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Abstract— Given an asymptotically stabilizing linear MPC
controller, this paper proposes an algorithm to construct
invariant polyhedral sets for the closed-loop system. Rather
than exploiting an explicit form of the MPC controller, the
approach exploits a recently developed DC (Difference of
Convex functions) programming technique developed by the
authors to construct a polyhedral set in between two convex
sets. Here, the inner convex set is any given level set V (x) ≤ γ
of the MPC value function (implicitly defined by the quadratic
programming problem associated with MPC or explicitly com-
puted via multiparametric quadratic programming), while the
outer convex set is the level set of a the value function of
a modified multiparametric quadratic program (implicitly or
explicitly defined). The level gamma acts as a tuning parameter
for deciding the size of the polyhedral invariant containing the
inner set, ranging from the origin (γ = 0) to the maximum
invariant set around the origin where the solution to the
unconstrained MPC problem remains feasible, up to the whole
domain of definition of the controller (possibly the whole state
space R

n) (γ = inf). Potential applications of the technique
include reachability analysis of MPC systems and generation
of constraints to supervisory decision algorithms on top of MPC
loops.

Index Terms— Model predictive control, Polyhedral invariant
sets.

I. INTRODUCTION

Positively invariant sets are a useful instrument used in
several branches of systems science, for reachability and
stability analysis, as well as for the synthesis of control
laws. In particular, invariant sets have been used for the
design of stabilizing Model Predictive Controllers. In MPC,
the stability of the feedback loop is often guaranteed by aug-
menting the associated optimization problem problem with
the so-called “stability constraint”, forcing the state vector
to reach an invariant set at the end of the prediction horizon.
Polyhedral invariant sets are often preferred over ellipsoidal
ones for numerical reasons, as ellipsoidal constraints are
usually more difficult to handle than linear constraints.

Most of the MPC literature has focused on the computation
of invariant sets for (constrained) open-loop systems. Signif-
icant advances were obtained in [1], [2] and [3] for linear

A. Alessio and A. Bemporad are with the Dipartimento di Ingegneria
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systems affected by additive disturbances and parametric un-
certainties, respectively. Important results were also reported
into [4], and [5], [6], [7], for linear systems subject to input
saturation and hybrid systems.

In this paper we show how to compute polyhedral invariant
sets of arbitrary size for stable MPC closed-loop systems.
To the best of our knowledge, the only known polyhedral
invariant sets for closed-loop linear MPC systems are the
origin, the maximum invariant set around the origin (where
the unconstrained MPC solution remains feasible) and the
feasibility domain (possibly the whole state space R

n).
In [8], the authors presented a method for constructing

a polyhedral invariant set that lies between two contractive
ellipsoidal sets. The computational part of the method is
based on the level sets of a PWA function whose graph
lies between the graphs of the two quadratic functions (the
ellipsoidal sets are level sets of these functions). Here we
exploit the fact that in MPC problems based on quadratic
costs and linear prediction models (see the survey [9] for an
overview) the value function V (x) is a piecewise quadratic
Lyapunov function [10], whose level sets are piecewise ellip-
soidal invariant sets for the system. We propose a variant of
the approach used in [8] to solve the problem of determining
invariant sets for closed-loop MPC systems. First, we observe
that the property

V (x(t + 1)) − V (x(t)) ≤ −x(t)�Qx(t),

where V (·) denotes the value function of a stabilizing linear
MPC problem with fixed horizon N and quadratic costs,
holds for the closed-loop. Then, we compute polyhedral
invariant sets for the closed-loop MPC system by inscribing
a polyhedron P between the sublevel sets of two piecewise
quadratic functions given by V (x), and V (x) − x�Qx,
respectively. A proof that the function V (x) − x�Qx is a
convex, continuous and piecewise quadratic function of x is
provided, and it is shown that its level sets Em(γ) attained
at a certain level γ ∈ R+ are piecewise ellipsoidal invariant
sets containing the piecewise ellipsoidal level sets of the
function V (x). Finally, we construct a polyhedral set P that
lies between these two sets with a variant of the algorithm
presented in [8].

