semidefinite program-
ming problems (Wright 2005). This method is known to be one of the main meth-
ods used for solving large sparse problems and is implemented in many commercial 
optimization software packages (MOSEK, CPLEX, IMSL, MATLAB and others).

Another class of optimization methods is active set methods. One of the most 
commonly used active set methods for solving quadratic programming problems 
was proposed by Goldfarb and Idnani in (1983). It is a dual active set method which 

Table 2  The dependence of number of active constraints n
act

 on input data

(a) Different fastening forces and constant initial gap 5mm

Vectors of forces F Percent of fasteners  (%) n
act

 (%)

  f
1

5 3.1

  f
2

31 21.1

  f
3

58 33.3

  f
4

72 38.6

  f
5

90 47.4

  f
6

100 52.3

(b) Different initial gap vector and 50% of installed fasteners

Vectors of gap G Initial gap field n
act

 (%)

 g
1

45.9

 g
2

46.1

 g
3

44.2

 g
4

47.9

 g
5

47.4

 g
6

46.4
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proved to be fast and efficient for small to medium-sized problems (up to ten thou-
sand unknowns), see Burton and Toint (1992); Gaspero et al. (2011); Marron et al. 
(1997). This paper focuses on the modification made by Powell (1985) that is pref-
erable for ill-conditioned problems (further referred to as ASM). This method is 
also implemented in some well-known numerical libraries such as IMSL Numerical 
Library (Rogue Wave Software 2016) and Scilab (2018).

Newton projection method is a second order modification of the gradient projec-
tion method, which is an extension of the steepest-descent method for constrained 
minimization problems. The gradient projection method was proposed by Goldstein 
(1964), Levitin and Polyak (1966) and Newton projection method was thoroughly 
developed by Bertsekas (1976, 1982). It is easily implemented and highly effective 
if constraints have the form x − g ≤ 0 , as the projection operator is just a minimum 
operator in this case. Newton projection method works well for large-scale prob-
lems, but is not popular with researchers due to the fact that its basic version has a 
low convergence rate.

Convex quadratic problems can be formulated as linear complementarity prob-
lems. One of the most commonly used methods for solving problems of this type is 
complementary pivot algorithm (CPA) or Lemke’s method, introduced by Lemke 
(1968). Lemke’s method is widely used because of such features as finiteness, reli-
ability and efficiency (Cottle et al. 1992; Acary and Brogliato 2008). Several numer-
ical packages include implementations of Lemke’s method such as Siconos (Acary 
and Pérignon 2007) or GAMS PATH (Ferris and Munson 2018).

The theoretical estimations of computational complexity do not allow choosing 
the indisputable leader among these methods for the contact problem solving (see 
Table 3). Note that Table 3 presents a comparison for the primal formulation of the 
contact problem  (1). For the dual and relative formulations (problem  (2) and (3), 
respectively), the number of blocks p in the stiffness matrix K is 1 and the number 
of unknowns n is equal to the number of constraints m.

All algorithms have polynomial time on average with a close degree of the poly-
nomial. In particular, computation time depends on the number of active constraints 
at the optimum n

act
 and the number of conjugate gradient method iterations n

cg
 when 

iterative method is used for linear system solving. Typically, the number of active 
constraints n

act
 can run over [0, m] for an assembly model. It can take small values 

as well as large ones when solving a set of similar contact problems as n
act

 is defined 
by the vector of applied forces f  and the vector of initial gap g (Table 2). Number 
of iterations n

cg
 depends on the condition number of the stiffness matrix K and the 

quality of the applied preconditioner. Typically, the condition number is 105
− 108 

for the considered type of contact problems.
While solving a set of similar contact problems, some of the time-consuming 

operations can be performed once. These operations include the Cholesky decompo-
sition of the stiffness matrix K , the inversion of the Cholesky matrix, and the reor-
dering of constraints and stiffness matrices. The time required for such data preproc-
essing is presented in the third column of Table 3. It differs for particular algorithms 
depending on required operations. The details of implementation and adaptation to 
the features of contact problem are discussed in the following subsections.
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3.1  Interior-point method

The primal-dual interior-point method (IPM) reformulates the problem of con-
strained minimization  (1) as a sequence of unconstrained minimization problems 
using a logarithmic barrier:

where � is the barrier parameter and aj is the j-th column of A . The solution of prob-
lem (6) converges to the solution of problem (1) when � goes to zero. At each itera-
tion IPM solves a system of nonlinear equations  (7) that represents the first order 
optimality conditions for problem (6):

In the system above, � and Y are diagonal matrices with � and y = −ATx + g on 
their diagonals and e = 1

m
 is a vector of ones. One step of Newton’s method is used 

to find an approximate solution of system of linear equations (7) and then the duality 
gap � is updated. The process is repeated until � becomes sufficiently small.

