
Convex Partition of Sensor Networks and Its Use in
Virtual Coordinate Geographic Routing

Guang Tan Marin Bertier Anne-Marie Kermarrec
INRIA/IRISA, Rennes, France. Email: {guang.tan, marin.bertier, anne-marie.kermarrec}@irisa.fr

Abstract— Virtual coordinate geographic routing is an appeal-
ing geographic routing approach for its ability to work without
physical location information. We examine two representative
such routing protocols, namely NoGeo and BVR, and show
through experiments and theoretical analysis their limitation
in adapting to complex field topologies, in particular fields
with concave holes. Based on the new insights, we propose a
distributed convex partition protocol that divides the field to
subareas with convex shapes, using only connectivity information.
A new geographic routing protocol, called CONVEX, that builds
upon the partitioning protocol is then described. Simulations
demonstrate significant performance improvement of the new
routing protocol over NoGeo and BVR, in terms of transmission
stretch and maintenance overheads.

I. INTRODUCTION

Geographic routing [10] has recently attracted a great deal
of attention from the sensor/ad-hoc network community. In
geographic routing, nodes are identified by their geographic
coordinates and routing is done greedily: at each step, a
node routes a message to the neighbor that is closest to the
destination. When the message reaches a dead-end, that is, has
no neighbor closer to the destination, the protocol uses a face
routing strategy to route out of the dead-end, and then resumes
the greedy forwarding when appropriate. Such an approach
is simple and extremely scalable as every node only needs
to remember its immediate neighbors. In a regular field with
a relatively high node density, this protocol performs nearly
optimally [10].

There are, however, several problems that stand in the way
to the real deployment of geographic routing. First, such a
routing strategy requires that each node knows its geographic
location, either directly through a GPS device or indirectly
through a localization service. Equipping each node with a
GPS device may be too costly for some applications, while
accurate localization service itself involves some technical
challenges [16]. Second, network planarization algorithms
that are needed for correct face routing either rely on an
inaccurate unit-disk graph model [10], [13], or are complex
and costly [11]. Third, even if the above issues could be
ignored, the performance of geographic routing may be far
off from optimal in general sensor fields [14].

To address these issues, many protocols have been proposed
that use virtual coordinates for geographic routing [4], [5],
[8], [20], [21], [23]. The virtual coordinates do not necessarily
correspond to the actual physical locations, but often reflect the
connectivity relations between nodes. Typically, the protocol
forwards packet greedily using virtual coordinates, sometimes

with assistance of some global data structure [6], [8], [19];
when encountering a dead-end, the protocol uses a scoped
flooding to guarantee delivery. This approach obviates the need
for GPS devices (or localization services) and planarization
algorithms, thus greatly improving its applicability. Moreover,
those protocols have been shown to offer a high greedy
forwarding success rate (GFSR), which is an important factor
in routing performance.

Nevertheless, a question that remains unanswered is how
well those protocols adapt to general sensing environments
with diverse geometric features. The excellent performance
of existing protocols are often shown through topologically
simple settings, for example an obstacle-free square, or a field
with simple obstacles/holes, yet in real-world scenarios, it is
common that the sensor field is irregular, possibly containing
obstacles/holes of arbitrary shape. If those protocols could not
maintain a high GFSR in such more general scenarios, then the
expensive dead-end recovery process may bring the ultimate
performance down to an unacceptable level.

In this paper we investigate this problem. Through experi-
ments and theoretical analysis of two prominent protocols, No-
Geo [20] and BVR [8], which represent the iterative approach
and landmark approach for generating virtual coordinates,
respectively, we show serious limitations of existing protocols
in topologically nontrivial environments. Based on the new
insights, we propose a distributed convex partition protocol
that divides the field to subareas with convex shapes. Using
only connectivity information, it generates a number of nice-
shaped pieces of the network. We then design a new routing
protocol, referred to as CONVEX, by incorporating existing
routing techniques that have proved to be successful within
regular fields. Simulations demonstrate dramatically improved
performance of the new protocol over NoGeo and BVR.

The remainder of this paper is structured as follows. Sec-
tion II introduces related work; Section III investigates the
behavior of NoGeo and BVR; Section IV describe the con-
vex partition protocol; Section V presents a routing protocol
that combines our partition protocol and NoGeo; Section VI
presents simulation results, and Section VII concludes the
paper.

II. RELATED WORK

Rao et al. [20] first propose the NoGeo family of vir-
tual coordinate assignment algorithms. In NoGeo, perimeter
(boundary) nodes use a triangulation algorithm to computer
their coordinates. These coordinates are projected onto a

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

978-1-4244-3513-5/09/$25.00 ©2009 IEEE

virtual circle, and other nodes then determine their virtual
coordinates through an iterative relaxation procedure. NoGeo
shows a very high GFSR in a regular field, and is also robust to
field irregularity to some degree. NoGeo represents an iterative
approach for generating the virtual coordinates, respecting the
connectivity relations between nodes. In NoGeo routing, the
message is forwarded greedily and upon reaching a dead-end,
an expanding ring search technique is used to find a node that
can make progress.

GSpring [15] is another iterative virtual coordinate assign-
ment scheme that uses a modified spring relaxation algo-
rithm to incrementally increase the convexity of voids in the
network. In [2], Arad and Shavitt present a Node Elevation
Ad-hoc Routing (NEAR) protocol to address the concave
voids problem. Both GSpring and NEAR try to increase the
convexity of voids in a best-effort way, thus do not guarantee
complete elimination of local minima areas in geographic
routing.

