
SIAM J. COMPUT.
Vol. 13, No. 3, August 1984

(C) 1984 Society for Industrial and Applied Mathematics

003

CONVEX PARTITIONS OF POLYHEDRA:
A LOWER BOUND AND WORST-CASE OPTIMAL ALGORITHM*

BERNARD CHAZELLE’

Abstract. The problem of partitioning a polyhedron into a minimum number of convex pieces is known
to be NP-hard. We establish here a quadratic lower bound on the complexity of this problem, and we
describe an algorithm that produces a number of convex parts within a constant factor of optimal in the
worst case. The algorithm is linear in the size of the polyhedron and cubic in the number of reflex angles.
Since in most applications areas, the former quantity greatly exceeds the latter, the algorithm is viable in
practice.

Key words. Computational geometry, convex decompositions, data structures, lower bounds, polyhedra

1. Introduction. The general problem of decomposing complex structures into
simpler components has received a great deal of attention recently [1], [4], [5], [8].
The reason for this concern comes partly from the impossibility of applying many of
people’s favorite geometric algorithms to nonconvex structures. Often, decomposing
the structures into convex parts and applying the algorithms to each part is one way
to overcome this difficulty. For example, intersection I-2] and searching problems [9]
can be solved efficiently by means of convex decompositions. One of the forefathers
of decomposition algorithms is Garey et al.’s algorithm I-4] for partitioning an n-gon
into triangles in O(n log n) time. Minimality considerations were addressed later on
in [1], where an O(n +N3) time algorithm was given for decomposing an n-gon with
N reflex angles into a minimum number of nonoverlapping convex pieces. Several
variants of this problem were shown to be NP-hard [8]; in particular, the generalization
of the problem to polygons with holes [5]. This result was to be used as a stepping
stone to prove that the following problem was NP-hard.

Given a three-dimensional polyhedron P, what is the smallest set ofpairwise disjoint
convex polyhedra, whose convex union is exactly P?

This paper is devoted to this problem, and is organized along the following lines:
in 2, we present the basic concepts and outline an effective method for decomposing
an arbitrary polyhedron into convex pieces. Let n and N designate respectively the
size of the input and the number of reflex angles into the polyhedron. We prove that
the algorithm never produces more than approximately N2! 2 convex pieces. We show
in 3 that this figure is optimal in the worst case up to within a constant factor. To
do so, we exhibit a polyhedron P with an arbitrary number of reflex angles N and
n O(N) vertices, and we prove that P necessarily has 12(N2) convex parts. Of course,
by a trivial output size argument, this result also establishes a quadratic lower bound
on the time complexity of the decomposition problem. Finally in 4, we give the
details of the algorithm outlined at the beginning.

Before proceeding, we shall set our notation. We define a three-dimensional
polyhedron as a finite, connected set of simple plane polygons, such that every edge
of each polygon belongs to exactly one other polygon. To exclude degenerate cases
(e.g., two cubes connected by a single vertex), we also require that the polygons
surrounding each vertex form a simple circuit [3, p. 4]. Note that this definition does

* Received by the editors May 17, 1982, and in revised form July 21, 1983. This work was partly
supported by a Yale fellowship and by the Defense Advanced Research Projects Agency under contract
F33615-78-C-1551.

" Department of Computer Science, Brown University, Providence, Rhode Island 02912.

488

CONVEX PARTITIONS OF POLYHEDRA 489

not prevent faces from having holes (Fig. l a). A face with k holes is said to be of
genus k. Similarly, polyhedra may have holes (i.e., handles), and we define the genus
of a polyhedron as the genus of the surface formed by its boundary [6]. It follows
from the definition that a polyhedron may not have interior boundaries.

Let P be a polyhedron with n vertices vl," , vn, p edges el,. ., ep, and q faces
fl,’",fq. A necessary condition for vertices, edges, and faces to be adjacent is to
have at least one point in common. For simplicity, however, we will say that a face
and an edge or two faces are adjacent if and only if they share an entire line segment.
If T and U are two adjacent faces intersecting in a segment L, we define the angle
(T, U) as the angle between two segments lying respectively on T and U and perpen-
dicular to L. Recall that there is no natural orientation of angles in Euclidean space.
Thus, to avoid ambiguity, the angle (T, U) will always be measured between 0 and
360 degrees with respect to a.given side of the pair T, U. Noticing that each face of
P has an outer and an inner side, we define a notch of P as an edge with its adjacent
faces forming a reflex angle (i.e. > 180 degrees) with respect to their inner side (Fig.
l b). Let gl,..., gN denote the notches of P.

(a) (b)
FIG. 1. a) A face of a polyhedron with a hole in the middle, b) A notch of a polyhedron.

2. The basic method. It is easy to see that the presence of notches in a polyhedron
is characteristic of its nonconvexity [3, p. 4]. Thus we can view a convex decomposition
of P either as a partition of P into convex polyhedra or as a set of cuts performed
through P in order to resolve the reflex angles at its notches. This suggests a naive
decomposition algorithm, which we proceed to describe next.

2.1. The naive decomposition. Informally, a notch can be removed by cutting
along a plane adjacent to it so as to resolve the reflex angle between its adjacent faces.
More precisely, let g be a notch of the polyhedron P with fi and f its adjacent faces,
and let T be a plane which contains g and resolves its reflex angle, i.e., such that both
angles (fi, T) and (T, f), as measured from the inner side of j and), are not reflex.
The intersection of T and P is in general a set of polygons. These polygons may have
holes and the holes may themselves contain other polygons (Fig.lla). Let S be the
unique polygon containing g. We call S a cut of the naive decomposition. It is clear
that cutting along S will remove the notch g. Note that, in general, this operation will
break P into two pieces. If P has a nonzero genus, however, removing a notch may
simply cut a handle of P and preserve its connectivity. In this case, the polyhedron
obtained has two distinct faces with the same geometric location (Fig. 2a). Other
intriguing effects may be observed and it is worthwhile to mention some of them.