A very appealing feature of the approach is that the explicit
form of the MPC controller is not required for computing
the invariant sets. Therefore, the algorithm is applicable even
when the number of constraints in the MPC problem is large
and so the number of regions of the explicit controller would
be intractable (if at all computable). An alternative to our
approach would be to form a PWA system by collecting
the linear model and the piecewise affine MPC control
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law, and to design a PWQ Lyapunov function via LMI (as
in [11]). However, the obtained PWQ Lyapunov function
is not convex in general, so the resulting polyhedral set
obtained through the algorithm of [8] may not be convex. The
approach of this paper always generates convex polyhedral
invariant sets for the closed-loop MPC systems.

The paper is organized as follows. The basics of MPC are
reviewed first in Section II to derive the problem formulation.
In Section III we present some lemmas that are fundamental
for assuring the invariance of the polyhedral set P , while the
algorithm for computing P is described in Section IV. An
example and the conclusions are reported in Section V and
Section VI, respectively.

A. Notation and Basic Definitions

Let R, R+, Z and Z+ denote the field of real numbers,
the set of non-negative reals, the set of integer numbers
and the set of non-negative integers, respectively. For a set
S ⊆ R

n, we denote by ∂S the boundary of S, by int(S) its
interior and by cl(S) its closure. Given vectors θ1, . . ., θi,
Co(θ1, . . . , θi) denote their convex hull. For any real λ ≥ 0,
the set λS is defined as

λS � {x ∈ R
n | x = λy for some y ∈ S}.

A polyhedron (or a polyhedral set) is a set obtained as the
intersection of a finite number of open and/or closed half-
spaces. A piecewise polyhedral set is the union of a finite
number of polyhedra.

Given (n + 1) affinely independent points (θ0, . . . , θn) of
R

n, i.e. (1 θ�0 )�, . . . , (1 θ�n )� are linearly independent in
R

n+1, we define a simplex S as

S � Co(θ0, . . . , θn) � {x ∈R
n | x =

n∑
l=0

µlθl,
n∑

l=0

µl = 1,

µl ≥ 0 for l = 0, 1, . . . , n}.
A function f : R

n → R is a quadratic function if f(x) :=
x�Px + Cx + α for some P ∈ R

n×n, C ∈ R
1×n and

α ∈ R. A quadratic function f is strictly convex if and only
if P > 0. An ellipsoid (or an ellipsoidal set) E is a sublevel
set (corresponding to some constant level γ ∈ R+) of a
strictly convex quadratic function, i.e.

E � {x ∈ R
n | f(x) ≤ γ}.

Let Ω1, . . . ,ΩN denote a polyhedral partition of R
n, i.e.

Ωi is a polyhedron (not necessarily closed) for all i =
1, . . . , N , Ωi ∩ Ωj = ∅ for i �= j and ∪i=1,...,NΩi = R

n.
Definition 1: A function f : R

n → R with

f(x) = x�Pix + Cix + αi when x ∈ Ωi,

i = 1, . . . , N is called a PieceWise Quadratic (PWQ)
function. A function f̄ : R

n → R with f̄(x) = Hix + ai

when x ∈ Ωi, for some Hi ∈ R
1×n, ai ∈ R, i = 1, . . . , N

is called a PieceWise Affine (PWA) function.
A piecewise ellipsoidal set is a sublevel set of a piecewise

quadratic function with matrices Pi > 0 for all i = 1, . . . , N .

II. LINEAR MPC ALGORITHM

Consider the linear discrete-time prediction model{
x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) (1)

where x(t) ∈ R
n is the state vector at time t, u(t) ∈ R

m is
the vector of manipulated variables, and y(t) ∈ R

m is the
output vector.

Consider now the finite-time optimal control problem

V (x(t)) = min
U

x�
NPxN +

N−1∑
k=0

[
x�

k Qxk + u�
k Ruk

]
(2a)

s.t. xk+1 = Axk + Buk, k = 0, . . . , N − 1
(2b)

yk = Cxk, k = 1, . . . , N (2c)

x0 = x(t) (2d)

umin ≤ uk ≤ umax, k = 0, . . . , Nu − 1
(2e)

ymin ≤ yk ≤ ymax, k = 1, . . . , Nc (2f)

uk = 0, k = Nu, . . . , N − 1 (2g)

where N is the prediction horizon, Nu ≤ N is the input
horizon, Nc ≤ N the constraint horizon,

U � [ u�
0 ... u�

N−1 ]� ∈ R
Nm

is the sequence of manipulated variables to be optimized,
Q = Q� ≥ 0, R = R� > 0, and P = P� ≥ 0
are square weight matrices defining the performance index,
umin, umax ∈ R

m, ymin, ymax ∈ R
p, define constraints on

input and output variables, respectively, and “≤” denotes
component-wise inequalities.