There are two challenging issues related to the implementation of the interior-point 
method when solving the contact problem: the selection of a starting point and the solu-
tion of the linear system for determining the Newton direction. There are two variants 
of the algorithm, namely feasible and infeasible, which call for the fulfilment of differ-
ent conditions on the starting point. Feasible IPM requires starting points that satisfy 
the following conditions:

(6)min
1

2
xTKx − f Tx − �

∑m

j=1
ln(−aT

j
x + gj),

(7)S
�
(x, y,�) =

⎛
⎜
⎜
⎝

Kx − f + A�

ATx − g + y

�Ye − �e

⎞
⎟
⎟
⎠
=

⎛
⎜
⎜
⎝

0

0

0

⎞
⎟
⎟
⎠
, y ≥ 0, � ≥ 0.

(8)Kx − f + A� = 0,

(9)ATx − g + y = 0,

Table 3  Comparison of algorithms

n
act

 , number of active constraints at the optimum ( 0 ≤ n
act

≤ m ); n
cg

 , number of conjugate gradient 
method iterations; p, number of blocks in the stiffness matrix K ; n

i
 , number of unknowns of i-th part; �

�
 , 

threshold related to desired accuracy

Computation time Required memory Time for 
data prepa-
ration

Primal-dual interior-point method O(n2,5ncg ln(
1

�
�

)) O(
∑p

i=1
n2

i
) O(n3)

Active set method O(n2
n

act
) O(n2) O(n3)

Newton projection method O((n − n
act
)4) O(n2) O(n2)

Complementarity pivot algorithm O((n + m)3) O(
∑p

i=1
n2

i
) O(n3)
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whereas for infeasible IPM, a starting point needs only satisfy the inequality condi-
tions (10). So, for the infeasible IPM the starting point search process is simplified 
considerably. Note, that the theoretical worst case complexity is better for the fea-
sible IPM, although the infeasible IPM is known to have practically more efficient 
implementations (Gondzio and Terlaky 1995). The choice of starting point for solv-
ing contact problem is discussed in Stefanova et al. (2018), where the starting point 
for feasible IPM is determined based on the physical interpretation of the QP prob-
lem (1), and is compared to the infeasible one with the starting point from D’Apuzzo 
et al. (2010). When applying IPM to assembly problems, a feasible IPM is preferred 
for assembly models with junction area of simple type, whereas for more compli-
cated sandwich type joints the algorithm described in Stefanova et al. (2018) does 
not have direct physical justification; an infeasible IPM yields better results in this 
case (see Table 4).

The most time consuming IPM step is the solution of the linear system of equations 
for determining the Newton direction:

(10)y ≥ 0,� ≥ 0,

(11)∇S
�
(x, y,�) =

⎛
⎜
⎜
⎝

K 0 A

AT I 0

0 � Y

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

Δx

Δy

Δ�

⎞
⎟
⎟
⎠
=

⎛
⎜
⎜
⎝

s1

s2

s3

⎞
⎟
⎟
⎠
,

Table 4  Number of IPM iterations for different starting point approaches

Simple type assembly

Dual (2)

n
act

Feasible Infeasible

n = 6112, m = 3056

333 22 24

479 21 25

591 22 25

780 21 25

1017 21 25

1353 20 24

Sandwich type assembly

Dual (2)

n
act

Feasible Infeasible

n = 4268, m = 2716

128 42 27

272 38 27

543 39 28

876 42 27

1103 38 27

2004 38 25
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where I is the identity matrix, s
1
= −(Kx − f + A�) , s

2
= −(ATx − g + y) , 

s
3
= −(�Ye − ��e) , and � is the centering parameter chosen adaptively (Mehrotra 

1992). A challenging numerical issue is the increase of condition number as the opti-
mal solution is approached. To solve the system of equations (11), one can use direct 
or iterative approaches. Direct methods are based on decomposition techniques 
(Gondzio and Grothey 2006) and can be efficient if the problem is sparse or parallel-
ization is possible. When the problem is large-scale, an iterative approach with the 
use of an appropriate preconditioner is preferable. Several different approaches for 
a set of contact problems arising in assembly simulation are discussed further and a 
preconditioner attractive for the considered type of problems is proposed.