If the polygon S has holes, removing g may create a handle in either of the two
parts produced (Fig. 2b). Therefore the added genus of all the pieces produced thus
far will increase by one. We also observe that the operation may produce one piece,
while removing a handle and creating another handle (Fig. 2c). We will thus treat the
more general case where the polyhedron P may have arbitrary genus, since the naive

490 BERNARD CHAZELLE

(a)

genu

(b)

(c)

FIG. 2. Removing a notch.

decomposition may produce intermediate objects of higher genuses. In spite of these
intricacies, we can easily show that repeating the cutting process on each remaining
nonconvex part will eventually produce a convex decomposition in a finite number of
steps. To find out how many convex parts such a decomposition may generate, we first
observe that, at any time, any notch of a part is either a notch of P or the subsegment
of a notch of P, called a subnotch. This follows from the fact that a cut may intersect
other notches, thus duplicating them (Fig. 3). Note, however, that no new notch is
ever created. At worst, each cut may intersect all of the other notches or subnotches
present in the polyhedron considered. If f(N) is the maximum number of cuts which
a complete decomposition may necessitate, we have f(0)= 0, and

f(N)<=2f(N-1)+l.

Therefore, at most 2N- 1 cuts are needed, which shows that the procedure will always
converge and produce at most 2N convex parts. Unfortunately, as shown in [1], this
scheme may indeed produce an exponential number of pieces, so an alternate method
is in order.

Subnotches

FIG. 3. The duplication of notches.

LEMMA 1. There exist two constants a, b and a class ofpolyhedra P(n) with O(n)
vertices, such that for any n > a, the naive decomposition applied to P produces at least
2 bn convex parts.

Proof. See [1].

2.2. The naive decomposition revisited. To avoid an exponential blow-up in the
number of pieces, we will remove all the subnotches of each notch with coplanar cuts.
This will ensure that all the cuts used in the removal of a notch duplicate a total of at
most N- 1 other notches, leading to an O(N2) upper bound on the number of convex
parts. More precisely, let us define for each notch gi a plane Ti that resolves its reflex

CONVEX PARTITIONS OF POLYHEDRA 491

angle. We proceed as before, with the additional requirement that the cuts of each
subnotch of gi should be coplanar with Ti.

TI-IEOREM 2. The revised naive decomposition algorithm applied to P yields at most
N2/ 2 +N2 + 1 convex parts.

Proof. We can assume that all the subnotches of a notch are removed consecutively.
Since the cuts corresponding to the subnotches of g are coplanar, their union intersects
every other notch in at most one point. It follows that, at the ith step, each remaining
notch will have been broken up into at most i+ 1 subnotches, and step i+ 1 will
introduce at most + 1 polyhedra into the decomposition. [3

In the last section of this paper, we will describe an effective method for carrying
out the naive decomposition. But first we will establish a lower bound on the size of
any convex decomposition.

3. A quadratic lower bound on the number of convex parts.
3.1. Introduction. The algorithm described above produces O(N2) convex parts,

thus saving us from an exponential blow-up. We may yet wonder whether O(N) parts
is not always achievable, as is the case in two dimensions [1]. We next tackle this
problem and prove that this O(N2) upper bound is indeed tight. To achieve our goal,
we must exhibit a class of polyhedra which cannot be decomposed into fewer than
cN2 parts. The technique used to derive this lower bound is based on volume consider-
ations. We define a portion Z of the polyhedron P and, observing that a decomposition
of P also realizes a partition of 5:, we study the contribution of each convex part to
this partitioning. The crux is to show that a convex part can only have a small piece
lying in Z, and therefore lots of convex parts are needed to fill up Z. To realize this
condition, we must carefully design Z, giving it a warped shape so that its intersection
with any convex object can never occupy too much space. The fact that Z must be
defined by means of straight lines suggests giving it the shape of a hyperbolic paraboloid.
Recall that this surface can be generated by two sets of orthogonal lines [11, p. 649].

The main idea can be summarized as follows: Z has thickness e so that its volume
is approximately eN2. The warpness of a hyperbolic paraboloid will then ensure that
since Z is bounded by notches, the "chunk" of : removed by any convex piece can
only be very small, i.e. have volume e. As a result at least (N2) convex parts will be
necessary to decompose Z.

3.2. Description of the polyhedron P. P is essentially a rectangular parallelepiped
with a series of N+ 1 notches cut through the lower face and N+ 1 similar notches
cut through the upper face (Fig. 4a, b). The two faces adjacent to any notch form a
very small angle and, for our purposes, can be regarded as a single vertical quadri-
lateral. Thus, we have N+ 1 such quadrilaterals emanating from the lower face, all
of which are vertical, parallel to the plane Oxz, and equidistant. The upper edges of
these quadrilaterals are called the bottom notches of the polyhedron P, and are
designated BOTO,. , BOTN in ascending Y-value. To achieve the desired warping,
all the bottom notches lie on the hyperbolic paraboloid z xy. TheN+ 1 quadrilaterals
emanating from the upper face of P are parallel to the plane Oyz and satisfy the same
specifications. Similarly, their lower edges are called the top notches of P and are
designated TOPO,..., TOPN in increasing X-order. All these notches lie on the
hyperbolic paraboloid z xy+ e. We now give a more precise definition of P by
characterizing its significant vertices with the system of axes indicated in Fig. 4b. Note
that the origin O is the intersection of BOTO with the vertical plane passing through
TOPO. The upper face of the parallelepiped lies on the plane z 2N2 and its lower
face, on the plane z =-2N. This ensures that all bottom and top notches fit strictly

492 BERNARD CHAZELLE

(a)

o/(o a. .i. b

FZG. 4. The polyhedron P.

between these two faces. Also the parallelepiped has a depth and width of N+ 2. Fig.
4c gives all the coordinates of the top and bottom notches.