Problem (2) can be reformulated as the Quadratic Pro-
gramming (QP) problem

U∗(x(t)) � arg min
U

J(U, x(t)) (3a)

s.t. GU ≤ W + Sx(t) (3b)

where

J(U, x(t)) =
1
2
U�HU + x�(t)C�U +

1
2
x�(t)Y x(t) (4a)

and
U∗(x(t)) = [ u∗�

0 (x(t)) ... u∗�
N−1(x(t)) ]�

is the optimal solution, H = H� > 0 and C, Y , G, W , S
are matrices of appropriate dimensions [10], [12].

At each sampling time t, problem (3) is solved for the
given measured or estimated current state x(t), therefore
getting the optimal sequence U∗(x(t)). Only the first optimal
move

u(t) = u∗
0(x(t)) (5)

is applied to the process,

x(t + 1) = Ax(t) + Bu∗
0(x(t)), (6)

the remaining optimal moves are discarded and the optimiza-
tion is repeated at time t + 1. We use X ∗ to denote the set
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of all states for which the optimal control problem (3)-(4)
is feasible, i.e. it admits a solution that satisfies the imposed
constraints.

Several variations to the formulation (2) exist that ensure
by construction the asymptotic stability of the closed-loop
system (1)-(5). This is usually achieved by adding the con-
straint xN ∈ Xf in (2), where Xf is positively invariant under
u(t). We mention two examples of such stability constraints:

(i) Xf = {0} and the terminal weight P is set equal to
the solution of the discrete-time Lyapunov equation, i.e.

P − A�PA = Q;

(ii) P is set equal to the solution of the algebraic Riccati
equation associated with the pair (A, B) and the weights
(Q, R)) [10], i.e.

P = (A + BKLQR)�P (A + BKLQR) + K�
LQRRKLQR + Q,

and the constraint (2g) is replaced with uk = KLQRxk, where
KLQR is the corresponding LQR gain, i.e.

KLQR = −(R + B�PB)−1B�PA.

The set Xf ⊆ X ∗ is polyhedral and positively invariant under
uk

1.

III. FUNDAMENTAL RESULTS

In this section we derive useful properties of the MPC
value function V (x).

Definition 2: For a given 0 ≤ λ ≤ 1, a set P ⊆ R
n that

contains the origin in its interior is called a λ-contractive
set for the closed-loop system (1)-(5) if for all x ∈ P it
holds that Ax + Bu∗

0(x) ∈ λP . For λ = 1, the set is called
positively invariant.

Theorem 3 ([16]): The solution to the optimal control
problem (3)-(4) is a PWA state feedback control law of the
form

u(x(k)) = Fix(k) + gi if x(k) ∈ Pi (7)

where Pi � {x : Hix ≤ ki}, i = 1, .., Ntot is a finite
partition of the polyhedral set X ∗ of feasible states. Moreover
the optimal value function V is convex, continuous, and
piecewise quadratic, and the set X ∗ over which V is defined
is a convex polyhedron.

Let
V1(x) � V (x) − x�Qx. (8)

The following standing assumption can be ensured via
the approaches (i), (ii) described above (and via other
approaches) to guarantee a-priori asymptotic closed-loop
stability:

Assumption 4 (Asymptotic closed-loop stability): For all
t ≥ 0 and all x(t) ∈ X ∗ it holds that:

V (x(t + 1)) − V (x(t)) ≤ −x�(t)Qx(t), (9)

where V (·) is the MPC value function defined in (2a).

1For linear systems, the maximal admissible set (MAS) is often chosen
as the positively invariant set Xf , see ([13]), ([14]) and ([15])

Almost all proofs of stability in the MPC literature are
based on the following technique. Consider for simplicity
case (i) (Lyapunov matrix), and the shifted sequence Us

obtained by collecting u∗
1(x(t)), . . . , u∗

N−1(x(t)), completed
with uN = 0. By construction, Us is feasible at time t + 1,
and therefore its cost Js given by (3b) is greater or equal
than the optimal one V (x(t+1)), provided by the optimizer
U∗(x(t + 1)). Since

Js = V (x(t)) − x�(t)Qx(t) − u�(t)Ru(t),

Assumption 4 readily follows. See for example [10] for more
details.