The system of equations  (11) is first transformed to an augmented system  (12) 
and then to a normal system (13):

where H = A
T
K

−1
A +�

−1
Y , p = ATK−1s

1
+�

−1s
3
− s

2
 , Δx and Δy can be com-

puted using the relations Δx = K
−1
(s

1
− AΔ�) , Δy = �

−1(s
3
− Y�) . The augmented 

system is symmetric indefinite. For the class of problems considered in the paper, 
solving the system of equations (12) turned out to be significantly less efficient com-
pared to solving the normal system, therefore it is not considered in the paper. The 
normal system has smaller dimension; it is symmetric, positive definite and fully 
populated. The system of equations (13) is solved directly using Cholesky decompo-
sition and iteratively using preconditioned conjugate gradient method (CG).

Three preconditioners are considered and compared in this paper. The first one 
is a Jacobi preconditioner P1 = diag(H) that is based on the diagonal elements of 
matrix H . The second one is an incomplete Cholesky preconditioner P

2
= L

H
L

H

T . 
The incomplete Cholesky factorisation is applied to the matrix H

r
= H

s
+ �I , where 

� is a regularization parameter and H
s
 is a sparse approximation of matrix H . Paper 

(Lin and Saigal 2000) presents a brief review of several existing approaches to 
define sparsity pattern for dense matrices based on dropping elements with small 
magnitude from H . The incomplete Cholesky preconditioner uses more information 
about matrix structure compared to P

1
 ; however its efficiency depends on the param-

eters such as the number of non-zeros in H
s
 and the value of regularization param-

eter � . While the number of CG iterations is reduced with the increase of the amount 
of non-zeros in H

s
 , the time required to build the preconditioner increases. By vary-

ing the number of non-zeros, the preconditioner with 50% of the largest elements of 
the original matrix H (and all other elements substituted by zeros) was chosen as the 
fastest. The regularization parameter � is chosen adaptively starting from � = 0 ; the 
regularization parameter is increased if the incomplete Cholesky factorization fails.

The third preconditioner proposed for assembly problems  (Stefanova et  al. 

2018) is a split preconditioner P
3
= (LQ +

√

�
−1

Y)(LQ +

√

�
−1

Y)T , where LQ  is 

the Cholesky decomposition of the matrix Q = ATK−1A . The strong point of the 

(12)

(

K A

A
T

−�
−1

Y

)(

Δx

Δ�

)

=

(

s1

s2 −�
−1

s3

)

,

(13)HΔ� = p,
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proposed preconditioner  P
3
 is the combination of the possibility to be updated 

quickly at each IPM iteration with a good approximation of H . The matrix LQ does 
not change from iteration to iteration, so only the diagonal terms 

√

�
−1

Y must be 
modified to update the preconditioner. Moreover, the Cholesky decomposition  LQ 
can be performed once per assembly model.

All of the described approaches are compared in Table 5. The table presents the 
time necessary to solve contact problem. The computations were done on an Intel 
Core i5 CPU 3.30GHz computer with 16 GB of RAM. Two sets of problems with 
different vectors of forces f  are considered for wing assembly models with 4386 and 
6112 variables. The computational results show that the iterative approach with pre-
conditioner P

3
 is considerably faster.

Thus, to solve the system of linear equations the adapted IPM uses CG method 
with the combined preconditioner P

3
 and an appropriate starting point is chosen 

depending on the assembly model.

3.2  Active set method

The main goal of active set methods is to find the set of constraints that are active at 
the solution point:

An initial approximation of the active set I0

act
 is chosen and then one constraint is 

added or removed at each iteration forming the current active set  I
k

act
 . Since the 

number of constraints is finite, iteration process finishes after finite number of steps 
(Boland 1996).

Iopt =

{
i = 1, 2,… , n |

(
ATxopt − g

)
i
= 0

}
.

Table 5  Computation time (in 
seconds) of IPM with direct and 
iterative approaches for solving 
system of equations (13)

Dual (2)

n
act

Direct Iterative P
1

Iterative P
2

Iterative P
3

n = 4386, m = 2193

20 663 55 217 48

378 736 126 444 59

695 771 210 489 68

1830 502 279 597 43

2193 502 337 532 14

n = 6112, m = 3056

333 2119 929 2830 496

479 2017 1050 3068 472

591 2119 1241 3530 501

780 2025 1316 3525 440

1017 2031 1446 3700 412

1353 1929 1541 3524 361
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The dual Goldfarb-Idnani active set method, considered in this paper, starts at the 
point of the unconstrained minimum of problem (1), i.e., x

0
= K−1f  , I0

act
= �.