3.3. Decomposing P into convex parts. We define E as the portion of P comprised
between the two hyperbolic paraboloids z xy and z xy/ e and the four planes
x 0, x N, y 0, y N. E is a cylinder parallel to the z-axis, of height e, whose base
is the region of the hyperbolic paraboloid z xy with 0<_-x, y_-<N (Fig. 5). Let
Q1," ", Q, be any convex decomposition of P and let Q* denote the intersection of
Qi and :. Since : lies inside P, the set of Q* forms a partition of :. Note that Q*
may consist of 0, 1, or several blocks, most of which are likely not to be polyhedra.
Our goal is to prove that m >-cN2 for some constant c, by showing that the volume
of Q* cannot be too large. By volume of Q*, we mean the sum of all the volumes of
the blocks composing Q*. We first characterize the shape and the orientation of the
large Q/*’s, which permits us to derive an upper bound on their maximum volume.

FIG. 5. The warped region

CONVEX PARTITIONS OF POLYHEDRA 493

For all between 0 and N, let BOTi* (resp. TOPi*) denote the vertical projection
of BOTi (resp. TOPi) on the plane Oxy. The set of all BOTi* and TOPi* forms a
regular square grid of N2 cells, each cell being itself a one-by-one square. Consider
the two points A" (XA, YA, ZA) and B: (xn, yn, zn) lying in Of. We will investigate their
possible positions when their vertical projections on the grid lie on two parallel lines
which are at a distance 2 of each other. Wlog, we will assume that XA <= Xn. We have
the following result.

LEMMA 3. Let A and B be two points of Of.
1. If XA is an integer with 0 <= <=N- 2 and xn XA + 2, then yn YA <- 2e.
2. If YA is an integer with 2 <= <=N and yn YA- 2, then xn XA <= 2e.
Proof. Recall that the lines supporting BOTi and TOPi are defined respectively

by (y i, z ix) and (x i, z iy + e).
1. Let the coordinates of A and B be respectively (XA i, YA, ZA) and (xn i+

2, yn, zn) with 0_-<i=< N-2. Let T be the middle point of the segment AB, (x +
1, Yr (YA + yn)/2, Zr (ZA + Zn)/2, and consider the point C on TOPi + 1 with coor-
dinates (Xc xr, Yc Y, Zc XcYc + e). Since 0 is convex, the whole segment AB
lies in O and T lies inside P, therefore z <= Zc. Also, since A and B lie in , XA YA <= ZA
and xnyn <= zn, therefore (XAYA + xnyn)/2 <= Z. Combining these results yields (XAYA +
xnyn)/ 2 <= ZC, therefore

iyA +(i + 2)yn <= 2(e +(i + 1)(yA + yn)/2),

hence

Y- Ya -<- 2 e.

2. The proof is very sirn.ilar. The coordinates ofA and B are respectively (x, i, ZA)
and (xn, i-2, zn) with 2 <=iNN. The middle point of AB is now defined by T: (xr
(x + xn)/2, yr i-l, Zr=(ZA + Zn)/2) and lies right above the point of BOTi-1,
C" (Xc xT-, Yc Yr, Zc XcYc), therefore Zc <-- zr. Since both A and B belong to., ZA N XAYA q- e and zn <= xnyn + e, therefore

2(i- 1)(XA + Xn)/2 <= 2e + iXA + i-- 2)XB

and

XB--XA<2e
which completes the proof.

When A is now any point in E with 0-< XA -<N-2 and 2 _-< YA <----N, we can still
use the previous result to delimit the region where B cannot lie. The shaded area in
Fig. 6 represents the forbidden area. Assume that x- [XA > 2 and let A’ and B’ be
the two points on the segment AB with XA’ [XA and x, XA’ + 2. Since A’ and B’
lie in Q, we can apply the result of Lemma 3 on these two points. It follows that
YB’- YA’ <= 2e, therefore

Yn YA Yn’- YA’ <= e.
XB XA XB,-- XA,

This shows that B must lie under the line y= YA-t-e(X--XA) as indicated in Fig.
6. Similarly, we can show that if [YA] --Yn > 2, B must lie on the left-hand side of the
line x XA + e(yA-- y).

We can now attack our main problem, that is, evaluating the maximum volume
of Q. Recall that Q} may be empty or consist of several blocks. Let A be the point
of Q with minimum X-coordinate. We will assume that A does not lie too close to

494 BERNARD CHAZELLE

BOT

BOT 0"
TOP 0 TOP ’1

FG. 6. The forbidden area.

BOTO or TOPN in order to have the points B and C of Fig. 7 well defined. More
precisely, we require that

O<XA <N-2, 2< yA <N--3e.

Fig. 7 is only a reproduction of Fig. 6, specifying the regions of interest with respect
to A. Note that VA, VB, and VC really denote the intersection of ; with the vertical
cylinders whose bases are represented by the shaded areas in Fig. 7. We know that
O] lies entirely in the union of VA, VB, and VC. So we can partition O’ into 3 parts,
VA1, VB1, and VC1, defined respectively as the intersection of O’ with VA, VB,
and VC.

BOTN

TOPO*

TOPN*

u x BOTO*
FIG. 7. Restricting the domain whereQ has to be computed.

I) Evaluating the volume of VA1. When there is no ambiguity, we will refer to
a three-dimensional object and to its volume by using the same symbol (in this case
VA1). To derive an upper bound on the volume VA1, we integrate a vertical section
of VA1 along a direction "almost" parallel to Y-axis. This permits us to exploit the
warping of in order to bound the area of the section, while having a very short
interval of integration. More precisely, let Pw be the vertical plane (Pw: Y x tan 0 + w),
and S(0, w) the area of the cross section formed by the intersection of Pw and VA1.
The volume of VA1 can be computed by integrating S(O, w) along a line normal to
the planes Pw.

VA1 f S(O, w) cos 0 dw.

CONVEX PARTITIONS OF POLYHEDRA 495

If we choose 0 larger than (Ox, AB) (Fig. 7), all values of S(0, w) will be null outside
of A and D, that is, for"

w > WA YA- XA tan 0

and

w < wo Yo- xo tan 0.

Letting S(O) be the maximum value of S(O, w) for all w, we have

VA1 <= WA wo)S(O) cos 0

and from YA- 3 <--YI and xo N, we derive

(1) VAI <=(3+N tan O)S(O)cos O.

The condition on 0 is easily expressed as

(2) e < tan 0.

