
Turk J Elec Eng & Comp Sci
(2019) 27: 346 – 361
© TÜBİTAK
doi:10.3906/elk-1805-143

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Convex polygon triangulation based on planted trivalent binary tree
and ballot problem

Muzafer SARAČEVIĆ1 , Aybeyan SELIMI2,∗
1Department of Computer Sciences, University of Novi Pazar, Novi Pazar, Serbia

2Department of Computer Sciences, Faculty of Informatics, International Vision University, Gostivar, Macedonia

Received: 21.05.2018 • Accepted/Published Online: 01.11.2018 • Final Version: 22.01.2019

Abstract: This paper presents a new technique of generation of convex polygon triangulation based on planted trivalent
binary tree and ballot notation. The properties of the Catalan numbers were examined and their decomposition and
application in developing the hierarchy and triangulation trees were analyzed. The method of storage and processing of
triangulation was constructed on the basis of movements through the polygon. This method was derived from vertices
and leaves of the planted trivalent binary tree. The research subject of the paper is analysis and comparison of a
constructed method for solving of convex polygon triangulation problem with other methods and generating graphical
representation. The application code of the algorithms was done in the Java programming language.

Key words: Computational geometry, triangulation, Catalan number, planted trivalent binary tree, ballot notation

1. Introduction
Computational geometry is the branch of computer science which deals with finding the algorithms for solving
geometric problems. The polygon triangulation is a significant problem of the polygon partition that is applied
in computational geometry.

In this paper, the polygon triangulation algorithms were developed based on planted trivalent binary
trees (PTBT) and ballot record. These records were obtained with the selection of the particular edge of the
polygon as a base and through which is entered in the tree from the starting position. Implementation of our
method was realized through the following three phases:

1) Generation of a complete triangulation tree from the initial basic triangle to the given n -gon. The resulting
triangulation hierarchy is based on the decomposition of the Catalan numbers (the method is described
in Section 3).

2) Storage of all obtained triangulation in tree based on ballot notation (the procedure is described in Section
4).

3) Generation of individual triangles within each level of the triangulation tree based on the planted trivalent
binary tree (this procedure is described in Section 5).

Two new algorithms are presented. The ballot notation for PTBT to triangulation algorithm generates
convex polygon triangulation based on ballot records obtained from movements through vertices and leaves of
∗Correspondence: aybeyan@vizyon.edu.mk

This work is licensed under a Creative Commons Attribution 4.0 International License.
346

https://orcid.org/0000-0003-2577-7927
https://orcid.org/0000-0003-2577-7927

SARAČEVIĆ and SELIMI/Turk J Elec Eng & Comp Sci

the planted trivalent binary tree. The inverse algorithm with movements through vertices and leaves of the
planted trivalent binary tree generates the ballot record for convex polygon triangulation.

Other sections of the paper are organized in the following order. Sections 2 and 3 consist of some
preliminary exposures related to polygonal triangulation, binary trees, and the Catalan numbers decomposition.
Section 4 presents the problem of ballot records, lattice paths, and the correspondence of the Catalan numbers
with the well-formed sequences of parentheses. Section 5 contains the method for construction of convex polygon
triangulations based on ballot records and a planted trivalent binary. The comparative analysis of experimental
results for ballot-lattice, ballot-trivalent and Hurtado-Noy trees are given in Section 6. Also in this section, the
complexity of algorithms from the aspect of data storage amount for triangulations and number of operations for
generating triangulations is presented. The final section provides concluding observations and possible directions
for further research in this domain.

2. Preliminaries about trees and hierarchy of triangulations

The Catalan numbers (Cn) represent a sequence of numbers that are used as a solution to a large number
of combinatorial problems. They are uncovered by seeking a general solution of the problem for the different
polygon triangulation. The Catalan numbers are defined under the following formula [1]:

Cn =
(2n)!

(n+ 1)!n!
=

1

n+ 1

(
n

k

)
, n ≥ 0. (1)

The tree, as an important class of graph theory [2], also has an important use in the triangulation of
polygon and they are defined as an acyclic connected graph [3–5]. The trees with root are rooted trees. In
rooted trees, the roots are drawn at the top and they grow downward. A rooted tree in which the vertices at
each level are ordered as the first, second, third, and so on is an ordered tree. An ordered rooted tree is a binary
tree if each vertex has a degree less than two (each vertex has two children at most; the left and the right child)
[6]. The number of nonisomorphic binary trees with n vertices that can be drawn has a direct connection with
the Catalan numbers and their relationship is given with the following theorem. The number of binary trees
with n vertices is Cn .

A binary tree is planted trivalent if the degree of its root is one and that of each internal vertex is three.
By deleting the root of a planted trivalent binary tree, we get an ordinary binary tree, and by attaching a new
root to the existing root of a binary tree, we get a planted trivalent binary tree. Thus, there is a bijection
between set of planted trivalent binary trees with n vertices and set of binary trees with n − 1 vertices. The
number of triangulation of convex n -gon is equal to the number of planted trivalent binary tree with n − 1

leaves. Let Pn stand for convex polygon with n vertices, and Tn for set of all triangulations of Pn and τn

denotes a particular triangulation from Tn . Also, deg(i) denotes the degree of a vertex i in a triangulation.
The vertex i satisfying deg(i) = 2 is called an ear. It is well known that the number of triangulations Tn of
polygon Pn is equal to (n− 2)th Catalan number, denoted by Cn−2 :

Tn = Cn−2 =
1

n− 1

(
2n− 4

n− 2

)
=

(2n− 4)!