The Beacon Vector Routing (BVR) protocol, by Fonseca
et al. [8], represents another approach of virtual coordinate
generation. In BVR, nodes’coordinates are assigned in ref-
erence to a set of pre-selected landmarks nodes (beacons).
Every node is assigned a distance vector 〈d0, d1, . . . , dm〉,
where di is its hop distance to the ith landmark. Routing is
done by minimizing a distance function of these coordinates.
When encountering a dead-end, the algorithm performs a
scoped flooding to guarantee delivery. Very similar techniques
include [4], [5], [23], with slight differences in the definition
of distance function and dead-end overcoming strategies. The
GLIDER protocol [6] also uses landmarks but with a different
global data structure (rather than a global shortest-path tree
rooted at each landmark). The problem of selecting a good set
of landmarks is addressed in [19].

Instead of assigning virtual coordinates based only on hop
distances, GEM [18] builds a polar coordinates system, in
which every node is assigned an angle range in addition to
its hop distance to a root node. The presence of the angle
range helps to deliver message precisely to its destination, but
on the other hand incurs significant overheads under network
reconfiguration. In [3], a medial axis graph reflecting the
global field topology is first established for global routing, then
a naming scheme similar to GEM is used in local routing.

We are not the first to consider the partitioning of sensor
fields. In [6], the authors propose to partition the field into
tiles – regions where the node placement is relatively regular
so that local greedy methods can work well. The partitioning
relies on the selection of a set of landmarks, which are
assumed to be done manually or at random. The former
approach may be too cumbersome for a large network, while
the latter exhibits several drawbacks as will be shown later.
In [24], Zhu et al. propose to segment an irregular sensor
fields into nice-shaped pieces. This scheme does not have a
notion of convexity, thus may generate concave pieces that
contain local minima areas. In the context of computational
geometry, convex decomposition of a polygon has been well
studied. It is shown [17] that computing a minimum number

(a) Real network topology (b) Virtual coordinate topology

Fig. 1. A network topology and its image under NoGeo. There are 4259
nodes with average degree 10.96. The perimeter nodes are shown in blue
(darker color) and ordinary nodes in grey.

of a convex components for a polygon with holes is NP-hard.
While a minimum number of convex partitions is desirable in
our context, our primary goal in this paper is a simple and
practical protocol that can be implemented in a distributed
way.

III. UNDERSTANDING EXISTING PROTOCOLS

In this section we analyze two representative algorithms:
NoGeo and BVR. We examine their behavior in networks with
relatively complex, yet realistic, topologies, and provide new
insights that shed light on the fundamental characteristics of
other virtual coordinate routing algorithms. A key metric used
in the performance evaluation is transmission stretch [8]. A
protocol’s transmission stretch, for a given pair of source and
destination nodes, is defined as the ratio of the total number
of transmitted messages involved in the routing process to the
shortest path hop count between the two nodes.

A. NoGeo

NoGeo’s success relies on its coordinate generation based
on connectivity information, rather than on physical location
information, which is often misleading in greedy forwarding.
For example, using true location information, two nodes
physically nearby but actually far apart in connectivity (due to,
for example, a long wall between them blocking their direct
communication) may wrongly draw in traffic destined to each
other. The coordinates generated by NoGeo better reflect the
real connectivity of the network, therefore produce a higher
GFSR, as demonstrated in [20] through several simple obstacle
settings.

What is not shown in [20] is to what a degree NoGeo
is adaptable to irregularity of the field. If in a topologically
nontrivial field NoGeo is unable to maintain a high GFSR, then
its ultimate routing performance may degrade considerably,
since it has to frequently resort to an expensive expanding
ring search for overcoming dead-ends. The expanding ring is
essentially a scoped flooding technique which is commonly
used for location-free dead-end recovery [6], [8], [19], [23],
and is communication costly.

Figure 1 shows a field with two back-to-back C-shaped
holes. Execution of the algorithm for 20,000 randomly chosen

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

Fig. 2. A network with 3996
nodes, avg degree 9.7.

1

1

sub-network

2kn1- a

2kn1- a

Fig. 3. Lower bound graph for
BVR’s transmission stretch.

source-destination pairs in Figure 1(b) shows a surprising
result: the average GFPR of NoGeo is only 47.5%, in stark
contrast with its nearly 100% success rate in the same network
without the holes. The greedy forwarding failures mainly occur
on the line between the two virtual holes and in the concave
parts of the holes. More experiments show that NoGeo does
try to make the original holes more convex, in a way as if a
balloon was being inflated. However, if the original holes have
a long perimeter, especially if there are more than one such
holes, the generated virtual holes may not fully expand into
their convex shapes, and may “crowd” together, creating big
“traps” for greedy traffic. As a result of the low GFPR, the av-
erage/maximum transmission stretch is as high as 11.50/75.97.
In comparison, a location-dependent GPSR [10] algorithm
achieves a much better average/maximum transmission ratio
of 2.32/21.8, despite its even lower GFPR 41.2%.

In conclusion, NoGeo adapts poorly to general field topol-
ogy, and the field irregularity problem must be addressed in
order to obtain reasonable performance in such settings.

B. BVR

The BVR approach is conceptually simple and relatively
easy to implement. The main concern is the number of land-
marks needed to guarantee good routing performance. A gen-
eral trend is that the more landmarks, the better performance,
while the higher the overhead for landmark maintenance and
addressing. Experiments in [8] show that to achieve a 95%
GFSR, the number of landmarks needed remains below 2%
of the network size. The simulated field topology is a square,
or a square with a number of small-sized obstacles.