We are now reduced to establishing an upper bound on S(0, w). We will find it more
convenient to change the system of coordinates so that the point (0, w, 0) becomes
the new origin and the line (z 0, y x tan 0 + w) becomes the new X-axis. We express
the old coordinates (x, y, z) of any point in terms of the new coordinates (X, Y, Z) as
follows:

x X cos 0- Y sin 0,

y= w+X sin 0+ Ycos 0,

The hyperbolic paraboloid z xy is now described by the equation:

Z (X cos 0 Y sin 0) w +X sin 0 + Y cos 0)

and the intersection of Pw with is a strip in the plane (Y 0) comprised between
the two parabolas:

(f): Z X2 sin 0 cos (9 +Xw cos (9,

(g): Z X2 sin (9 cos 0 +Xw cos (9 + e.

Before proceeding further, we will prove a technical result about areas covered
by parabolas. Suppose that we have two parabolas of the previous type, described by
f(x) ax2 + bx with a > 0, and g(x) f(x) + e. Let T(x) be the area comprised between
the parabola f and the tangent to g at x (Fig. 8). We can show the following

g(x f(x)

T(x)

FIG. 8. The function T(x).

496 BERNARD CHAZELLE

LEMMA 4. T(x) is a constant function equal to 4ex/-/a/3.
Proof. The tangent to g at x has the equation:

Y (2ax + b)(X- x) + axz+ bx + e

and intersects the parabola f at the points with X-coordinates Xl and x2, solutions of

(2ax + b)(X- x) + ax2+ bx + e aX2+ bX

that is,

aX2- 2axX + ax2- e 0

yielding Xl- x-x/e/a and x2-x+x/e/a. It is now straightforward to evaluate T(x).

T(x)= f [(2ax+b)(t-x)+ax2+bx+e-at2-bt] dt

that is,

therefore

T(x) (x2- Xl)(e ax2+ ax(xl + x2)- a(x+ XlX2+ x.)/3)

T(x) 4ex/e / a / 3,

which establishes the proof.
We will now take a closer look at the structure of the parabolic strip formed by

the intersection of ; and Pw which, we know, contains S(0, w). Here again, S(O, w)
designates both the surface and its area. Recall that S(O, w) may consist of several
disconnected pieces. The intersection of Pw and is a connected strip enclosed between
two vertical lines X a,X b (the exact values of a and b are irrelevant for our
purposes). Also, as illustrated in Fig. 9a, the upper parabola of this strip, g, intersects
the top notches, TOPk, at regular intervals of length 1/cos 0. Let F denote the convex
polygon formed by the intersection of Q. and Pw. Assuming that F is not empty, we
distinguish two cases:

1) No point of F lies above the parabola g (Fig. 9b).
Since F is convex, there exists a line L separating g and F. Since L’, the tangent

to g parallel to L, also separates g and F, the X-coordinate, u, of the tangent point
satisfies S(0) -< T(u).

2) There exists a point M in F lying above g (Fig. 9c).
Using the notation of Fig. 9c, it is clear that S(O, w) lies totally in L U C U R.

Since the areas of L and R are dominated by T(Xk)= T(Xk+I), and the area of C is
exactly e/cos 0, we have

S(O, w)<--2T(Xk)+e/cos O.

From Lemma 4, it follows that

S 0, w) =< e/cos 0 + ex/e / sin 0 cos 0.

And from (1), we derive

VA1 <= e(3+N tan 0)(1 +-x/e/tan 0).

II) Evaluating the volume of VC1. Since the hyperbolic paraboloids are sym-
metric about x and y, the same computation will give an upper bound on VC1. Note
that now, no condition like (2) must be set on the angle giving the direction of

CONVEX PARTITIONS OF POLYHEDRA 497

(a)

(b)

(c)

Z

I/cos

FIG. 9. Evaluating S(O, w).

integration. For convenience, we will take it equal to 0, however. Thus, we have

VC1 <-_ e(3 +N tan 0)(1 +/e/tan 0).

III) Evaluating the volume of VB1. The shaded area of Fig. 7 corresponding to
VB has a maximum area of eN2/2, therefore the volume of VB is dominated by
eZN2/2. This yields an upper bound on VB1

VB1 <= eZN2/2.
3.4. The lower bound on the number of convex parts. We can now prove our

main result.

498 BERNARD CHAZELLE

THEOREM 5. There exist a constant c and a class of polyhedra involving an
arbitrarily large number of vertices such that each polyhedron cannot be decomposed
into fewer than cn 2 convex parts, where n is the number of vertices.

Proof. Recall that the volumes computed in the previous section are only relevant
for the points A satisfying

0<2A <N-2 and 2<ya<N-3e.

Let V be the corresponding portion of . We have

V=(N-2)(N-3e-2)e.

Since no Oj can contribute more than VA1 + VBI+ VC1 to the volume V, we can
derive the following lower bound on the number m of convex parts Oj.

V
VA1 + VB1 + VCI"

Assume that N is large enough and that e < sin 0 < tan 0 < 1/N2. Relation (2) is then
satisfied, and we have

VA1, VC1 < (1 +)(3 + 1/N)e < 16e.

Also, since

V > eN2/2
it follows that

m > eN2/2(32e + e2N2/2),
hence

m > N2/66
which completes the proof.

4. The decomposition algorithm. We give a precise description of the decomposi-
tion algorithm outlined in 2. We will show that it is possible to decompose P into
O(N2) pieces in O(nN2(N+ log n)) time, using O(nN2) storage. We will also indicate
that at the price of added complication, we can reduce the running time to O(nN3).

The first issue to investigate is the mode of representation used for describing a
polyhedron. Since many practical problems involve dealing with faces rather than
edges or vertices, we may assume that the edges enclosing a given face are readily
available. More precisely, we require the data structure chosen to provide three types
of lists:

1. Edge-to-face lists: contain the names of the two faces adjacent to each edge.
2. Face-to-edge lists: give the sequence of edges enclosing each face in clockwise

order.
3. Adjacency lists: provide a set of the vertices adjacent to each vertex.
Note that the faces of a nonconvex polyhedron may be polygons with holes. In

that case, each face-to-edge list should provide clockwise descriptions of the outer as
well as of the inner boundaries. We call a graph representation of a polyhedron any
representation providing the above lists. We may notice that these representations are
redundant, but they are chosen to be so for the sake of simplicity. These lists reflect
the size of the polyhedron accurately, however, since they clearly require O(p) storage.
Recall that p is the number of edges in P.