(n− 1)!(n− 2)!
, n ≥ 3. (2)

In [7], authors Hurtado and Noy suggested an algorithm for graph of triangulations of a convex polygon
and tree of triangulations, where triangulations of Pn are derived from triangulations of Pn−1 . Their procedure
consists of ”spli0tting” polygon diagonals (both internal and external which are polygon edges) incident to the

347

SARAČEVIĆ and SELIMI/Turk J Elec Eng & Comp Sci

highest mark vertex (n− 1 for Pn−1). If we perform splitting of these diagonals δi,n−1, i ∈ {1, 2, . . . , n− 2} in
increasing order of i , we get an ordering of triangulations of Pn .

Moreover, Hurtado and Noy defined the infinite tree of triangulations for all convex polygons where at
tree level n , we have all triangulations of Pn . Every triangulation in Tn has a parent in Tn−1 and a specific
number of exactly defined descendants in Tn+1 .

Hurtardo and Noy proposed an algorithm to generate the triangulations of Pn based on the triangulations
of Pn−1 . Moreover, they defined the tree of triangulation where all triangulations of Pn , i.e. the triangulations
from Tn , are arranged at the level n of this tree. Each triangulation at the level n has a ”father” in Tn−1

and two or more ”sons” in Tn+1 . The sons of the same father are ”brothers”. There is an ordering among the
children of a triangulation, and consequently among all triangulations. Implementation of this algorithm in
three programming languages (Java, Python, and C++) was analyzed in [8].

3. Tree of triangulations and expression of the Catalan numbers

The first step in our method is generating a complete triangulation tree from the initial basic triangle to the
given n -gon. The resulting triangulation hierarchy is based on the decomposition of the Catalan numbers
(this method is described in details in [9]). Similarly, in [10], we presented the construction of hierarchy of
triangulations based on lattice path and ballot problem. Below, we will list some basics of interpretation of the
Catalan numbers in the form of a set of expressions (2 + i) .

Let us denote a triangulation τn−1 ∈ Tn−1 satisfying deg(n− 1) = l by τ ln−1 . Assume that diagonals
incident to n − 1 are sorted from the left by δik,n−1 , k = 1, . . . , l . Then the number of diagonals incident to
n− 1 which are located left from δik,n−1 is equal to k− 1 [11]. The sons of τ ln−1 are derived by ”splitting” the
diagonals incident to vertex n− 1

δik,n−1, k = 1, . . . , l, ik ∈ {1, . . . , n− 2}, 1 = i1 < i2 < · · · < il = n− 2

in increasing order with respect to ik . If we split the diagonal δik,n−1 , we get the son Sik(τ ln−1) . Then the
sons of triangulation τ ln−1 are

Si1(τ ln−1), S
i2(τ ln−1), . . . , S

il(τ ln−1). (3)

The splitting of the diagonal δik,n−1 produces the son Sik(τ ln−1) with deg(n) = 2 + k − 1 . We are
assigning the weights of the form (2 + i) to the edges in the tree of triangulations. When numbering the edges
in the tree of triangulations, we will be guided by the basic principle that each weight of an edge represents the
number of descendants for a triangulation at end of this edge [12]. The number of τ ln−1 descendants is between
2 and n − 2 . So, from one particular triangulation of Pn−1 , we can derive 2 + i triangulations of Pn where
i ∈ {0, 1, . . . , n− 4} in the general case. As the number of descendants is greater than or equal to 2 , the usage
of the weights (2 + i) , i ∈ {0, 1, . . . , n− 4} is obvious.

By
(
τ ln−1, S

ik(τ ln−1)
)
, we denote the edge in the tree of triangulations connecting the nodes τ ln−1 ∈ Tn−1

and Sik(τ ln−1) ∈ Tn between the levels n − 1 and n . The triangulation Sik(τ ln−1) is derived by splitting the
diagonal δik,n−1 . Since the diagonal δik,n−1 has k − 1 diagonals left to it and incident to the vertex n− 1 , by
splitting this diagonal, we get 2 + k − 1 descendants of the triangulation Sik(τ ln−1) (i.e. 2 + k − 1 diagonals

348

SARAČEVIĆ and SELIMI/Turk J Elec Eng & Comp Sci

incident to n). Then, we assign the expressions of the form (2 + i) as the weights to outgoing edges of τ ln−1 ,
namely

(
τ ln−1, S

i1(τ ln−1)
)
, . . . ,

(
τ ln−1, S

il(τ ln−1)
)
. (4)

The weight (2+k−1) of the edge
(
τ ln−1, S

ik(τ ln−1)
)

means that the triangulation τ ln−1 has k−1 diagonals
incident to vertex n− 1 left to δik,n−1 , and that Sik(τ ln−1) ∈ Tn has 2 + k − 1 descendants. According to Eq.
(3), the sons of τ ln−1 are derived by splitting the diagonals δi1,n−1, . . . , δil,n−1 . The edges in Eq. (4) have the
following weights (2 + 0), (2 + 1), . . . , (2 + l − 1), respectively.