We create a more complex network, shown in Figure 2,
to see how BVR is adaptable to complex topologies. We set
the proportion of randomly selected landmarks to be 2%,
and run the algorithm for 20,000 randomly chosen source-
destination pairs. The GFSR turns out to be only 83.8%, with
an average/maximum transmission stretch of 1.46/111.8. This
is clearly much worse than its performance in a regular field.
Increasing the proportion of landmarks to 3% and 4% yields
a GFSR of 88.65% and 90.85%, respectively, both below the
95% target set in [8].

One reason for the unsatisfactory performance of BVR is the
uneven distribution of landmarks. With the disturbance from

the irregular hole boundaries, achieving an even distribution is
nontrivial [19]. As a result, many nodes, especially those near
the field/hole boundaries, may end up being far away from
their nearest landmarks, thus incurring a high flooding cost
when greedy routing fails. To account for this factor, a very
high number of landmarks would be needed to ensure a small
flooding scope.

Even if he distribution problem could be perfectly solved,
a fundamental question yet to be answered is: how many
landmarks are needed to ensure a low transmission stretch?
The following theorem provides the answer.

Theorem 1: In an n-node network with O(n1−a), 0 <
a ≤ 1 landmarks, BVR has Ω(na/2) worst-case transmission
stretch.

Proof: Assume the number of landmarks is no more than
kn1−a, k > 0. We construct a networks as shown in Figure 3.
The network consists of a

√
2kn1−a×

√
2kn1−a backbone grid

network, forming 2kn1−a cells. Within each cell, a subnetwork
of size Ω(na) is connected to the bottom left corner of the cell.
The subnetwork itself is an Ω(

√
na) × Ω(

√
na) grid.

Since the number of landmarks is less than the number of
subnetworks, there must exist some subnetwork that does not
contain a landmark. Without loss of generality, assume such
a subnetwork is in the top right cell, and assume the source
node is at the bottom left node of the subnetwork, shown as a
circle in the figure. Consider the nodes on the diagonal of the
chosen subnetwork, shown in filled circles in the figure. These
diagonal nodes all have equal hop distance to the bottom left
node of the subnetwork, which is the only point connecting
the subnetwork to outside. Since all landmarks are outside
the subnetwork, these nodes will have the same distance to
each landmark, thus their coordinates will be exactly the same.
Now pick a random node on the diagonal as the destination.
The source node can by no means tell in which direction the
destination lies, thus has to go to the nearest landmark, which
will perform a scoped flooding. Such a flood will cover all
the nodes below the diagonal, including the diagonal itself,
traversing a total of Ω(na) nodes. Since the shortest path
length between the source and destination is O(na/2), the
transmission stretch is therefore Ω(na/2). This proves the
theorem.

Remark 1: The same lower bound example also applies to
HopID [23], LCR [4] and [5] for showing their limitations. It
holds even when every node knows its c-hop neighborhood,
where c is a constant.

Theorem 1 indicates that BVR needs O(n) landmarks to
ensure a constant transmission stretch! Worse still, the constant
factor behind the O symbol seems to be fairly high in our
setting, posing a great challenge to BVR’s applicability. In
Figure 2, for example, we need 3% landmarks only to achieve
a GFSR of 88.65%, with a maximum stretch as high as 50.0.
As the number of landmarks grows, the message and state
information overheads increase linearly. At the same time,
the necessity of a distance vector in greedy routing seems
to be diminishing. Observe that at the point of 3% landmarks,
the network may be organized such that every landmark is

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

responsible for a cluster of approximately 100/3 ≈ 33 nodes,
which is only the average size of a two-hop neighborhood. Es-
tablishing a shortest path tree at every landmark plus a simple
local routing scheme (e.g., using two-hop neighborhoods or a
local naming scheme [18]) would solve the routing problem.

We conclude that BVR’s performance is heavily affected by
field topology, and if we can afford using a certain fraction of
nodes as landmarks, such a fraction can be made reasonably
low only if we can solve the field irregularity problem.

IV. THE CONVEX PARTITION PROTOCOL

In a discrete network, we are most interested in the high-
level topological features such as the number and shape of field
holes, often caused by large obstacles. Those holes should be
orders of magnitude larger than average inter-node distance;
such sizes make their impact on routing performance so
significant that they deserve special treatment. Considering the
uneven node distribution and limited node densities, our aim
is to partition the field into approximately convex polygonal
sub-areas, and to let every node know which partition(s) it
belongs to.

We assume that each node p has a unique ID, denoted
by ID(p). The boundary nodes are nodes on the field/hole
boundaries, and are determined by some boundary detection
process. We do not assume a regular radio model (e.g.,
unit disk model).The field can be heterogenous in sensor
densities, but across a small region the density does not change
significantly.

Definition 1: r-hop neighborhood. The r-hop neighbor-
hood of node p, denoted by Nr(p), is the set of nodes at
most r hops away from p. The r-neighborhood size of node
p is |Nr(p)|.

Definition 2: r-hop interior node. An r-hop interior node
is a node whose nearest boundary node is at least r-hops away.

Given r, let Dr be the average r-hop neighborhood size
of all r-hop interior nodes in a certain region. Dr measures
a “full” r-hop neighborhood size, which is analogous to the
area of a full disk of radius r in the continuous domain. As
such, we also call Dr the r-hop node density in that region.