If the non-penetration conditions are violated, the iteration procedure starts. 
At each step, current point x

k
 is forced to satisfy one of the violated constraints 

in such a way that (ATx
k
− g)

ik
= 0 , and the objective function of problem (1) is 

minimized over the set Ik

act
∪

{

i
k
}

 . The process continues until the point  x
k
 is in 

the admissible set, meaning that the solution is found.
In the case that it is not possible to satisfy any constraint during the iteration 

step, the rollback is performed: the point is shifted in such a way that one of the 
current active constraints is violated again.

It is worth mentioning that the iteration step is made in both primary and dual 
spaces (not only the point is shifted but also the Lagrange multipliers).

In order to speed up the computations several modifications of the described 
algorithm are proposed that make use of the input data structure given in the par-
agraph 2 and take the algorithm specifics into account. 

1. Storing only the non-zero blocks of the matrix K allows the reduction of the time 
necessary for the calculation of the objective function and its gradient, because 
the number of multiplications is decreased from (n ⋅ p)2 to p ⋅ n

2 , where p is the 
number of blocks and n is the number of variables in the block.

2. At each iteration step, the next constraint to be satisfied is chosen. In the original 
version of algorithm, the first most violated constraint is taken into consideration: 
inext = arg max

i=1,m

(

a
T
i
x − gi

)

 . A more complicated procedure is introduced for 
the described algorithm relying on the fact that if a force is applied to a computa-
tional node, it means that a fastening element is installed. The gap is then assumed 
to be closed, and the corresponding constraint must be added to the current active 
set.

3. As it was mentioned earlier, matrix AT is sparse: each row contains either 1 or 2 
elements. Therefore, it is not necessary to process the entire matrix, but only the 
indices of the non-zero elements, which leads to the decrease of the number of 
multiplications by a factor of 10: multiplication of matrix AT by a vector takes 
O(n) operations.

The computation time after the implementation of all the proposed modifications 
is given in Table 6 for a test problem with 3916 variables. The computations were 
done on an Intel Core i7 CPU 4.00GHz computer with 32 GB of RAM.

Another important feature that can be implemented with the help of the active 
set method is a “warm-start” technology (Goswami et  al. 2012). When a series 
of similar problems is solved, it is reasonable to start not from the point of the 
unconstrained minimum but instead from the solution obtained for the previous 
problem. Thus the iterations that were already done can be skipped and the speed 
of the computations is significantly increased.

Table 7 illustrates how the computation time changes depending on different 
starting points.
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Therefore, the Goldfarb-Idnani active set method can be easily adapted to the 
peculiarities of the considered problem. Implementation of the modifications 
listed above allows to reduce computation time drastically. The technology of 
“warm-start” can be efficiently applied when optimizing the assembly.

3.3  Newton projection method

Newton projection method (NPM) is an iterative technique based on gradient descent 
for solving constrained optimization problems. Each iteration consists of a step in a 
search direction and a projection of the new point to the feasible region. The process 
continues until the gradient projection is close enough to zero. An iteration of NPM is 
defined as

where d(k) is the search direction, �
k
 is the step size, P(x) is the projection operator.

Constraints with an identity matrix are considered:

Relative and dual problems satisfy this condition as well as primal problem (4). The 
projection operator is simple:

(14)x
(k+1) = P

(

x
(k) − �

k
d
(k)
)

,

A = I, x − g ≤ 0.

Table 6  Computation time (in 
seconds) of ASM

Primal (1)

n
act

Original ASM Modif. 1 Modif. 1 and 2 Modif. 
1, 2 
and 3

n = 3916, m = 2504

19 181 55 54 48

834 332 210 202 108

1352 371 257 246 131

1987 438 283 269 145

Table 7  Computation time (in 
seconds) of “warm-start” by 
modified ASM given different 
starting points

Primal (1)

Number of active constraints in the previous problem 
used for “warm-start”

n
act

n = 0 n = 668 n = 673 n = 690

668 74 – – –

673 74 25 – –

690 76 37 14 –

692 79 47 21 16
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The method for choosing the direction d(k) with quadratic rate of convergence was 
introduced in Bertsekas (1982). It is based on Newton’s method. For the algorithm 
specification the set of indices is introduced

where

The set I−(x(k)) includes such indices i that x
i
 would not change if the search was 

made along the antigradient. These indices are excluded from the search and the 
Newton’s method is used in the subspace defined by the remaining indices to reach 
the quadratic rate of convergence. Thus, the search direction d(k) can be defined from

where

Initial estimate x(0) can be set equal to g in order to make the set I−(x(0)) not empty 
and reduce the dimension of K(0)

P
 . Solving the Eq. (15) is a computationally expen-

sive part of NPM. Thus, choosing an effective method for solving (15) is a key point 
in NPM adaptation to assembly problems. Notice that it is possible to avoid storing 
of zero rows and columns of matrix K(k)