CONVEX PARTITIONS OF POLYHEDRA 499

Because decomposing P consists essentially of dividing it up with successive cuts,
we first consider the problem of computing graph representations for the two polyhedra
P1 and P2 into which a cut S breaks up P. For the time being, we will assume P to be
of genus 0. In the following, we will successively show I) how to compute the intersection
of T and P, II) how to obtain S from it, and III) how to compute the two polyhedra
P1 and P2. But before proceeding we need to take a closer look at the problem and
prove a preliminary result.

Let e be the edge through which the cut is performed. We first compute W, the
intersection of P with the plane supporting S. W may consist of a set of polygons with
holes, which may themselves contain polygons of the same nature. We identify S as
the unique polygon which contains the edge e (Figs. 2, 11). Whereas it is immediate
to compute a description of the outer boundary of S, obtaining the inner boundaries
(if any) requires more work. Viewing W as a set of nonintersecting boundaries, we
first determine all the boundaries in W which lie inside the outer boundary of S, thus
forming a set W*. Next, we keep all the maxima of W*. A boundary is said to be a
maximum if it is not contained in any other boundary. We can show that the two
problems are very closely related, and that an algorithm for solving one can easily be
modified to handle the other.

LEMMA 6. All the maxima of a set W of boundaries can be found in O(n log n)
time, if n is the total number of vertices in W.

Proof To begin with, we should note that the nonintersection of the boundaries
of W implies that W always has at least one maximum. The method which we will
describe is inspired from Shamos and Hoey’s algorithm for intersecting pairs of segments
[10]. The crucial observation to make is that the intersection of a vertical line L with
the maxima of W forms a set (possibly empty) of disjoint segments. The endpoints of
each segment lie on some edges of W, and the vertical line L induces a total ordering
R on the set JE of these edges. JE consists exactly of all the edges of maxima which
intersect L (Fig. 10a). We say that two edges of JE, consecutive with respect to R, are
linked if the vertical segment joining them lies in a maximum of W. Note that
consecutive pairs of edges in R are alternately linked and not linked. For any point
v of L, we define h(v) (resp. l(v)) as the first edge in E above v (resp. below v). If
no such edge exists, h(v) or l(v) is 0 (Fig. 10a). The notion of above and below is, of
course, defined with respect to the vertical line L. Similarly, the order of two edges
of W is defined with respect to a common intersecting vertical line. Actually, this
order is the same for any vertical line since the edges of W can intersect only at their
endpoints. If v is the leftmost vertex of a polygon P of W, P is a maximum if and only
if h (v) and l(v) are not linked. This condition is clearly necessary since, if h (v) and
l(v) are linked, they belong to the same polygon, which cannot be P since v is its
leftmost vertex. To see that it is sufficient, assume that P is not a maximum; then
there is a unique maximum O in W which contains P, and O must intersect the vertical
line passing through v, therefore the intersection is a segment containing v and the
pair h(v), l(v) must be linked.

The algorithm proceeds as follows: we sweep a vertical line from left to right,
passing through each vertex v in W. The vertices are maintained in sorted order (by
X-values) in a set O. We first check if v is the leftmost vertex of a polygon P of W.
If it is, we can decide immediately if P is a maximum by finding whether h(v) and
l(v) are linked. If they are, P is not a maximum and all its vertices are deleted from
O. Otherwise, P is a maximum. Actually, since nonmaxima are removed as soon as
their leftmost vertex is encountered, the polygon containing v is a maximum in all the
other cases (i.e., when v is not a leftmost vertex). Then we can simply update the
ordering R with the functions insert and delete, as well as the linked pairs with the

500 BERNARD CHAZELLE

(a)

(b)

Linked edges: (ul, u2),
(u3, u4),
(us, u),
(u, u).

h(v)=u
l(v)=u3

case I:

case 4:

case 2:

case

case 3:

case

FIG. 10. a) The ordering R. b) The algorithm for computing maxima.

functions link and unlink. This is fairly straightforward and the algorithm we next
present is self-explanatory.

MAXIMUM(W)
Q Set of vertices in W stored in order
by x-values.
R-o
tot all v in Q (in ascending x-order)

begin
Let P be the polygon to which v belongs.
it v is the leftmost vertex of P
and h(v), l(v) are linked
then "P is not a maximum"

delete all vertices of P from Q
else "P is a maximum"

UPDATE(R, v)
end

UPDATE(R, v)
Let a, b be the two edges adjacent to v.
Switch to the case corresponding to Fig. 10b.
case 1:

insert a), insert (b)
unlink (h(v), l(v))
link h (v), a
link (b, l(v))
break

CONVEX PARTITIONS OF POLYHEDRA 501

case 2:
insert a), insert (b)
link (a, b)
break

case 3:
delete a), delete (b)
unlink (a, b)
break

case 4:
delete a), delete (b)
unlink h (v), a
unlink (b, l(v))
link (h(v), l(v))
break

case 5:
delete a), insert (b)
unlink a, (v)
link (b, l(v))
break

case 6:
delete a), insert (b)
unlink (h (v), a)
link (h(v), b)
break

Note that when the algorithm terminates, only the vertices of maxima will remain
in Q, thus the maxima can be obtained from O in O(n) time. To implement the
algorithm efficiently, we can store O as a doubly-linked list with random-access to the
nodes, thus allowing constant time deletions. R can be maintained as a balanced tree,
so that the functions h, L, insert, and delete perform in logarithmic time. Link(u, v)
will simply set two pointers, one from u to v, and the other from v to u, while
unlink(u, v) will remove these pointers. With this implementation, the algorithm
requires O(n log n) time. Note that all the preprocessing needed involves sorting the
vertices by X-values and computing the leftmost vertices, all of which also takes
O(n log n) time. [3

We can now turn back to the problem of dividing up a polyhedron P. Recall that
the intersection of P with the plane T supporting the cut S is in general a set of
polygons. These polygons may have holes which may themselves contain other polygons
of the same kind. We first compute S, from which we derive P and P2.