Definition 3: r-hop criticality. The r-hop criticality of a
boundary node p, Cr(p) = |Nr(p)|

Dr/2 .
Criticality reflects the shape of a boundary node’s neigh-

borhood area. If a node p is located at the middle of a
straight boundary line, then its neighborhood area will be
approximately a half disk, so Cr(p) will be close to 1. If
Cr(p) deviates from 1 significantly, then p is likely to be near
the corner of a hole.

Definition 4: Concave/Convex Critical point. Let δ1 > 0
and δ2 < 1 be two pre-defined system parameters. A boundary
node p is a concave critical point if Cr(p) > 1+δ1, or a convex
critical point if Cr(p) < 1 − δ2.

Intuitively, if we approximate the field boundaries using
polygons, then the critical points are expected to correspond
to the polygons’ vertices. A concave point is a node where the
inward angle (the angle spanning across the sensing area) is

(a) Drawing bisectors (b) The final partitions

Fig. 4. Convex partition of a polygonal environment. The sensor field is
shown as non-shaded area. Both critical points and cross points are vertices
of the final partitions.

greater than π, and a convex point is a node where the inward
angle is smaller than π; see Figure 4 for an illustration.

The convex partition protocol requires the boundary nodes
to be identified first. One of existing techniques (e.g., [7], [9],
[12], [22]) can be adopted to do this. These algorithms only
need network connectivity information and typically require
O(n) message transmission. After running such an algorithm,
each hole is assigned a unique ID, and each boundary node
belongs to a certain hole and is tagged with the hole ID. The
rest of the protocol has three phases:

1) Identifying the critical points;
2) Bisector-induced convex partitioning;
3) Partitions recognition.

All these operations are performed in a distributed way. We
assume that there is a base station that initiates each phase
by sending a command to the network; after that it is no
longer involved and sufficient time is allowed to elapse before
the next phase begins. We first describe the protocol in a
form without much message optimization. Reducing message
complexity will be discussed later.

A. Identifying Critical Points

Critical nodes are determined based on their r0-hop criti-
cality, where r0 is a small constant system parameter (e.g., 3).
r0 is chosen such that there will be sufficient r0-interior nodes
present in the network. When no confusion will be caused, we
often refer to a node’s r0-hop criticality as its criticality.

The observation of critical nodes is that:

1) If p is a concave critical node, then its criticality should
be larger than 1, and also be a local maximum among
its r0-hop neighbors on the same boundary.

2) If p is a convex critical node, then its criticality should
be smaller than 1 and also be a local minimum among
p’s r0-hop neighbors on the same boundary.

3) If a boundary node p is situated in the middle of a
sufficiently long (e.g. > 2r0) straight line boundary, then
its criticality should be close to 1;

Therefore to determine wether p is a critical node it needs
to calculate |Nr0(p)| and to obtain an estimate of Dr0 .

Calculating |Nr0(p)| is simple: the node p does a scoped
flooding to its r0-hop neighborhood, and collects the replies
aggregated along the reverse paths. To estimate Dr0 a number
of interior nodes are first sampled probabilistically across the

����
����
����

�
�p

p'

Concave critical point
Convex critical point ����

����
����

�
�p

p'

q
q'

cross point

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

network. Specifically, each non-boundary node p performs
with a small probability an expanding ring search for a nearest
boundary node. The search is limited to r0-hop distance of p.
If p finds that its nearest boundary node is on or beyond its r0-
hop ring, it marks itself as an r0-interior node, and calculates
|Nr0(p)|. Suppose the above tasks take no more than t time,
then after t plus the beginning time of this phase, all interior
nodes flood their r0-hop neighborhood size to the network.
Because of this synchronization every node only needs to
forward one message while being able to receive an r0-hop
neighborhood size announcement. This way every node will
get an estimate of Dr0 from its nearby areas.

After p has collected the value |Nr0(p)| and Dr0 , it can
calculate Cr0(p) and determine whether it is a critical point.
Let δ1 and δ2 be two system parameters.

1) If Cr0(p) > 1 + δ1 and Cr0(p) is a local maximum
among p’s r0-hop neighbors on the same boundary, then
p is a concave critical point;

2) If Cr0(p) < 1−δ2 and Cr0(p) is a local minimum among
p’s r0-hop neighbors on the same boundary, then p is a
convex critical point;

3) Otherwise p is not a critical point.
The parameters δ1 and δ2 determine how sensitive the

above process is to noises. In our experiments values between
[0.1, 0.2] prove to be a good choice for practical purposes.
Figure 5(a) shows the result of identifying critical points in
a graph. We can see that the identified critical points roughly
capture the shape of the holes. Although there are a few false
positives, their only effect is to slightly increase the number
of partitions generated. This leads to a small increase of the
amount of state information at each node. Our experiments will
show that this factor does not affect the significant advantage
of our protocol over existing schemes in terms of routing
performance and maintenance overhead.

B. Bisector-Induced Convex Partition: Principle

To give a clear idea of our convex partition protocol, we
first describe it in a continuous domain, which helps us
concentrate on the principle; the implementation is deferred to
the next section. The sensor field is assumed to be a polygonal
environment, where the field outer boundary and inner holes
are all simple polygons. The partitioning result is a set of
convex polygons (partitions).