Lemma 5: The function V1 : X ∗ → R defined as

V1(x) = V (x) − x�Qx

is a convex, continuous and piecewise quadratic function.
Proof: Consider the function

J1(U, x) � J(U, x) − x�Qx

=
N−1∑
k=1

x�
k Qxk +

N−1∑
k=0

u�
k Ruk + x�

NPxN .

Clearly

J1(U, x) ≥ 0,∀x ∈ R
n,∀U ∈ R

Nm.

Since J1(U, x) is also a quadratic function of
[
x U

]�
and

P, Q, R > 0, it follows that J1(U, x) is convex. By [10], it
follows that V1 = minU J1(U, x) subject to GU ≤ W + Sx
is also convex piecewise quadratic, and continuous, being
the value function of a multiparametric convex quadratic
problem.

Corollary 6: The level sets EM (γ) = {x ∈ X ∗ : V1(x) ≤
γ} of V1 obtained at a generic γ ∈ R are piecewise
ellipsoidal sets.

Lemma 7: Let γ ∈ R
+ and Em(γ) = {x ∈ X ∗ : V (x) ≤

γ}. Then

1) Em(γ) ⊆ EM (γ),
2) fMPC(EM (γ)) ⊆ Em(γ), where fMPC(x) � Ax +

Bu∗
0(x),

3) The piecewise ellipsoidal level sets EM (γ) are posi-
tively invariant sets for the closed loop system (1)-(5).

Proof: Given γ and x̃(t) such that x̃(t) ∈ Em(γ), we
have that

V (x̃(t)) ≤ γ ⇒ V (x̃(t)) − x̃�(t)Qx̃(t) ≤ γ.

This proves the first statement. Choosing x̄(t) such that
x̄(t) ∈ EM (γ), we have that

V1(x̄(t)) = V (x̄(t)) − x̄�(t)Qx̄(t) ≤ γ.

Then, by Assumption 4 it holds that

V (x̄(t + 1)) = V (Ax̄(t) + Bu(x̄(t)))

≤ V (x̄(t)) − x̄�(t)Qx̄(t)
≤ γ (10)
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Note that this proves that

fMPC(EM (γ)) ⊆ Em(γ). (11)

Since Q ≥ 0, we have that

V1(x̄(t + 1)) = V (Ax̄(t) + Bu(x̄(t)))

− (Ax̄(t) + Bu(x̄(t)))�Q(Ax̄(t) + Bu(x̄(t))) ≤ γ.

Therefore, EM (γ) is a positively invariant set for the closed-
loop system (1)-(5).

We proved that the piecewise ellipsoidal sets EM (γ) are
invariant for the MPC problem in (1)-(5), and that these
sets contain Em(γ), for the same γ. Both sets are convex,
since the two functions V1, V are convex in X ∗(cf. [10] and
Lemma 5).

Lemma 8: Given γ ∈ R
+, let P be any polyhedron such

that P ⊆ X ∗ and Em(γ) ⊆ P ⊆ EM (γ). Then P is positively
invariant for the closed-loop system (1)-(5).

Proof: Let x(t) ∈ P ⊆ EM (γ). From Lemma 7
fMPC(EM (γ)) ⊆ Em(γ),∀x ∈ EM (γ). It follows that
x(t+1) ∈ Em(γ) ⊆ P . Therefore, P is a polyhedral invariant
set for the closed loop system (1) − (5).
In the next section we present an algorithm for computing
polyhedral invariant sets P satisfying the hypothesis of
Lemma 8.

IV. COMPUTATION OF THE POLYHEDRAL
INVARIANT SET

In this section we present a solution to the problem
of fitting a polyhedral set P in between two piecewise
ellipsoidal sets Em(γ) := {x ∈ X ∗ | V (x) ≤ γ} and
Em(γ) := {x ∈ X ∗ | V1(x) ≤ γ}. To avoid degenerate
situations, we assume that Em(γ) is contained in the interior
of EM (γ). The two sets are sublevel sets of two piecewise
quadratic functions (with strictly convex pieces), V (x) and
V1(x), respectively, that correspond to a certain constant
(level) γ ∈ R+. Then, we compute a PWA function f̄ that
satisfies V (x) > f̄(x) ≥ V1(x) for all x ∈ R

n, and we
consider the piecewise polyhedral set P̄ := {x ∈ R

n |
f̄(x) ≤ γ}.