I) Computing the intersection of P and T. Consider each face F of P in turn and
report all the edges of F which intersect the plane T, yet do not lie in T. This includes
all the edges of the inner and outer boundaries. Let a,. , a denote the intersections
of T with these edges, as they appear in sorted order on the line supporting the
intersection of F and T. Call u the edge of F intersecting T at a. Observing that the
intersection of T and F is made up of the segments aa2,"’, a_a (Fig. l lb), we
set two pointers for each pair (u2-, u2); one from uz_ to u2 and the other from
u2 to u2-. Iterating on this process for all faces of P will eventually provide
doubly-linked lists for all the boundaries of the polygons of the intersection of P and
T. Let U denote this set of boundaries. Since each edge is considered at most twice,
all these operations take O(p) time, except for the sorts, each of which requires
O(p log p) time, where Pl is the number of edges intersecting T involved in the face
considered. Since each edge appears on two faces, the sum of all the p is less than or

502 BERNARD CHAZELLE

(a)

end

FIG. 11. a) A cut S. b) The edges of S.

equal to 2p’, which leads to an O(p’ log p’) running time (similarly, p’ is the number
of edges of P intersecting T). Note that the conversion of the doubly-linked lists of
ui into lists of ai is straightforward in general. Some special cases may yet be encoun-
tered, when ai is the endpoint of u and several edges are adjacent to a. It is easy to
see, however, that those cases can be handled separately without altering the total
running time of the algorithm, which is O(p+p’ log p’).

II) Computing S. To begin with, we determine the outer boundary of S, denoted
S*, by identifying the boundary in U which contains the edge e. To find the inner
boundaries is somewhat more involved. We first form the subset W of U consisting
of all the boundaries which lie inside S*. To do so, we can use a variant of the algorithm
MAXIMUM used in the proof of Lemma 6.

Q is still the set of all vertices in U, ordered by X-values. The ordering R, however,
will now involve the edges of S* only. As before, the main loop sweeps a vertical line
left-to-right passing through each vertex in Q. If v belongs to S*, we simply maintain
the ordering R with the function UPDATE defined earlier. Otherwise, we observe
that the boundary in U which contains v lies inside S* if and only if h(v) and l(v)
are distinct from 0 and are linked. Thus, we know whether a boundary belongs to W
or not as soon as we examine its leftmost vertex. To make the algorithm more efficient,
we can thus delete all the vertices of the boundary from Q, after examining its first
vertex. Like its look-alike, MAXIMUM, this algorithm requires O(k log k) time,
where k is the total number of vertices in Q. Since each of these vertices corresponds
to a distinct edge of P, the running time is O(p’ log p’).

Q Set of vertices in U sorted by x-values.
R W Empty set.
for all v in Q (in ascending x-order)

begin
if v belongs to S*

then UPDATE (R, v)
else Let B be the boundary in U

containing v.
delete all vertices of B from Q.
if h (v) and l(v) are not 0
and are linked
then "v lies inside S*"

W=WU{B}

CONVEX PARTITIONS OF POLYHEDRA 503

We are now ready to apply the result of Lemma 6 to the set W. This will give us
exactly all the inner boundaries of S, with a total running time of O(p’ log p’).

III) Computing P1 and P2. The last step is to compute a graph representation of

P1 and P2. This is a trivial graph transformation, and we only sketch out the procedure.
Let Adj (w) be the adjacency list of the vertex w in the graph representation of P.
Also, call E the set of edges of P passing through the vertices of S. We can assume
E to be readily available, since the edges in E must be determined in order to compute
S. Let w be an endpoint of some edge in E. Defining P1 as the polyhedron cut by S
that contains w, we next show how to compute P in O(p) time.

1) Adjacency lists of P1. For each edge ab of E which does not lie on T, let v
be the unique vertex of S lying on ab. We can always assume that a lies on the same
side of T as w, that is, is a vertex of P whereas b is a vertex of P2. If v is distinct
from a, we replace b by v in the list Adj (a) and delete the list Adj (b). If v a, we
simply delete b from Adj (a) as well as the list Adj (b). Repeating these operations
for all the edges of E which do not lie on T has the effect of disconnecting P1 from
P2. Then, a depth-first search in the resulting graph of P, starting at w, will provide
all the vertices of P1. All the adjacency lists of the vertices common to P and P1 have
already been updated. Finally, since we have a doubly-linked-list description of the
boundaries of S, we can set up the adjacency lists of the new vertices, that is, the
vertices of P1 lying on S. All these operations require O(p) time.

2) Face-to-edge lists of P1. Since the previous lists provide the set of vertices of
P1, we first remove all the faces of P made up entirely of vertices not in P1. Then,
since all the faces of P intersecting S have been previously determined, it is easy to
compute a description of the parts of those faces which lie in P1. Let F be such a face,
with a,.-., ak being the vertices of S lying on F. Recall that a,..., ak have been
computed in sorted order (Step I). We may assume that the boundaries of F are
represented by doubly-linked lists with the nodes representing the vertices. Letting ui
be the edge of F passing through ai and b be the endpoint which lies on the same
side of T as w, we first delete from the lists all the vertices lying strictly on the other
side of T, then we enter the vertices a into the lists by linking both ways bi and ai as
well as azi-1 and azi (Fig. 12a). Note that we can always assume that ui does not lie
on T, which ensures that b is always well-defined. The result of these operations may
produce several disconnected lists, since F may be broken up into several faces of P1.
Finally, if F has some edges lying on T, the algorithm may produce lists consisting of
two vertices, and these degenerate cases should be removed in a postprocessing stage
(Fig. 12b). Finally, the face-to-edge lists of S (which have already been computed)
must join the set of face-to-edge lists of P. Once again, all these operations will take
O(p) time.