The key operation of the partition protocol is to draw a
bisector of the inward angle at each concave critical point. In
a distributed environment, drawing a line can be thought of as
moving a point continuously from some origin across the plane
in a known direction (Figure 4(a)). We assume such a direction
is already determined. Now each concave critical point p sends
a point q out of it. On its journey the moving point q will
often hit a line, which is either an existing field/hole boundary
edge, or a fully or partially drawn bisector from another origin,
where it stops and the line segment pq becomes an edge of
some new partition. At this point q becomes a cross point.
When travelling, q may occasionally “collide with” another
moving point q′ from some other origin p′. They compare

the IDs of their origins – the point from the origin with a
larger ID continues to move, while the other stops and creates
a new partition edge. The point that keeps on moving will
ultimately hit some boundary edge and create another partition
edge (Figure 4(b)).

Theorem 2: All the partitions generated by the above pro-
tocol are convex polygons.

Proof: Assume that there exists a concave partition,
whose inward angle at its vertex p is greater than π. Then
p must not be a critical point, because the bisector from p
divides the inward angle at p in half, leaving no angular space
greater than π around it. p cannot be a cross point either,
because the partition protocol requires one of the two bisectors
that intersect at p to extend to some edge of the field/hole
boundary. Therefore, there cannot be such a vertex p with
an inward angle greater than π, and so all partitions must be
convex polygons.

C. Bisector-Induced Convex Partition: Implementation

Analogous to drawing a bisector on the 2D plane, in a
discrete network we need to identify a path, referred to as a
bisector path, from a concave critical point p; see Figure 5(b)
for an example. The observation is that the bisector nodes
should have approximately the same distance from the two
adjacent boundary paths of p. More generally, let p0 and p1

be two nodes on p’s boundary that are r0 hops away from p
in the clockwise and counterclockwise direction, respectively,
then a node on the bisector path should be approximately
equidistant from p0 and p1. In our implementation, we do
a further simplification: if we can find the endpoint q of such
a bisector path, then the whole path is approximated by the
shortest path between q and p. Here the endpoint q should be
a boundary node, and following its analogy in the continuous
domain, is also called a cross point after the establishment of
this shortest path.

We search for the bisector endpoint q for p in the following
way. First, p finds the two nodes p0 and p1 as specified above.
It then commands each of p0 and p1 to perform a flooding
operation. As a flooded message reaches an intermediate node
v, v records the parent node from which it receives the
message and the number of hops the message has travelled
so far. v forwards the message to its neighbors only if v is not
a boundary node. If v is on the field/hole boundary, and has
received the messages from both p0 and p1, it compares its
hop distances from p0 and p1. If the distances are the same or
differ by only a small constant (in our implementation one),
v sends a reply immediately to p via the parent links; the
message will record the IDs of all traversed nodes. In the case
of receiving multiple replies, p selects one from a node q that
has the smallest average distance to p0 and p1. It then sends
a confirmation message to the selected node q via the reverse
path recorded in q’s reply. This path thus is the desired bisector
path. While the confirmation message travels, the nodes on the
path (not including p and q) mark themselves as bisector nodes
and also boundary nodes, and record the two endpoints p and

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

(a) Concave/convex critical points. (b) Bisectors. (c) 14 partitions generated.

Fig. 5. Illustration for convex partition. The network has 4431 nodes with average node degree 10.22. Concave critical points, convex critical point,
and cross points are shown in solid squares, squares and crossed squares, respectively. Boundary/bisector nodes are shown in blue; belt nodes are in red.
r0 = 5, δ1 = 0.2, δ2 = 0.1.

q. Note that the bisector nodes are also a type of boundary
nodes.

Several strategies are used to avoid generating an overly-
fragmented field. First, when a boundary node q that is
(approximately) equidistant to p0 and p1 is found, q does a
local two-hop broadcast to search for existing critical point or
candidate bisector endpoints nearby. If another boundary node
q′ is found to be a critical point, or with a smaller average
distance to p0 and p1, or with a smaller difference of distance
to p0 and p1, then q gives up the chance of establishing a
bisector path to p. Second, when two existing critical points
happen to find each other to be the desired bisector endpoint,
the bisector path will be determined by the critical point with
a larger ID, but not by both endpoints which often generate
incongruent shortest paths.

Due to the asynchronous discovery of bisector paths, some
of those paths may cross each other, which is undesirable. To
avoid this a concave critical point p sends messages over its
outgoing bisector path (p, q) periodically for a certain period
of time (until the end of this phase.) While the message travels,
the host node x checks whether its one-hop neighborhood
contains a bisector node x′ from another bisector path (p′, q′).
If so, it compares the ID(p) + ID(q) and ID(p′) + ID(q′).
If the former is larger, or is equal to the latter but ID(p) >
ID(p′), then the bisector path between p and q is split: the
node x′ is taken as p’s new bisector endpoint, while the
segment of path between q and x (excluding q and x) will
be notified to give up its role as part of bisector path; that is,
all the nodes on that segment are no longer bisector nodes.

After this phase, the sensor field is divided into a number
of partitions, each being an approximately convex polygon. A
polygon P has a number of critical and cross points as its
vertices, and also a number of edges, called partition edges,
each being a path between two critical/cross points. We let
each partition vertex remember its adjacent partition vertices
on the partition graph, and also the length in hops of each
partition edge incident on it. Figure 4(c) shows an example of
the partition result on a network.