The desired polyhedral set P is the convex hull of P ,
where clearly P = P if P is a polyhedron. The parameter
γ is used as a tuning knob of the procedure.

Consider now an initial polyhedron P0 ⊂ X ∗ that contains
Em(γ)2. Given (θ̃0, .., θ̃m), with m ≥ n, vertices of P0 we
determine an initial set of simplices S0

1 , . . . , S0
l0

that contains
these points by Delaunay triangulation [17]. Then, for every
simplex S0

i := Co(θ0i, . . . , θni), i = 1, . . . , l0, the following
operations are performed.

Algorithm 9:
1) Let k = 0.
2) For every simplex Sk

i , i = 1, . . . , lk, construct the
matrix

Mi �
[

1 1 . . . 1
θ0i θ1i . . . θni

]
.

2Note that it is always possible to choose P0 as the entire set of feasible
states X ∗.

3) Set

vi � [ V1(θ0i) V1(θ1i) . . . V1(θni) ]�

and construct the function

f̄i(x) � v�
i M−1

i

[
1
x

]
.

4) Solve the QP problem:

min
x∈Sk

i

{
Ji(x) � V (x) − f̄i(x)

}
, (12)

and let

x∗
i � arg min

x∈Sk
i

Ji(x), J∗
i � Ji(x∗

i ).

5) If J∗
i > 0 for all i = 1, . . . , lk, then Stop. Other-

wise, for all Sk
i , i = 1, . . . , lk, for which J∗

i ≤ 0
build new simplices Si

0, S
i
1, . . . , S

i
n defined by the

vertices (x∗
i , θ1i, . . . , θni), (θ0i, x

∗
i , . . . , θni), . . . and

(θ0i, θ1i, . . . , θni, x
∗
i ), respectively.

6) Increment k by one, add the new simplices

Si
0, S

i
1, . . . , S

i
n

to the set of simplices {Sk
i }i=1,...,lk and repeat the

algorithm recursively from Step 2.
Algorithm 9 computes a simplicial partition of a given

initial polyhedral set P0 that contains the ellipsoidal set
Em(γ), by splitting a single simplex Sk

i into n+1 simplices.
This is done by fixing a new vertex x∗

i which is obtained by
solving the QP problem (12). Problem (12) can be solved as
a QP by optimizing w.r.t. (U, x). A new PWA approximation
is then computed over the new set of simplices. The steps
of Algorithm 9 are repeated for all resulting simplices, until
J∗

i > 0 for all simplices. At every iteration k, a tighter PWA
approximation of the piecewise quadratic function V1(x)
is obtained. Algorithm 9 proceeds in a typical branch &
bound way, i.e. branching on a new vertex x∗

i , and bounding
whenever it finds a simplex Sk

i for which it holds that
J∗

i > 0.
Suppose Algorithm 9 stops. At the k∗-th iteration3 for

some k∗ ∈ Z+, the following PWA function is generated:

f̄(x) � f̄k∗
(x)

� f̄i(x) when x ∈ Sk∗
i , i = 1, . . . , lk∗

� Hk∗
i x + ak∗

i when x ∈ Sk∗
i , i = 1, . . . , lk∗ ,

where lk∗ is the number of simplices obtained at the end
of Algorithm 9. The PWA function f̄ constructed via Algo-
rithm 9 is such that for x =

∑n
j=0 µjθji, the corresponding

functions f̄i satisfy:

f̄i(x) = f̄i

⎛
⎝ n∑

j=0

µjθji

⎞
⎠ =

n∑
j=0

µjV1(θji)

⎛
⎝ n∑

j=0

µj

⎞
⎠

−1

,

which, by strict convexity of V1, implies that f̄i(x) ≥ V1(x)
for all x ∈ Sk∗

i and all i = 1, . . . , lk∗ . Since the stopping

3The existence of a finite k∗ is proven in [18].
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criterion defined in Step 5 of Algorithm 9 assures that at the
end of the entire procedure the optimal value J∗

i of the QP
problem defined in (12) will be greater than zero in every
simplex Sk∗

i , i = 1, . . . , lk∗ , it follows that

V1(x) ≤ f̄(x) < V (x), ∀x ∈ ∪i=1,...,lk∗ Sk∗
i .