The triangulation τ ln−1 has l descendants. According to the adopted principle of assigning weights to
the tree of triangulations, incoming edge to node τ ln−1 has the weight 2 + l − 2 . In the origin (before the tree
root), there is the expression (2 + 0) , which indicates that the triangle in the tree root has an ear in vertex 3 ,
i.e. has 2 descendants (these are two possible triangulations of a quadrilateral).

The sum of all weights of the edges connecting tree levels n− 1 and n is equal to Cn−1 , and the number
of summands, i.e. the number of these edges is equal to Cn−2 . By ∆(Cn−1) , we denote the decomposition of
Cn−1 defined by summing all weights of edges connecting tree levels n − 1 and n . The cardinal number of
basic terms of the form (2 + i) in ∆(Cn−1) is equal to Cn−2 . The sum of terms included in ∆(Cn−1) is equal
to Cn−1 [9].

The incoming edge to node τ ln+1 with the weight 2 + i produces the edges outgoing to the node τ ln+1

with weights (2+0), (2+1), . . . , (2+ i+1). Therefore, our decomposition of Catalan number Cn can be derived
from the already made decomposition of Cn−1 and the transformation f defined by

(2 + i)→ (2 + 0) + (2 + 1) + · · ·+ (2 + i+ 1) = f(2 + i), i ≥ 0. (5)

Further, assume the operator f is distributive with respect to + :

f
(∑

(2 + i)
)
=
∑

f(2 + i) =
∑ i+1∑

l=0

(2 + l).

The first property of our decomposition ∆(Cn) is discovered in Lemma 3.1.

Lemma 3.1 For each n ≥ 4 , the recurrent relation ∆(Cn) = f(∆(Cn−1)) is valid.

There is Cn−2 edges between tree levels n− 1 and n . For each l , the edge weights(
τ ln, S

i1(τ ln)
)
, . . . ,

(
τ ln, S

il(τ ln)
)

(6)

are defined applying the function f on weight of some of the edges
(
τkn−1, S

ip(τkn−1)
)
, k, p ≤ l.

As the sum of weights, belonging to the edges connecting tree levels n− 2 and n− 1 , is equal to Cn−2

and the sum of weights assigned to edges connecting tree levels n− 1 and n , is equal to Cn−1 , it is clear that
the following holds: ∆(Cn−1) = f(∆(Cn−2)), or ∆(Cn) = f(∆(Cn−1)) in general case.

In [9], we presented one way of decomposing the Catalan numbers that can be used to generate tree of
triangulation (or hierarchy of triangulation). For the sake of simplicity, we used the notation

σi = (2 + 0) + (2 + 1) + · · ·+ (2 + i). (7)

Then Eq. (5) should be simplified to f(σ0) = σ1, f(2 + i) = σi+1, i ≥ 1.

349

SARAČEVIĆ and SELIMI/Turk J Elec Eng & Comp Sci

Furthermore, using f(σi) = σ1 + · · ·+ σi+1 =
i+1∑
k=1

σk, i ≥ 0 expression of the Catalan numbers should be

further simplified:

∆(C2) = (2+0) = σ0,

∆(C3) = σ1,

∆(C4) =

2∑
l=1

σl,

∆(C5) =

2∑
l=1

σl+

3∑
l=1

σl,

∆(C6) =

(
2∑

l=1

σl+

3∑
l=1

σl

)
+

(
2∑

l=1

σl+

3∑
l=1

σl+

4∑
l=1

σl

)
.

(8)

Now, we replace

f

(
i∑

l=1

σl

)
=

i∑
l=1

f(σl) =

i∑
l=1

l+1∑
l1=1

σl1 , i ≥ 1.

By this, we simplify Eq. (8) and get:

∆(C2) = σ0,

∆(C3) = f(σ0) = σ1,

∆(C4) = f(σ1) =

2∑
l=1

σl,

∆(C5) =
2∑

l=1

f(σl) =
2∑

l=1

l+1∑
l1=1

σl1 ,

∆(C6) =

2∑
l=1

f2(σl) =

2∑
l=1

l+1∑
l1=1

f(σl1) =

2∑
l=1

l+1∑
l1=1

l1+1∑
l2=1

σl2 .

Theorem 3.1 Decomposition of the Catalan number Cn defined by summation of all weights of edges connecting
tree levels n and n+ 1 is defined by

∆(Cn) = fn−2(σ0) = fn−3(σ1) =

2∑
k=1

fn−4(σk) =

2∑
l=1

l+1∑
l1=1

· · ·
ln−5+1∑
ln−4=1

σln−4
, n ≥ 3, (9)

where σi is defined in Eq. (7).