D. Partition Recognition

The partition recognition relies on partition-wise flooding
to probe the partition edges. Some leader node in a partition
then collects the edge information and constructs the partition
polygon, and finally notifies the nodes of the partition(s) they
belong to. The key challenge of this phase is to limit flooding
to a certain partition without letting it penetrate to other
parts of the network. Although the bisector path provides a
natural border line between two partitions, without location
information a node near a bisector path can by no means tell
on which side it is situated. Our strategy is to construct a
dumb belt area near a bisector path that prevents the flooding
in a partition from entering another. In our implementation,
all the one-hop neighbors of the bisector nodes, not including
the bisector nodes themselves, constitute such a belt area. Such
nodes are termed belt nodes. Recall that we have so far divided
the nodes into four categories: non-bisector boundary nodes,
bisector boundary nodes, belt nodes, and other nodes. We have
all the boundary nodes remember their associated partition
edge endpoints, and have all the belt nodes remember the
endpoints of their bisector paths.

For a partition P , the partition-wide flood is initiated by
some nodes near P ’s critical points. Such critical points only
need to be concave critical points, since every partition must
have at least one bisector path as one of its polygon edges,
thus at least one concave critical point as its polygon vertex.
This way no partition will be left out without receiving flood.
A concave critical point searches in its neighborhood for two
nearest boundary nodes beyond the belt areas, one in clockwise
direction and the other in counterclockwise direction, on its
field/hole boundary. If such a node exists, then p commands
it to issue a flood.

Suppose a node p in a partition P performs a flood. The
flooded message will be forwarded by all nodes except the belt
nodes and bisector nodes. When the flood reaches a belt or
bisector node, the message collects the information of those
nodes’s associated partition edges, including the endpoints’
IDs and length in hops, and then travels back to p via the
reverse routes. p then collects this information into an edge set

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

(a) (b) (c)

Fig. 6. The three cases in partition construction.

E , based on which it tries to construct a polygon. The collected
edges may constitute a graph that contains, but is not exactly,
a polygon, or may not even be able to form a polygon. There
are three possible cases to consider (see Figure 6).

1) The edges in E form exactly a cycle (Figure 6(a)). This
is the ideal case and the cycle is directly taken as the
polygon.

2) The edges in E contains one and only one cycle (Fig-
ure 6(b)), with a number of additional noncyclic edges.
The extra edges come from belt nodes near concave
critical points that have many partition edges incident
on them. We simply remove those edges and take the
cycle as the polygon.

3) The edges in E contains no cycle (Figure 6(c)). This can
happen in a partition with a very short partition edge,
whose belt area is largely covered by the belt areas of
adjacent bisector paths. Nodes in such a belt area will
thus be unreachable by the flood. This case will result in
a number of nodes, referred to as orphan nodes, ending
up without partition assignment. We address this issue
later.

If p has successfully constructed a partition P , it takes itself
as the leader of the partition, and performs a new partition-
wide flood to notify all the nodes in P of its ID. There can
be more than one leaders in one partition; in such a case the
leader pmax with the highest ID prevails, and the nodes in P
only take pmax as their leader. For bisector nodes and belt
nodes, they belong to two adjacent partitions simultaneously.
For orphan nodes, we simply let them search for a nearest node
with partition assignment and join the partition(s) of that node.
At this point, the partition recognition phase is complete.

E. Message Complexity

Since the partitioning protocol is expected to primarily
serve as a network preprocessing service, the requirement on
completion time is often not stringent. We can therefore reduce
message cost by introducing appropriate synchronization.

a) Boundary nodes identification phase: This phase in-
curs O(n) message overhead.

b) Critical points identification phase: Message trans-
mission is needed for two tasks: the r0-hop interior nodes
calculating and announcing Dr0 , and boundary nodes cal-
culating their r0-hop neighborhood sizes. For the first task,
the sample interior nodes are selected probabilistically. The
probability ρ can be easily chosen such that in expectation,
the union of those sample nodes’ neighborhoods will be no

larger than the whole network size. For example, let Dmax
r0

be
the maximum r0-hop neighborhood size estimated according
to the maximum node degree (which is assumed to be known
in advance), then an option is ρ = Dmax

r0
/n. This will result

in O(n) message transmission on average. The announcement
process also generates O(n) messages. For the second task,
a node near a boundary can buffer the query messages from
all its boundary neighbors and forward them at once. Since
the query message is very short, a common message can
accommodate many such queries, and thus the total number
of messages transmitted is roughly r0 times the total number
of boundary nodes. This also requires O(n) messages.

c) Bisector path identification phase: Every concave
critical point needs O(n) messages to establish a bisector
path. The number of concave critical points is less than the
number of critical points ncri, therefore the total message is
O(n×ncri). ncri depends only on the complexity of the field’s
large topological features, rather than on the network size n,
and is often small in real world applications.

d) Partition recognition phase: Let npar be the number
of partitions generated. It is easy to see that npar ∈ O(ncri),
therefore this phase incurs O(n × ncri) messages as well.

Putting things together, our partitioning protocol incurs a
total of O(n × ncri) messages, where ncri is the number of
concave critical points. Since ncri is very small compared with
n, we believe this is a reasonable overhead in practice.

V. CONVEX PARTITION BASED ROUTING PROTOCOL

With the partitions determined and recognized, each node
can be assigned one or two virtual coordinates in the form
(PartitionID, x, y), where PartitionID is the ID of its
partition leader, and x and y are local coordinates. These
coordinates are managed by some location service.