P
 . Thus, the dimension of the system of equa-

tions is reduced by n(k)

act
= |
|I
−(x(k))|| . Three approaches based on Cholesky decompo-

sition, conjugate gradient (CG) method and their combination are compared.
First, Cholesky factorization method is considered. Since every Eq.  (15) is a 

reduction of the full system where some rows and columns are disposed, it is sug-
gested to not recalculate the factorization at each iteration but instead update it 
from the previous iteration using relations presented in Stewart (1998) and Osborne 
(2010). This method can significantly reduce the time needed for solving the system 
of equations (15). The system of equations (15) can also be solved with iterative CG 
method (van der Vorst 2003). Another proposed idea is to use a combined approach, 
i.e., to use the CG method with low accuracy at the first iterations of NPM, then 
increase the accuracy during later iterations, and switch to the Cholesky decomposi-
tion when the CG method starts slowing down.

The comparison of the described approaches is presented in Table 8. The compu-
tations were done on an Intel Core i5 CPU 3.30GHz computer with 16 GB of RAM. 
Dimension of the Eq. (15) is n − n

(k)

act
≈ n − n

act
 . Thus, the total time for obtaining 

Pi(x) = min(xi, gi).

I
−(x(k)) =

{
i ∈ 1, n | xi = gi,

�F(x(k))

�xi

< 0

}
,

F(x) =
1

2
xTKx − f Tx.

(15)K
(k)

P
d
(k) = ∇F(x(k)),

∇F(x) = Kx − f ,

(K
(k)

P
)ij =

{

Kij, if i = j or both i, j ∉ I
−(x(k)),

0, otherwise.
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the solution is O
(

(n − n
act
)3
)

 . Cholesky decomposition update reduces NPM solu-
tion time, especially for the relative problem. CG method can work either faster or 
slower than Cholesky update depending on the matrix. Combined method com-
monly works faster than both of them.

One of the challenges of NPM implementation is the step size selection. There 
are several common methods for this problem. The first method is a constant step 
method  (Goldstein 1964; Levitin and Polyak 1966), which requires knowledge of 
the Lipchitz constant and has a poor convergence rate. The second one is Armijo 
step size rule (Bertsekas 1982). The third method is the one-dimensional functional 
minimization  (McCormick and Tapia 1972):

which can be performed by some one-dimensional minimization algorithm. The 
golden section search method can be used for the minimization. Practically, the 
minimum is usually either 1 or close to 0, so the golden section method is used for 
the logarithm of � in order to reach values close to zero in less iterations. Another 
approach is to use the projected line search (PLS) (Šantin et al. 2016), which is actu-
ally a piecewise quadratic minimization. The comparison between the Armijo rule 
the golden section method and PLS is presented in Table 9. PLS works faster than 
golden section method and much faster than the Armijo step size rule.

The comparison between the primal, relative and dual problems is presented 
in Table 10. The number of iterations of NPM for primal and relative problems 
decreases linearly with respect to n

act
 and has a linear dependence on the problem 

min
�∈(0,1]

F(P(x − �d)),

Table 8  Computation time (in seconds) of NPM for different methods for solving the system of equa-
tions (15)

Dual (2) Relative (3)

n
act

Cholesky 
decomp.

Cholesky 
update

CG Comb. Cholesky 
decomp.

Cholesky 
update

CG Comb.

n = 6190 , m = 3001

254 15 15 52 16 155 62 57 43

449 28 27 76 20 135 50 39 28

686 34 29 186 27 77 37 17 16

841 42 36 171 36 64 30 14 13

963 60 48 234 37 58 25 12 12

1105 61 50 165 44 47 20 11 9.7

n = 5206 , m = 2603

82 1.7 1.7 1.1 0.98 236 25 99 18

550 11 9.9 5.5 5.7 57 20 16 16

868 15 12 7.3 8.0 36 9.2 9.8 7.1

1006 25 19 8.8 15 28 6.2 7.7 5.6

1235 26 21 10 16 7.7 2.6 1.5 1.9

1362 31 21 11 23 3.2 1.8 0.53 1.1
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size (Šantin and Havlena 2011). Thus, the number of iterations can be estimated 
as O(n − n

act
) and the time needed to solve the problem as O((n − n

act
)4) . Primal 

and relative problems are solved faster when the number of active constraints 
n

act
 is large, while dual problems are solved faster when n

act
 is small. Moreo-

ver, relative problems are almost always solved much faster than the primal ones 
as the size of the relative problem is smaller. Unfortunately, the dual problem 
has a worse convergence rate than primal and relative problems due to the differ-
ent physical meaning of the variables and the lack of diagonal dominance of the 
inverse stiffness matrix for the dual problem.