350

SARAČEVIĆ and SELIMI/Turk J Elec Eng & Comp Sci

From the inductive hypothesis and Lemma 3.1, we get

∆(Cn) = f(∆(Cn−1)) = f

 2∑
l=1

l+1∑
l1=1

· · ·
ln−6+1∑
ln−5=1

σln−5


=

2∑
l=1

l+1∑
l1=1

· · ·
ln−6+1∑
ln−5=1

f(σln−5) =

2∑
l=1

l+1∑
l1=1

· · ·
ln−6+1∑
ln−5=1

ln−5+1∑
ln−4=1

σln−4 ,

which completes the proof.
Besides ∆(Cn) = f(∆(Cn−1)) , the following recurrent relation is also satisfied. For n ≥ 4 , the general

recurrent relation holds ∆(Cn) = fk(∆(Cn−k)), k ≥ 1. Catalan number decomposition into the sum of terms
of the form (2 + i), i ∈ {0, . . . , n − 4} , guides us in generation of Tn using the already known Tn−1 (for more
details see [9]). Decomposition is unique and suitable for generation of tree of triangulations (Figure 1).

(2+0) + (2+1) + (2+0) + (2+1) + (2+2)

Figure 1. Levels five and six of the tree of triangulations based on decompostion of the Catalan numbers.

This idea with the Catalan numbers decomposition was used in the construction of an algorithm for
the trivalent trees method. In this way, we performed triangulation of the convex polygon based on graph of
triangulations of a convex polygon and tree of triangulations (similar principles as Hurtado’s in [7]).

4. Relationship of Catalan numbers and ballot problem
The second step in our method is storing of all obtained triangulation in tree based on ballot notation. The ballot
problem can be illustrated graphically by a lattice paths under certain constraints in the Cartesian coordinate
system. In the two-dimensional space, by paths from the lattice point (0, 0) to the lattice point (n, n) , we mean
directed paths beginning in (0, 0) and ending in (n, n) .

The paths that are always underneath diagonal and passes through lattice only with movements right
(R) and up (U) are called legal paths. Let us define two movements starting at the point (0, 0) in the Cartesian
coordinate system:

R : (x, y) −→ (x+ 1, y), U : (x, y) −→ (x, y + 1).

We see that the path one unit on the right is defined with R , and with U one unit up in the lattice.
With the application of these movements, we obtain that the problem of different paths from the point (0, 0)

to the point (n, n) in the lattice correspond to the ballot problem. Every legal path on lattice must begin with
an A and end in a B .

351

SARAČEVIĆ and SELIMI/Turk J Elec Eng & Comp Sci

The number of valid movement through the n × n grid is the Catalan number Cn (for details on the
combination of ballot notation and lattice path or problem of movement in discrete grid see [10]). Any movement
to right corresponds with the vote for candidate A , while any movement to the up corresponds with the vote
for candidate B . There is a bijection between the set of well-formed sequences of parentheses with n pairs and
the a set of legal lattice paths. This procedure is presented in Example 1.

Example 1 The following table can be formed for the voting sequence ABAABB. This voting sequence
corresponds to the movement through the lattice path. Note that integers within a row denote numbers of
the specific vote occurrence.

Table 1. The tally of the votes in the ballot record ABAABB

Tally for candidate i1 i2 i3 i4 i5 i6

A B A A B B
A 1 1 2 3 3 3
B 0 1 1 1 2 3

On the basis of bijection, we can present a set of well-formed sequences in parentheses with n pairs with
the ballot record. For this purpose, let us replace each left parenthesis in the sequence of well-formed parentheses
with an A and the right with a B . In this way, we get the unique presentation of the corresponding set of
well-formed sequence of parentheses with n pairs by the ballot record.

The problem of well-formed sequences of parenthesis corresponds to the problem number of different ways
of multiplying. To prove the mutual bijection, we establish the bounce in the following way: we remove all
except right parentheses and signs of multiplying. We replace the multiplying signs with the left parenthesis.
The obtained sequence of parenthesis is a sequence of well-formed parenthesis. This procedure is presented in
Example 2.

Example 2 Well-formed parenthesis: (((ab)c)d), (a(b(cd))), ((a(bc))d), ((ab)(cd)), (a((bc)d))) are five possible
multiplication expressions (they also correspond to planted trivalent tree of pentagon).

(((ab)c)d) ←→ ()()() ; (a(b(cd))) ←→ ((())) ;
((a(bc))d) ←→ (())() ; ((ab)(cd)) ←→ ()(()) ;

(a((bc)d)) ←→ (()()) .

The third step in our method is generation of individual triangles within a certain level of the triangulation
hierarchy based on the planted trivalent binary tree (from ballot notation in PTBT or vice versa).

5. Algorithms for polygon triangulations based on trivalent binary tree and ballot notation
Let the PTBT correspond to the convex polygon with v = n + 2 vertices. The path between vertices of the
tree defines the appearance of the sign A , while from the vertex of the tree to the corresponding leaves defines
the appearance of the sign B .

Figure 2 shows the general form of moving through the polygon where the movement is based on the
appearance of signs A and B in the ballot record. In this way, it is always possible to determine the path of
movement.