3) Edge-to-face lists ofP. These lists can be obtained in O(p) time by scanning
through the face-to-edge lists once and recording the faces next to each of their
boundary edges.

The computation of P and P2 is now complete. We conclude:
LEMMA 7. A polyhedron P of genus 0 can be partitioned with a cut in time

O(p + p’ log p’), using O(p) storage, with p’ being the number of edges in P intersecting
the plane supporting the cut.

We have seen that in the course of its action, the naive decomposition may produce
polyhedra containing holes. For that reason, we wish to generalize the previous result
to polyhedra of arbitrary genus. Now, instead of breaking P into two pieces, a cut
may simply decrease its genus by one or have some of the effects described at the
beginning of 2.1 (e.g., removing a handle and creating another). To handle these
cases, we may first cut each edge of P which intersects S, by updating the adjacency

504 BERNARD CHAZELLE

b3 (PI)

(P2)

FIG. 12. Computing the faces of P1.

lists accordingly. Next, we test the connectivity of the graph by doing a depth-first
search with the adjacency lists. If it is no longer connected, the cut breaks P into two
separate pieces P1 and P2 which can be computed as indicated above. Otherwise, we
update the lists of the representation in a similar way; the only major difference being
the introduction of two faces corresponding to the cut. We may omit the details of
these operations which are very elementary.

In our analysis, we were careful to use the number of edges p and not the number
of vertices as the measure of the input size. Indeed, Euler’s formula, which relates the
number of vertices, edges, and faces of a polyhedron has to be altered for higher
genuses [6]. Consequently, the well-known inequality p<=3n-6, which holds for
0-genus polyhedra, is no longer valid when it comes to polyhedra with holes, as is the
case in our problem. It is, however, easy to verify that the number of edges always
gives the size of the description of P, up to within a constant factor. The revised
algorithm for the naive decomposition is merely a repeated application of the procedure
described above. This leads to the following result.

THEOREM 8. The naive decomposition of a polyhedron P of genus 0 can be done
in O(nN2(N+log n)) time, using O(nN) storage.

Proof. The algorithm proceeds by removing each notch in turn. In an O(p)
preprocessing stage, we can assign to each notch a plane resolving its reflex angle.
Then, for each notch in turn, we remove each of its subnotches with cuts lying in the
plane associated with the notch. This will produce O(N2) convex parts in the end, as
has been shown in Theorem 2. Each cut can be implemented with the procedure of
Lemma 7 and the generalization for higher genuses which we just mentioned. Consider
the partial decomposition before the notch g is removed. Let P1,’", Pk be the
(nonconvex) polyhedra in the current decomposition which contain a segment of g as
a subnotch (we have seen that k =< N). Let Pi be the number of edges in Pi and pl the
number of edges intersecting the plane supporting the cut used to remove g. From
Lemma 7, we know that we can remove the subnotch of g in Pi in time O(p + pl log pl).
We next evaluate the maximum number C of edges present at any time in the
decomposition. We distinguish two kinds of edges: first the edges which are pieces of
edges of P. Since each edge of P can be divided into at most N + 1 segments, the
number C1 of such edges cannot be greater than p x (N+ 1).

CONVEX PARTITIONS OF POLYHEDRA 505

The other edges are intersections of cuts with faces (or parts of faces) of P or
intersections between cuts. Since each cut lies on any of N possible planes, and all
faces of P lie on q possible planes, the C2 edges we are now considering lie on at most
qN possible lines. Next we show that each of these lines supports at most 3N edges
(we do not believe that this upper bound is tight). Let L be such a line and Ul,’"’, ut
be the edges of the decomposition that lie on L. The edges u1,’", ut form m
disconnected segments rl,"" ", r, on L, each segment consisting of contiguous edges

r?_. 3 L

m’: 4

FIG. 13. Counting the number of edges in the decomposition.

ui (1 <- m <- t) (Fig. 13). Let m’ be the number of endpoints common to two consecutive
u0; we have

(1) m+m’=t.

L is the line passing through the intersection of a cut S with a face of P or the
intersection of two cuts S and S’. In either case, let h be the notch passing through
the cut S. The union of all the cuts used to remove h forms a polygon Q, which may
possibly have holes. Moreover all the segments ri are edges of O and each notch of
O corresponds to a distinct notch of P. At this point, we must anticipate a little and
use a result which we will prove at the end of this section (Lemma 10). This result
states that the line L cannot intersect O in more than 2N segments. Therefore we have

(2) m<=2N.

Since the interior endpoints are all intersections of cuts with L, we also have

(3) m’<=N.

Combining (1)-(3) shows that t<-3N, which proves our claim and implies that

C2 3qN2.

Since each edge of P is adjacent to at most 2 faces of P while a face has at least 3
enclosing edges, we have

3q<=2p

showing that

C2 O(nN2)
since p= O(n) (P is of genus 0). Our counting argument considered each ui as the
intersection of a cut or a face with a cut. Therefore each edge ui will be counted exactly
twice in Pl +" + Pk, hence

Pl +" + Pk =< C1 + 2C2.

506 BERNARD CHAZELLE

Finally, since C1 <=p(N+ 1) and p= O(n), we have

Pl +" + Pk O(nN2).

Also, since at most 2 edges intersecting a given plane in a single point can be collinear,
the maximum number of edges which can intersect a given plane is bounded by the
maximum number of lines L, therefore

p] +... + p’ O(nN).

It follows that all the subnotches of g can be removed in time O(nN(N+log n)),
using O(nN2) storage. Since N notches must be removed, the proof is now com-
plete. [3

It is possible to improve the running time of the algorithm to O(nN3), using the
same amount of storage. The algorithm is too long and too complex to be presented
here, given the relatively minor gain it represents. We, therefore, refer the reader to
[1] for a detailed description of the method.

THEOREM 9. The naive decomposition ofP can be carried out in O(nN3) time and
O(nN2) space.

Proof. See [1]. I-1

We will now prove the claim made earlier that L intersects O in at most 2N
segments.