Table 9  Computation time (in seconds) of NPM for different methods of step-size selection

Dual (2) Dual (2)

n
act

Armijo Golden sec. PLS n
act

Armijo Golden sec. PLS

n = 6190 , m = 3001 n = 5206 , m = 2603

94 119 21 12 82 2 2 1.1

254 152 38 25 550 10 6.7 5.8

449 136 43 27 868 12 9.3 8.3

686 157 56 35 1006 20 16 14

841 244 52 56 1235 17 17 17

1105 247 79 45 1362 33 21 23

Table 10  Computation time (in seconds) of NPM for different problem formulations

Primal (4) Relative (3) Dual (2)

n
act

NPM time number of iter. NPM time number of iter. NPM time number of iter.

n = 6190 , m = 3001

94 564 36 48 29 10 67

254 510 30 43 22 16 76

449 494 29 23 20 20 69

686 368 24 16 17 27 66

841 315 20 13 16 36 79

963 327 25 12 17 37 64

1105 309 25 9.7 17 44 63

82 317 34 18 34 0.98 19

550 264 19 16 17 5.7 29

868 159 23 7.1 18 8.0 27

1006 108 22 5.6 18 15 33

1235 69 11 1.9 8 16 18

1362 55 7 1.1 7 23 21
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In the implemented method the combination of Cholesky factorization, 
Cholesky update and CG method is used for solution of (15) and the golden sec-
tion method is used for the step selection. The dual problem should be solved if 
the number of active constraints is relatively small (i.e., a small number of fasten-
ers is applied), and the relative problem should be solved otherwise.

3.4  Complementary pivot algorithm

Lemke’s method or complementary pivot algorithm (CPA) is a finite numerical pro-
cedure for solving LCPs. The implementation of the CPA is based on the idea of 
pivots. First, an artificial variable is introduced to the system to replace one of the 
basic ones. Then, pivots between the variables are performed until the artificial vari-
able is dropped out of the basis. The resulting vector of basic variables is then con-
sidered to be the solution.

Convex quadratic programming problems can be reformulated as LCPs (5). The 
Karush–Kuhn–Tucker conditions (KKT) for the primal  (1) and dual  (2) problems 
can be written with an appropriate transformation of variables as follows:

Conditions (16) define an LCP (q, M) where

Another LCP can be constructed from the original quadratic problem if a block 
pivot is performed on (16) such that

The modified conditions (18) define an equivalent LCP (q, M):

Both (17) and (19) LCPs incorporate primal (1) and dual (2) problems. The dimen-
sion of the constructed problems N = n + m . The CPA, being a pivoting method, 
is highly sensitive to the dimension of the problem. Therefore another way of LCP 
construction is suggested in (Yassine 2008). The quadratic problem without positiv-
ity constraints can be transformed into an LCP (q, M) where

This LCP can also be obtained if the dual problem (2) is chosen as a base for KKT 
conditions and hence this LCP is further referred to as dual LCP, while the previous 

(16)
u = −f + Kx + A� ≥ 0, x ≥ 0, xTu = 0,

v = g − ATx ≥ 0, � ≥ 0, �
Tv = 0.

(17)M =

[

K A

−AT
0

]

and q =

[

−f

g

]

.

(18)
x = K−1f + K−1u − K−1A� ≥ 0, x ≥ 0, xTu = 0,

v = g − ATK−1f − ATK−1u + ATK−1A� ≥ 0, � ≥ 0, �
Tv = 0.

(19)M =

[

K−1
− K−1A

−ATK−1 ATK−1A

]

and q =

[

K−1f

g − ATK−1f

]

.

(20)M = ATK−1A and q = ATK−1f − g.
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LCPs (LCP (17) and LCP (19)) are referred to as primal. The dimension of the dual 
LCP (20) N = m . Since the average computation time for the CPA is O(N3) , the dual 
LCP has an important advantage over the primal ones.

The relative problem (3) can also be reformulated as an LCP. The basic version 
of the primal LCP (17) and the modified version (19) for the relative problem have a 
dimension N = 2m , and the dual LCP (20) for the relative problem is the same as for 
the primal, because the dual quadratic problems for them are identical.

Comparison of computation time of CPA application to primal, dual and relative 
problems is presented in Table 11. The computations were done on an Intel Core i5 
CPU 3.30GHz computer with 16 GB of RAM. Results provided in the table confirm 
that Lemke’s method for the dual LCP (20) works decisively faster than for the rela-
tive or primal problems.