352

SARAČEVIĆ and SELIMI/Turk J Elec Eng & Comp Sci

A

A

A
A

A

B

B B

B

V1 V2

V3 V4

n+2 n+1

S

4

32

A

A

A

A

A

B

B
B

B

B B

V2

V1

V3

V4

V5

Vn

1

Figure 2. General schema of the triangulated polygon and their corresponding planted trivalent binary tree.

Corresponding planted trivalent binary tree with n − 1 leaves used in Algorithm 1 is constructed by
choosing one particular edge called base (in our case (2, 3)). For this algorithm, we choose a point inside every
triangle in the triangulated polygon, and one point outside each side of the triangle except the side which is in
the interior of the polygon. The resulting graph is a planted trivalent binary tree with n− 1 leaves.

Algorithm 1 From ballot notation to triangulation based on PTBT.
Require: A ballot record for PTBT, denoted by b = {b1, . . . , b2n} .

1: Initialization: Create a polygon with v = n+ 2 vertices. Make the corresponding PTBT. The vertices of
the tree (except the root) are marked w,th Vj , j = 1, . . . , n in the counterclockwise order. The leaves of
tree corresponding to the outside points are labelled by B except the starting point. Every vertex has two
indicators visited and finished , all initially on false . Set k = 0 . Make an empty list aux = {} . Set an
array visitedj , j = 1, . . . , n on false . Begin the movement from (1,2) side in the counterclockwise order.
Set k = 1 , j = 1 , the starting point of the movement is Pk = S and always begin with b1 = A .

2: for i = 1 to 2n

2.1: If the current character in the ballot record is bi = A , then find the smallest j2 ≥ j , where
visitedj2 = false . Set j = j2 , k = k + 1 , Pk = S .

2.2: If the current character in the ballot record is bi = B , then find the smallest j2 ≥ j set
visitedj2 = false and visitedj2 = true .

2.2.1: If there are two successive characters B in ballot record, then return to the parent of
B(Vj) and set j = j − 1 .

3: Draw the internal diagonals based on Algorithm 2.
Output: Generated triangulation-based PTBT corresponding to the ballot record from the input.

Algorithm 2 Finding intersections in the polygon.
Require: Path Pk , k = 1, . . . , n inside a polygon.

1: For i = 1 to m ; where m is the number of all polygon diagonals, m = v(v − 3)/2

1.1: Choosing the diagonal from the set of all internal diagonals ({δ1,3;. . .δ1,v }, {δ2,4; . . . δ2,v } etc.)
1.1.1: If intersection in a polygon with only one part of path is detected AND if it does not intersect

with the previous contained diagonal, THEN draw the diagonal ELSE choose next diagonal (go to Step
1.1)

Output: v − 3 internal diagonals (without intersection).

353

SARAČEVIĆ and SELIMI/Turk J Elec Eng & Comp Sci

Example 3 Let us illustrate how Algorithm 1 produces a pentagon triangulation corresponding to the ballot
record ABAABB (which corresponds to well-formed sequence of parentheses with 3 pairs ()(()) or planted
trivalent binary tree given in the first step). The process can be presented with the following steps:

(1) The first step is to create the corresponding planted trivalent binary tree for the pentagon. This tree depends
on n , and can be easily generated, with corresponding vertex labeling and initializing attributes visited and
finished on false and integer k on 0. Also, aux = {} , see Figure 3.

A
A A

B
B

B
S

1

5

4

2 3

V1 V3

V2

B B B
S

A A

A

V3V1

V2

(1) aux={}

Figure 3. Create the corresponding planted trivalent binary tree for the pentagon.

(2) Since the first character in ballot record is A, move from the starting point S to the next V labeled descendent
(this is V1); k = 1 , aux = aux ∪ {k} , V1.visited = true .

(3) The next character is B ; set B.visited and B.finished on true , and return to the parent of leaf B(V2) .
The next character is A , go to the V2 , k = k + 1 , aux = aux ∪ {k} , V2.visited = true , see Figure 4.

A
A A

B
B

B
S

1

5

4

2 3

V1 V3

V2

B B B
S

A A

A

V3V1

V2

(1) aux={}

(2) aux={1}

(3) aux={1,2}

(4) aux={1}

Visited

Visited & Finished

Figure 4. Steps 2 and 3.

(4) The next character is A ; go to the V3 , k = k + 1 , aux = aux ∪ {k} , V3.visited = true The next character
is B , set B.visited and B.finished on true , and return to the parent of leaf B(V3) .

(5) The next character is B ; set B.visited and B.finished on true , set V3.visited = finished , return to
vertex V2 set V2.finished = true , return to vertex V1 and set V1.finished = true . Thus, there are no more
characters in the ballot record, the movements are finished, see Figure 5.

354

SARAČEVIĆ and SELIMI/Turk J Elec Eng & Comp Sci

A
A A

B
B

B
S

1

5

4

2 3

V1 V3

V2

B B B
S

A A

A

V3V1

V2

(1) aux={}

(2) aux={1}

(3) aux={1,2}

(4) aux={1}

(5) aux={1,3}

(6) aux={1}

(7) aux={}

Visited

Visited & Finished

Figure 5. Steps 4 and 5.