We employ the NoGeo method [20] to generate local
coordinates. Recall that in the partition recognition process,
the leader of a partition P has already acquired the full
knowledge of P ’s vertices and edges. It projects the partition
polygon onto a virtual circle [20] and assigns a coordinate for
each of the partition vertices. These assignments are sent to
each partition vertex through a separate partition-wide flood.
Once a vertex p receives the assignments, it sends a packet
to a neighboring partition vertex on P that has a smaller
ID than itself. The packet carries two pieces of information:
the coordinates of the endpoints of the partition edge it is
traversing, and the hop length of that partition edge. This
way, all nodes on that edge can calculate its own virtual
coordinate on the circle. Eventually all boundary nodes of
P will determine their coordinates on the circle, while other
nodes in the partition is assigned the same initial coordinate
(0, 0). After this, the iterative coordinate calculation begins,
as described in [20]. After a certain number of iterations,
every node in P learns its local virtual coordinate. Because
the boundary nodes (or perimeter nodes in NoGeo’s term) are
already known before the iterative process, the heavy-traffic
part of perimeter coordinate estimation in NoGeo is avoided
in our protocol.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

(a) 2-C, 11 partitions (b) Combs, 26 partitions (c) Spiral, 25 partitions (d) 3-U, 11 partitions

Fig. 7. Four 1000m × 1000m sensor fields after partitioning.

The leaders of partitions serve as global landmarks that help
with inter-partition routing. Each of them performs a network-
wide flooding to establish a shortest-path tree that covers the
whole network. When a source node s wants to route to a
destination node t, it first checks if s and t shares a common
partition; if so, s performs an intra-partition greedy routing in
the same way as NoGeo does; otherwise, s follows the shortest
path to t’s partition leader until reaching a node that shares
a common partition with t, where it begins intra-partition
routing. Upon reaching a dead-end, a node uses expanding
ring search to find a node closer to the destination than its
current position.

Different from other landmark-based protocols, in our pro-
tocol the number of landmarks is independent of the network
size, but relies on the complexity of large topological features
(e.g., the number and shape of holes), which is usually much
smaller than network size.

In our implementation, partition leaders are situated on
partition boundaries. If the application traffic is roughly
uniform over the field, then moving those leaders to their
partition centers can improve average inter-partition routing
performance. This can be done as follows. Suppose a partition
P has a leader p. The node p routes a message to the partition
center (0, 0). Upon reaching the first node whose radio range
covers (0, 0), or encountering the first dead-end, the message’s
host node becomes the new leader of the partition P . The new
leader then floods a new message to the whole network to
establish a new shortest-path tree, which replaces the old tree
rooted at the old leader, and also to notify all the nodes in P
to update their leader information. The message overhead of
this optimization is O(npar × n), where npar is the number
of partitions in the network.

VI. PERFORMANCE EVALUATION

We conduct simulations on various network topologies. The
sensor network is deployed in a 1000m × 1000m square
field with irregular holes. Figure 7 shows four example field
layouts. The number of sensors are around 4000 with av-
erage node degree around 10 [1]. Sensor nodes are placed
in a perturbed grid distribution [3], [16]. Each sensor has a
communication range of 60 meters, modelled as a uniform
disk. By default r0 = 5, δ1 = 0.2, δ2 = 0.1. A total of 20,000

source-destination pairs are randomly chosen for test. Two
performance metrics are used: greedy forwarding success rate
(GFSR) and transmission stretch.

We compare the performance of NoGeo, BVR, CONVEX,
and a real location based routing algorithm, GPSR [10]. For
handling dead-ends in NoGeo and CONVEX, we use an
exponentially expanding ring to search for a closer node to
the destination. For BVR, we evaluate its performance under
two cases: (1) it has the same number of landmarks as needed
by CONVEX; (2) it uses 2% of the nodes as landmarks. The
2% percentage is observed to be sufficient for achieving at
least a 95% GPSR in [8]; we will examine whether this holds
in more complex network settings. In both cases, the landmark
nodes are selected randomly. We also consider the effect of
two-hop neighborhoods.

A. Greedy Forwarding Success Rate

Figure 8 shows the GFSR of the various schemes, all using
one-hop neighborhood. In most cases, NoGeo has a GFSR
below 50%. For BVR with the same number of landmarks as
CONVEX, the GFSR is consistently below 75%. Increasing
the number of landmarks to 2% of the network size (around
80) brings the GFSR up to 90.35% in the best case, yet is
still worse than CONVEX with much fewer landmarks. For
example, in the 2-C topology, CONVEX achieves a GFSR
of 94.4%, using only 11 landmarks, in contrast with BVR’s
90.35% with 80 landmarks.

Using two-hop neighborhood brings considerable improve-
ment to all schemes (detailed results not shown due to space
limitation). Throughout the experiments, the GFSR of NoGeo
remains below 80%, and BVR never exceeds 85% with the
same number of landmarks as CONVEX, while CONVEX
has a GFSR of 99.35% at the lowest.

B. Transmission Stretch

Figure 9 shows the average transmission stretch of the five
schemes, along with the 5th and 95th percentiles. As expected,
the CONVEX protocol outperforms all other schemes in all
cases. Its average stretch is consistently below 1.2. The BVR
scheme with 2% of landmarks performs the second best with
a small difference; however one should notice that in this
case BVR uses 3-7 times as many landmarks as used by

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

Fig. 8. Greedy routing success rate with one-hop neighborhood.

Fig. 9. Average transmission stretch (with 5th and 95th percentiles).

CONVEX, implying a significantly higher overhead. These
results demonstrate the great advantage of CONVEX over
other schemes.