4  Computational results for aircraft assembly

In this section, the computation time of the optimization methods is compared for 
a set of typical aircraft assembly problems. The wing-to-fuselage assembly is cho-
sen for this purpose. The details of wing-to-fuselage assembly simulation are given 
in Lupuleac et  al. (2018, 2019b). The upper and lower outer wing box panels are 
joined with the corresponding central wing box (CWB) panels (see Fig.  4). The 
CWB is nested within the central fuselage section.

Table 11  Computation time (in 
seconds) of the CPA

Primal Dual Relative

n
act

LCP (17) LCP (19) LCP (20) LCP (17) LCP (19)

n = 6112, m = 3056

38 14,943 1522 88 4260 405

60 19,844 2225 131 5772 601

120 29,943 3540 218 8426 1004

164 37,504 4618 289 10,794 1327

228 50,011 6258 410 15,073 1885

Fig. 4  Parts of wing-to-fuselage assembly for Airbus A350-900. Outer wing box (left) and central wing 
box (right). Photos courtesy of Airbus SAS
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A schematic outline of the wing-to-fuselage assembly is presented in Fig. 5. The 
CWB is designed to be the most rigid part of the aircraft, and therefore the elements 
of the assembly joined with CWB can be regarded as fixed. The assembly jig sup-
ports the wing at several points. The additional parts (buttstraps) are used to ensure 
the tightness of the joint. The assemblies for the upper and lower wing box panels 
are performed independently and interinfluence between these processes is minimal. 
That is why independent models for the upper and lower wing-to-fuselage assem-
blies are considered (see Fig. 6).

The upper wing-to-fuselage joint consists of just two parts: the cruciform and the 
upper wing box panel. The cruciform is already fastened to the CWB, so it can be 
assumed to be fixed along the edges as it is shown in Fig. 5. The model for the upper 
wing-to-fuselage joint is of simple type and has one junction area between the wing 
and the cruciform.

Fig. 5  Schematic outline of wing-to-fuselage junction

Fig. 6  Lower and upper assembly wing models

Fig. 7  Lower wing-to-fuselage joint
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The lower wing-to-fuselage joint is more complex compared to the upper one and 
consists of a lower wing panel, a triform, a part of the CWB, and several buttstraps 
(Fig. 7). The triform and the buttstraps are simultaneously fastened to the wing and 
to the CWB panel. Hence, the lower wing-to-fuselage assembly model is of sand-
wich-type where the lower wing panel and the part of CWB are located above the 
buttstraps and below the triform (Fig.  5). The triform is joined with the vertical 
CWB panel, and thus it is fixed along the upper edge. The buttstraps are not fixed on 
the assembly jig before fastening.

An example of computational results for an upper wing assembly model is shown 
in Fig. 8. The left figure presents the initial gap field between the cruciform and the 
upper wing box panel. The right figure shows the residual gap after the installation 
of 3 fasteners.

Three test problems used for comparison of algorithms are described in Table 12. 
Two models with 5206 and 11308 unknowns correspond to the upper joint model 
(UJM). The model with the 6190 unknowns refers to the lower joint model (LJM). 
The condition number of stiffness matrix K is larger for LJM than for UJM due to 
the features of the assembly jig fixing. The algorithms are implemented in C++ 
using MSVS 2013 and Visual C++ 12.0 compiler. All computations presented in 
this section were done on an Intel Core i5 CPU 3.30GHz computer with 16 GB of 
RAM. As seen in Sect. 3, each algorithm used its own stopping criteria. However, 
these criteria are chosen so that the difference between the displacements obtained 
by the two algorithms does not exceed 10e−7 mm.

Figure 9 presents comparison of the optimization methods for UJM and LJM in 
terms of computation speed. The computation time is shown in logarithmic scale as 
a function of the number of active constraints. The results are presented only for dual 
and relative formulations since for the primal formulation the time is much longer 
due to the size of the problem. Each computation was repeated 10 times and the 
average value is shown in the Fig. 9. The time deviation varies 4–15% in average.

Fig. 8  Gap in mm before (left) and after (right) installation of the fasteners

Table 12  Test problems description

Model name Number of 
parts

Joint type Number of 
unknowns

Number of 
constraints

Condition number 
of stiffness matrix

UJM1 2 Simple 5206 2603 2.47 ⋅ 10
6

UJM2 2 Simple 11,308 5654 1.77 ⋅ 10
7

LJM 7 Sandwich 6190 3001 1.46 ⋅ 10
8
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Let us first consider the results for UJM1 problem. Computation time of NPM 
and CPA for the dual problem and ASM for the relative problem increases with the 
increase in the number of active constraints at the optimum, i.e., in the number of 
installed fastening elements. Time of NPM for the relative problem and ASM for 
the dual one has the opposite dependency. IPM computation time does not depend 
strongly on the number of active constraints. Note that this behaviour agrees with 
the theoretical complexity presented in Table 3. These basic time trends are also pre-
sent in the results of UJM2 and LJM problems.