(6) Upon the path P traversed inside the polygon, the corresponding triangulation can be constructed. Draw
all possible internal diagonals that cut a path inside the polygon marked with A (based on Algorithm 2). In
this case, the possible noncrossing internal diagonals that intersect the given path marked with A ’s (i.e. with
V1, V2, V3) are δ2,5 and δ3,5 .

Now we present a reverse algorithm for this process; namely, how to get an appropriate ballot record
from the convex polygon triangulation based on PTBT (reverse of the Algorithm 1). Algorithm 3 shows the
procedure of generating corresponding notation based on PTBT triangulation.

Algorithm 3 From triangulation based on PTBT to ballot notation.
Require: A convex polygon triangulation based on PTBT.

1: Make the corresponding planted trivalent binary tree for given polygon triangulation, where the point out
of polygon next to the side (2; 3) is omitted.

2: Mark the path between vertices in the tree with A and tree leaves by B . The exception is point next to
(1; 2) which is a starting point and needs to be marked with A .

3: Use in-order traversal taking vertex marks along the traversal. In this way, we get the ballot record.
Output: The corresponding ballot record.

Example 4 Let us illustrate the application of Algorithm 3 in the process of moving through the pentagon
triangulation defined by internal diagonals δ2,5 and δ3,5 . Create the corresponding planted trivalent binary tree
for the given triangulation and use in-order traversal in taking vertex marks. Movement between two vertices
marks with A , between vertex and leaf with B .

(1) The triangulation tour starts from position S (see the figure below), more precisely from the edge (1; 2) , and
the first character in the ballot notation is marked with A . Set k = 1 , aux = aux∪{k} , and V1.visited = true .

(2) Go to the leaf of PTBT (outer edge (1; 5)) and mark character in the ballot notation with B .

355

SARAČEVIĆ and SELIMI/Turk J Elec Eng & Comp Sci

(3) Go to the vertex V2 of PTBT, set k = k + 1 , aux = aux ∪ {k} , and V2.visited = true . Mark the third
character in ballot notation with A .

(4) Go to the vertex V2 of PTBT, set k = k + 1 , aux = aux ∪ {k} , and V3.visited = true . Mark the fourth
character in ballot notation with A .

(5) Go to the leaf of PTBT (outer edge (4; 5)) and mark character in the ballot notation with B .

(6) Go to the leaf of PTBT (outer edge (3; 4)) and mark character in the ballot notation with B . Set V3.visited =

finished , return to vertex V2 set V2.finished = true , return to vertex V1 and set V1.finished = true . We
will get the corresponding ballot record ABAABB, see Figure 6.

A
A A

B
B

B
S

1

5

4

2 3

V1 V3

V2

B B BS

A A

A

V3V1

V2

Figure 6. Triangulation based on PTBT and corresponding ballot notation ABAABB .

6. Comparative analysis of experimental results

In order to get an evaluation of the presented methods (ballot lattice path [10] and ballot trivalent trees), we
offer a comparative analysis with the existing method for triangulation of a convex polygon given by Hurtado
and Noy [7] (hereinafter the Hurtado method). The reason why we chose this method is that the generation of
triangulation of a convex polygon is based on hierarchy or trees of triangulations. The number of all combinations
in each level is determined by expressions of Catalan number.

Generating triangulation in our methods (ballot lattice [10] and ballot trivalent) is also based on expres-
sions of the Catalan number for n -gon, respectively on n -th level like as in the existing Hurtado method. The
only difference is in generating the new triangulation, by Hurtado method the process goes by splitting the
outer edge of parents in generating new descendants; and thus, it can generate their hierarchy (about the topics
see [7]). However, in our method, generating new descendants is based on the basis of movement through the
polygon based on a given algorithm. All methods are implemented in Java programming language (NetBeans
environment). Details of implementation and testing of Hurtado–Noy algorithm are presented in [8]. The test-
ing results were analyzed from two aspects:
1) Speed of execution (Table 2): Time which refers to the phase of generating triangulation without storage and
total time for all three phases: input, generating triangulation, and output (their storage).
2) Working memory (Table 3): Buffer occupancy during generating all triangulations for the given n .

356

SARAČEVIĆ and SELIMI/Turk J Elec Eng & Comp Sci

Table 2 presents the results of testing for three methods. Number of triangulation of polygons with the
number of vertices v ∈ {5, 6, ..., 15, 16} is t ∈ {5, 14, ..., 742900, 2674440} . We considered the differences in
times for generating triangulations for all methods. Implementation and experimental results of this kind of
storage methods were given in [10] and a part of them is shown in Table 2.