C. Effect of Partition Parameters

The parameters δ1 and δ2 determine how sensitive the
convex partition protocol is to boundary noises. Generally, the
smaller the two parameters, the more critical points will be
created, which result in more partitions being generated. As a
result those smaller partitions tend to be more convex, leading
to better routing performance within each partition. The down-
side is that the more landmarks will incur higher maintenance
overheads. Taking the spiral topology (Figure 7(c)) as an
example, if we increase them from their default values δ1 =
0.2, δ2 = 0.1 to δ1 = 0.3, δ2 = 0.2, the number of partitions
generated will drop from 25 to only 15, and the average
transmission stretch increases from 1.05 to 1.10.

VII. CONCLUSION

We have presented a convex partition protocol of sensor
networks. The motivation for designing such a protocol is
the poor performance of existing virtual coordinate geographic
routing protocols in sensor fields with complex (in particular

concave) topologies. Partitioning the fields into convex com-
ponents that suit those protocols thus provides a natural way to
overcome the field irregularity problem. We have demonstrated
the great benefit of our protocol through a routing protocol that
integrates the partition protocol and techniques from NoGeo.

REFERENCES

[1] A. Arora, R. Ramnath, P. Sinha, and et al. Project exscal. In Proc. 1st
Int. IEEE Conf. on Distributed Computing in Sensor Systems (DCOSS),
2005.

[2] N. Arad and Y. Shavitt. Minimizing recovery state in geographic ad-hoc
routing. Proc. of ACM MobiHoc 2006.

[3] J. Bruck, J. Gao, A. Jiang. MAP: Medial Axis Based Geometric Routing
in Sensor Networks, Proc. of ACM MobiCom 2005.

[4] Q. Cao and T. Abdelzaher. A scalable logical coordinates framework
for routing in wireless sensor networks. In Proc. of IEEE Real-Time
Systems Symposium (RTSS) 2004.

[5] A. Caruso, A. Urpi, S. Chessa, and S. De. GPS free coordinate
assignment and routing in wireless sensor networks. Proc. of IEEE
INFOCOM 2005.

[6] Q. Fang, J. Gao, L. Guibas, V. de Silva, and L. Zhang. GLIDER:
Gradient landmark-based distributed routing for sensor networks. Proc.
IEEE INFOCOM 2005.

[7] S. P. Fekete, A. Kroeller, D. Pfisterer, S. Fischer and C. Buschmann.
Neighborhood-based topology recognition in sensor networks. In Proc.
of Algorithmic Aspects of Wireless Sensor Networks: First International
Workshop (ALGOSENSOR) 2004.

[8] R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker,
and I. Stoica. Beacon vector routing: Scalable point-to-point routing in
wireless sensornets. Proc. of NSDI 2005.

[9] S. Funke. Topological hole detection in wireless sensor networks and
its applications. In Proc. of Joint Workshop on Foundations of Mobile
Computing (DIALM-POMC) 2005.

[10] B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for
wireless networks. In Proc. of ACM MobiCom 2000.

[11] Y-J Kim, R. Govindan, B. Karp, and S. Shenker. Geographic Routing
Made Practical. Proc. of NSDI 2005.

[12] A. Kroller, S. Fekete, D. Pfisterer, and S. Fischer. Deterministic boundary
recognition and topology extraction for large sensor networks. Proc. of
ACM-SIAM SODA 2006.

[13] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc
routing: Of theory and practice. In Proc. of 22nd ACM International
Symposium on the Principles of Distributed Computing (PODC), 2003.

[14] F. Kuhn, R. Wattenhofer, and A. Zollinger. A Asymptotically Optimal
Geometric Mobile Ad Hoc Routing. In Proc. of ACM DIALM-POMC
Joint Workshop on Foundations of Mobile Computing, 2002.

[15] B. Leong, B. Liskov, and R. Morris. Greedy virtual coordinates for
geographic routing. In Proc. of IEEE ICNP 2007.

[16] M. Li and Y. Liu. Rendered Path: Range-Free Localization in
Anisotropic Sensor Networks with Holes. In Proc. of MobiCom 2007.

[17] A. Lingas. The power of non-rectilinear holes. In Proc. 9th Internat.
Colloq. Automata Lang. Program, volume 140, LNCS 369-383. 1982.

[18] J. Newsome and D. Song. Gem: Graph embedding for routing and data-
centric storage in sensor networks without geographic information. In
Proc. of SenSys 2003.

[19] A. Nguyeny, N. Milosavljevic, Q Fang, J. Gao, and L. J. Guibas.
Landmark Selection and Greedy Landmark-Descent Routing for Sensor
Networks. In Proc. of IEEE INFOCOM 2008.

[20] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica.
Geographic routing without location information. In MobiCom 2003.

[21] M. Tsai, H. Yang, and W. Huang. Axis-Based Virtual Coordinate Assign-
ment Protocol and Delivery-Guaranteed Routing Protocol in Wireless
Sensor Networks. Proc. of IEEE INFOCOM 2008.

[22] Y. Wang, J. Gao, J. S.B. Mitchell. Boundary Recognition in Sensor
Networks by Topological Methods. Proc. of ACM MobiCom 2006.

[23] Y. Zhao, B. Li, Q. Zhang, Y. Chen, and W. Zhu. Hop ID based routing
in mobile ad hoc networks. In Proc. of IEEE ICNP 2005.

[24] X. Zhu, R. Sarkar, and J. Gao. Shape segmentation and applications in
sensor networks. In Proc. of IEEE INFOCOM 2008.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2009 proceedings.