The UJM1 and UJM2 differ mainly in the number of variables n. Thus, its influ-
ence is clearly observed in the results. With an increase in the number of variables, 
the time increases significantly for the most of the methods with the exception of 
IPM. NPM applied to the dual problem is generaly the fastest in solving the contact 
problem for upper wing models. However, NPM for the relative problem is less time 
consuming than for the dual one when the number of active constraints is large.

The UJM1 and LJM have similar number of unknowns, but the condition number 
for the lower wing model is larger. Comparing these two models, ASM is revealed 
to be the least affected by the condition number of the stiffness matrix. ASM applied 
to the relative problem is usually the fastest for LJM with the exception of problems 
with a large number of active constraints, where NPM for the relative problem is the 
leader.

Finally, let us consider the computation time distribution for variation simula-
tion analysis of an Airbus A350-900 wing-to-fuselage assembly. The aim of the 
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Fig. 9  Comparison of implemented methods. Solid and dashed lines refer to dual and relative problem 
formulations respectively
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analysis is to verify that a given configuration of fastening elements provides a 
sufficient fastening level to close the gap between the assembled parts (Lupuleac 
et al. 2019b). Such an analysis requires to solve the contact problems for a set of 
measured initial gaps. In total about 200 sets of measurements of aircraft pro-
duced in 2013–2016 were used for the analysis. The distribution of the number 
of active constraints for the measured initial gaps is shown in Fig. 10. UJM1 with 
50% of installed fasteners was used for variation simulation analysis, i.e the con-
tact problem was solved with the same stiffness matrix, matrix of constraints and 
vector of forces for all of the measured initial gaps.

Figure  11 presents computation time distribution for different solvers. The 
results presented in Fig. 11 agree with those presented in Fig. 9: the order of the 
bars in the histograms follows that of the curves for the corresponding number of 
active constraints. Since the computation time of the CPA for relative problems is 
considerably greater than for dual ones (see Sect. 3.4), it was only applied to the 
dual formulation of the test problems.

Note that some problems arising in fastener pattern optimization can require 
massive computations of up to 10

6  runs and thus task parallelization is needed 

Fig. 10  Distribution of number 
of active constraints for the 
solution of contact problem with 
different measured initial gaps 
and 50% of installed fasteners
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(Pogarskaia et  al. 2018). Therefore, to reduce the total computation time of 
assembly simulation, not only the average computation time for one run has to 
be reduced, but also the maximal computation time. According to the obtained 
results (see Fig. 11), for both dual and relative problem, NPM is revealed to be 
the leader both in terms of average and maximal computation time. The CPA 
works considerably slower than the other implemented methods for the test prob-
lems. Moreover, it has the largest deviation between maximal and average time, 
which creates difficulties for task parallelization. Note that the results in Fig. 11 
only represent the variation simulation analysis of one fastener pattern. Different 
methods can yield the best results for different patterns.

5  Conclusion

The paper presents and discusses computational aspects related to the solution of 
a certain class of quadratic programming problems related to variation simulation 
analysis.

The contact problem arising in assembly simulation is reformulated in dual and 
relative form. Data preprocessing (e.g., matrix transformations) is only performed 
once for the assembly model. Therefore the time for each of the multiple problem 
solving as well as time for the complete assembly analysis is reduced, since the vari-
ation simulation analysis requires solving of problems with similar data.

The presented numerical experiments demonstrate the following features of the 
methods. The computation time of the interior point method is not affected by the 
number of active constraints at the optimum. Thus, this method is suggested for such 
problems as optimization of fastening pattern for simple joints where the number of 
active constraints may vary considerably. The Goldfarb-Idnani active set method is 
revealed to be the best for middle-scaled ill-conditioned problems such as verification 
analysis of complex joints. Newton projection method is suitable for problems of vari-
ous types, to the fullest extent for the large-scale ones and for problems with big num-
ber of active constraints. The Complementarity pivot algorithm should be preferred 
for problems with small number of active constraints. For the example of variation 
simulation analysis of an assembly simulation problem, Newton projection method 
was revealed to be the leader in terms of average and maximal computation time.

The adaptation of the discussed numerical methods combined with an appropri-
ate modification of the contact problem leads to a considerable reduction of compu-
tation time for the described problems.
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