Table 2. Experimental results: ballot lattice, ballot trivalent, and Hurtado tree (execution CPU times).

n-gon T Execution CPU times (in seconds)
lBT + lBT – lBL + lBL – lHT + lHT –

5 5 0.23 0.21 0.24 0.22 0.25 0.21
6 14 0.32 0.28 0.33 0.31 0.34 0.29
7 42 0.41 0.34 0.41 0.38 0.43 0.35
8 132 0.49 0.40 0.47 0.44 0.49 0.40
9 429 0.62 0.54 0.63 0.60 0.67 0.55
10 1430 1.15 0.87 1.03 0.98 1.18 0.89
11 4862 3.79 2.14 3.51 3.09 3.81 2.19
12 16,796 12.41 5.69 11.29 10.11 12.46 5.81
13 58,786 49.91 15.07 43.55 38.81 50.51 15.24
14 208,012 107.02 42.22 108.07 97.13 119.05 46.34
15 742,900 272.66 124.18 274.19 244.02 318.63 124.18
16 2,674,440 673.23 570.01 677.17 572.87 / /

Symbols in Table 2: BL -Ballot lattice method ([+] with or [–] without graphic generation of trian-
gulations), BT -Ballot planted trivalent binary tree method ([+] with or [–] without graphic generation of
triangulations), HT -Hurtado method ([+] with or [–] without graphic generation of triangulations).

The graph in Figure 7 shows the CPU in the process of generating triangulation, where it can be noted
that the greatest load is in the Hurtado method, then the ballot lattice method, and the least load in the ballot
trivalent method.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5 6 7 8 9 10 11 12 13 14 15

Ratio 1 - Execution CPU times

Ballot Trivalent + Ballot Lattice + Hurtado Trees +

Figure 7. Load of CPU

357

SARAČEVIĆ and SELIMI/Turk J Elec Eng & Comp Sci

Table 3 presents a comparison of storage requirements for the tested methods (load memory in KB). We
give differences in the size of required memory as well as the percentage share of the time needed for storage in
the program execution.

Table 3. Experimental results: ballot Lattice, ballot trivalent, and Hurtado Tree (load memory).

n-gon No. of triang. Load memory (in Kb)
BT BL HT

5 5 0.02 0.02 0.12
6 14 0.08 0.08 0.46
7 42 0.29 0.29 1.76
8 132 1.05 1.05 6.46
9 429 3.86 3.86 24.49
10 1430 14.31 14.30 93.13
11 4862 53.42 53.40 355.67
12 16,796 196.12 196.00 1363.43
13 58,786 502.71 502.00 4121.13
14 208,012 1442.00 1441.00 11,523.62
15 742,900 4299.90 4295.00 29,874.29
16 2,674,440 12,773.89 12,752.00 /

The graph in Figure 8 shows the workload ratio of the triangulation storage process, where it can be
noted that the greatest load is in the Hurtado method, then the ballot lattice method, and the least load is on
the ballot trivalent method (the graph is generated based on the values from Table 3).

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 10 11

Ratio 2 - Load memory

Ballot Trivalent Ballot Lattice Hurtado Trees

Figure 8. Load of memory.

The testing is performed in NetBeans testing module ”Profile Main Project/CPU Analyze Performance”
in configuration: CPU - Intel(R) Core(TM)2Duo T7700, 2.40 GHz, L2 Cache 4 MB (On-Die, ATC, Full-Speed),
RAM 2 GB, Graphic card–NVIDIA GeForce 8600M GS.

Based on the testing results, it can be concluded that ballot lattice and ballot trivalent method give
better results in the case where both generation and storage are included at the same time. Significant savings
are achieved by applying the ballot output.

358

SARAČEVIĆ and SELIMI/Turk J Elec Eng & Comp Sci

6.1. Complexity of the algorithms

Now, we will analyze the ratio of the data (notation for triangulations) amount for the Hurtado algorithm
and ballot trivalent algorithm. The Hurtado method uses all internal and external diagonals, while the ballot
trivalent method uses only internal diagonals. The Hurtado method requires recording of coordinates of n

edges, plus two coordinates in storage (n − 3) of internal diagonals: 2n + 2(n − 3) . From the aspect of the
storage complexity the Hurtado algorithm method requires:

HTs = 2(2n− 3).

The ballot trivalent method requires a ballot notation that is 2(n−2) length. Because the first character
(bit 1 or character A) and the last character (bit 0 or character B) in ballot notation are always known, the
number of storage data is reduced by two. From the aspect of necessary data storage amount, the ballot trivalent
method requires:

BTs = 2(n− 2)− 2 = 2(n− 3).

Let us estimate the processing complexity of both methods as we generate Cn−2 triangulations of an
n -gon by completing 2(n− 2) permutation the number of movements in lattice path or in the trivalent binary
tree. Total number of operations for our ballot trivalent method for all triangulations of n -gon is

BTp = 2Cn−2(n− 2).

On the other hand, in the case of the Hurtado algorithm, we have the following. For every triangulation
at level n − 1 , we need to perform 2n − 5 checks to find the diagonals incident to the vertex n − 1 . Total
number of these checks is (2n− 5)Cn−3 .