LEMMA 10. Let N be the number of reflex angles in a nonconvex polygon 0 with
any number of holes in it. No line L can intersect 0 in more than 2N segments.

Proof We will prove the lemma in two parts: first assume that all of O lies on
one side of L. Assume wlog that L is horizontal and that O lies below L. Although
all the vertices of O that lie on L are collinear, we can assume that among the other
vertices, no two lie on a common horizontal line. This is only desirable for the sake
of simplicity and does not restrict the generality of the problem in any way. Let
sl,"’’, sk be the segments of O 71L in left-to-right order, and let Vl," , v be a list
of the vertices of O lying strictly below L, sorted vertically in descending order. If we
translate the line L downwards along a vertical axis in a continuous motion, we observe
that the segments si undergo continuous transformations. New segments may appear
in the process, some may vanish from L, while others may merge. Eventually all of
them will disappear from L. The crucial observation is that since O is connected, no
si will disappear before merging at least once. Therefore there will be at least k/2
merges in the process (actually, it would be easy to show that there will be at least
k-1 merges). Note that the merges can occur only when L reaches a vertex v. Let
L be the corresponding position of L (i.e. the horizontal line passing through v).
Since all the v have distinct Y-coordinates, at most one merge can occur at L. Suppose
that a and b are two segments merging on L. The endpoint common to both segments,
vi, is clearly a notch of O, therefore 0 has at least as many notches as we have merges,
i.e. k/2, provided that k > 1.

Assume now that L may intersect O in an arbitrary fashion, and let Sl,’" ", sk
be the intersecting segments. Let us cut along each segment s. This operation partitions
0 into at most k + 1 polygons, each lying entirely on one side of L, as in the previous
case. Note that we may have strictly fewer than k + 1 polygons if O has holes. Also,
since O is connected, each segment s is the edge of at least one polygon which has
at least another edge collinear with L (assuming that k > 1). It follows that among
these polygons we can find j of them, say, 01,’", O, such that each has at least two
edges collinear with L and each s is an edge of at least one of them. Let N be the
number of reflex angles in Oi and let k be the number of edges collinear with L. Since

CONVEX PARTITIONS OF POLYHEDRA 507

C)i has at least two edges adjacent to L, we can use the previous result to derive
ki <- 2N. Since kl +" + kj >= k, and all the reflex angles of O involved in the j quantities
N1,""",N are distinct, we have k _-< 2N, which completes the proof.

5o Conclusions. The contribution of this work has been to describe a heuristic
for decomposing a polyhedron into a set of convex pieces, with the cardinality of this
set lying within a constant factor of the minimum in the worst case. We have also
established a quadratic lower bound on the complexity of the minimum convex
decomposition problem in three dimensions. Refinements of the algorithm given in
this paper might take into account the particular shapes that most practical polyhedra
are likely to have. For example, it is often the case that two notches will be adjacent
and can be removed with the same cut. This simple observation may reduce the number
of convex parts by half. More generally, we believe that efficient special-purpose
heuristics could be developed along these lines. An interesting case is to restrict the
domain of polyhedra to architectural designs where, for example, all the edges lie on
three possible perpendicular directions. Another restriction may further require that
the convex parts be rectangular parallelepipeds. All these problems are highly practical,
yet still open.

Only in two and three dimensions is the concept of nonconvex polyhedra totally
natural. In higher dimensions, convex polyhedra are still easily expressed as intersec-
tions of halfspaces, but nonconvex polyhedra do not lend themselves to such easy
descriptions. One method is to express a polyhedron as a connected union of convex
polyhedra. Note that the convex polyhedra may overlap, thus do not necessarily
constitute a convex decomposition of the polyhedron. This representation is common
in linear programming, when the constraints are expressed by k set of inequalities,
and at least one set has to be satisfied. If we can find a convex decomposition of the
polyhedron into p parts with p<< k, and if each convex part has relatively few faces,
testing the feasibility of a point can be greatly simplified by testing its inclusion in any
of the p convex parts. Here again, because of the complexity of the problem (recall
that the standard version of the decomposition problem is already NP-hard), only
efficient heuristics should be sought.

Acknowledgments. I wish to thank Dana Angluin for many helpful discussions,
as well as the referees for their valuable help in improving the presentation of this paper.

REFERENCES

[1] B. CHAZELLE, Computational geometry and convexity, Ph.D. thesis, Yale Univ., New Haven, CT,
1980. Also available as Carnegie-Mellon Tech. Report, CMU-CS-80-150, Carnegie-Mellon Univ.,
Pittsburgh.

[2] B. CHAZELLE AND D. P. DOBKIN, Detection is easier than computation, Proc. 12th ACM SIGACT
Symposium, Los Angeles, May 1980, pp. 146-153.

[3] H. COXETER, Regular Polytopes, 3rd Ed., Dover, New York, 1973.
[4] M. GAREY, D. JOHNSON, F. PREPARATA AND R. TARJAN, Triangulating a simple polygon, Inform.

Proc. Lett., 7 (1978), pp. 175-180.
[5] A. LINGAS, The power of non-rectilinear holes, Proc. 9th Colloquium on Automata, Languages and

Programming, Lecture Notes in Computer Science 140, Springer-Verlag, New York, 1982, pp.
369-383.

[6] W. MASSEY, Algebraic Topology: An Introduction, Springer-Verlag, New York, 1967.
[7] J. MUNKRES, Topology: A First Course, Prentice-Hall, Englewood Cliffs, NJ 1975.
[8] J. O’ROURKE AND K. J. Sur’owIw, Some NP-hard polygon decomposition problems, IEEE Trans.

Inform. Theory, IT-29 (1983), pp. 181-190.
[9] F. PREr’ARATA, A new approach to planar point location, this Journal, 10 (1981), pp. 473-482.

[10] M. SHAMOS AND D. HOEY, Geometric intersection problems, 17th Annual IEEE Conference on

Foundations of Computer Science, Houston, TX, Oct. 1976, pp. 208-215.
[11] G. B. THOMAS, JR., Calculus and Analytic Geometry, Addison-Wesley, Reading, MA, 1962.