Furthermore, we must go through diagonals and copy some without transforming, while some of them
should be transformed and two new diagonals should be inserted for every incident where diagonal is found.
In this way, we make 2n− 3 pairs describing one new triangulation. The total number of incident diagonals is
equal to Cn−2 . Total number of operations for the Hurtado method for all triangulations of n -gon is

HTp = (2n− 5)Cn−3 + (2n− 3)Cn−2.

It is not difficult to verify the inequality for all values of n ≥ 5 :

(2n− 5)Cn−3 + (2n− 3)Cn−2 > 2Cn−2(n− 2).

Table 4 displays numerical data related to the complexity of algorithms in two aspects: storage and
processing complexity. The number of operations required to generate all triangulations of n -gon is presented.
In addition, the required data storage amount of a single triangulation of n -gon is shown.

7. Conclusion and further work
The proposed method in the paper provides an effective way of constructing the convex polygon triangulation
with the planted trivalent binary tree and ballot record. The algorithms are related to the combination of the
properties of Catalan numbers decomposition, convex polygon triangulation, planted trivalent binary trees, and
ballot combinatorics. The significance of the presented algorithms is reflected in the effective construction of
the convex polygon triangulation and their processing and storing in the form of ballot or binary notation.

359

SARAČEVIĆ and SELIMI/Turk J Elec Eng & Comp Sci

Table 4. Ballot trivalent (BT) vs Hurtado trees (HT): storage and processing complexity.

n-gon Storage complexity for one triangulation Processing complexity for all triangulations
BT_storage HT_storage Savings BT_processing HT_processing Speedup

5 4 14 10 30 45 15
6 6 18 12 112 161 49
7 8 22 14 420 588 168
8 10 26 16 1584 2178 594
9 12 30 18 6006 8151 2145
10 14 34 20 22,880 30,745 7865
11 16 38 22 87,516 116,688 29,172
12 18 42 24 335,920 445,094 109,174
13 20 46 26 1,293,292 1,704,794 411,502
14 22 50 28 4,992,288 6,552,378 1,560,090
15 24 54 30 19,315,400 25,258,600 5,943,200

We hope that this research serves as the first step toward further developing this important issue to the
concave polygons and polyhedron. By decomposing the concave polygon in a set of convex polygons algorithms
can be extended to the case of a concave polygon. The decomposition will be the task of identifying of the
reflex vertex/vertices and creating a new edge/edges and vertex/vertices (if it is necessary) until there is no
reflex vertex in the concave polygon. It is important to remark here that the best solution to the problem is
the decomposition with the least produced diagonals.

Similar to the case of the concave polygon, by identifying the notch edges in the polyhedron, the algorithms
can be extended to solving problems in 3D. The solution of the problem would be looked in the identification
of notch edges and plane cuts of the polyhedron until all polyhedrons in decomposition become convex.

References

[1] Koshy T. Catalan Numbers with Applications. New York, NY, USA: Oxford University Press,2009.

[2] Even S. Graph Algorithms. New York, NY, USA: Cambridge University Press, 2011.

[3] Goodman JE, O’Rourke J. Handbook of Discrete and Computational Geometry. New York, NY, USA: Chapman
and Hall and CRC Press, 2004.

[4] O’Rourke J. Computational Geometry in C. 2nd ed. Cambridge, UK: Cambridge University Press, 1997.

[5] Preparata F, Shamos MI. Computational Geometry: An introduction. Berlin, Germany: Springer-Verlag, 1985.

[6] Koshy T. Discrete Mathematics with Applications. Burlington, MA, USA: Elsevier Academic Press, 2004.

[7] Hurtado F, Noy M. Graph of triangulations of a convex polygon and tree of triangulations. Computational Geometry
1999; 13, 179-188.

[8] Saračević M, Stanimirović P, Mašović S, Biševac E. Implementation of the convex polygon triangulation algorithm.
Facta Universitatis, Series Mathematics and Informatics 2012; 27, 213-228.

[9] Stanimirović P, Krtolica P, Saračević M, Mašović S. Decomposition of Catalan numbers and convex polygon
triangulations. International Journal of Computer Mathematics 2014; 19, 1315-1328.

[10] Saračević M, Stanimirović P, Krtolica P, Mašovič S. Construction and notation of convex polygon triangulation
based on ballot problem. Romanian Journal of Information Science and Technology 2014; 17, 237-251.

360

SARAČEVIĆ and SELIMI/Turk J Elec Eng & Comp Sci

[11] Sen-Gupta S, Mukhopadhyaya K, Bhattacharya BB, Sinha BP. Geometric classification of triangulations and their
enumeration in a convex polygon. Computers and Mathematics with Applications 1994; 27, 99-115.

[12] Saračević M, Mašović S, Milošević D. JAVA Implementation for triangulation of convex polygon based on
Lukasiewicz algorithm and binary tree. Southeast Europe Journal of Soft Computing 2013; 2, 40-45.

361

	Introduction
	Preliminaries about trees and hierarchy of triangulations
	Tree of triangulations and expression of the Catalan numbers
	Relationship of Catalan numbers and ballot problem
	Algorithms for polygon triangulations based on trivalent binary tree and ballot notation
	Comparative analysis of experimental results
	Complexity of the algorithms

	Conclusion and further work