Then, the sublevel set of f̄ given by

P �
⋃

i=1,...,lk∗

{x ∈ Sk∗
i | Hk∗

i x + ak∗
i ≤ γ}

satisfies Em(γ) ⊂ P ⊂ EM (γ). Indeed, note that for x ∈ P
it holds that

f̄(x) ≤ γ ⇒ V1(x) ≤ f̄(x) ≤ γ ⇒ x ∈ EM (γ),

and for x ∈ Em(γ) it holds that

V (x) ≤ γ ⇒ f̄(x) < V (x) ≤ γ ⇒ x ∈ P.

The desired polyhedral set P satisfying Em(γ) ⊂ P ⊂
EM (γ), is obtained as the convex hull of the vertices of P
(note that if P is convex then P = P). Indeed,

Em(γ) ⊂ P ⊂ P ⇒ Em(γ) ⊂ P
and, by the convexity of EM (γ), it holds that

P � Co(P) ⊆ Co(EM (γ)) = EM (γ).

Note that the computation of the vertices of P and of their
convex hull can be performed efficiently using, for instance,
the Geometric Bounding Toolbox (GBT) [19].

V. EXAMPLE

Consider the following MPC constrained optimization
problem:

V (x(0)) = minU J(U, x(0))

J(U, x(0)) = x�
NPxN +

N−1∑
k=0

x�
k Qxk + u�

k Ruk
(13a)

s.t. xk+1 = Axk + Buk,
yk = Cxk,
umin ≤ uk ≤ umax,

(13b)

where A =
[

0 1−1 −1

]
, B = [ 0 1

1 0 ], C = [ 1 0 ], umin =
[−5,−5]�, umax = [5, 5]�, Q = 10I2, R = 3I2, P is
the solution to the algebraic Riccati equation, the control
horizon N = 1 and γ = 4000. The feasible domain X ∗ of
(13a)-(13b) is clearly X ∗ = R

n, as only input constraints
are included in (13b).

Algorithm 1 computes the polyhedral set

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x :

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−901.7694 −146.6748
−471.8016 80.5390
−262.6671 289.6734
549.3794 409.7714−281.2966 229.1337
574.0301 335.6954−574.0301 −335.6954
281.2966 −229.1337
−549.3794 −409.7714
262.6671 −289.6734
471.8016 −80.5390
901.7694 146.6748

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

x ≤ 104

⎡
⎢⎢⎢⎢⎢⎣

1.1895
0.6826
0.6826
0.9663
0.5778
0.8427
0.8427
0.5778
0.9663
0.6826
0.6826
1.1895

⎤
⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(14)

Fig. 1. Polyhedron P and the piecewise ellipsoidal sets Em, EM

Fig. 2. Various shapes of polyhedron P as γ varies from 100 to 5000

in 21.7030 seconds on a DELL Workstation Xeon(TM), CPU
3.20GHz, and 1.00 GB of RAM, with MATLAB ver. 7.00,
after generating 264 simplices.

Figure 1 shows the desired polyhedron P , which lies
between the sets Em(γ) and Em(γ). In the same figure the
state space partition corresponding to the explicit form of the
MPC controller (13) is provided, just to illustrate that Em(γ)
and Em(γ) are piecewise-ellipsoidal, as they cover multiple
partitions. Note that the trajectories starting from states inside
P remain in P , which illustrates the invariance property of
P . The partition corresponding to the explicit MPC solution
is plotted for completeness, but it is not required by the
algorithm. Figure 2 shows the shapes of the polyhedral
invariant sets as the level γ varies from 100 to 5000. Note
that (Figure 2) the set corresponding to γ = 100, is contained
into the central region corresponding to the inactivity of all
input constraints in (13b) (u∗

0(x) = Kx).

VI. CONCLUSIONS

In this paper we presented a geometrical procedure
for computing convex polyhedral positively invariant sets
for discrete-time linear time-invariant systems in closed-
loop with MPC controllers. The present work is an ex-
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tension of [11]. Here we do not use the value function
V (x) as a Lyapunov function to get the two sublevel sets
EM (γ), Em(γ) which are necessary for inscribing the poly-
hedron in-between. Moreover, the two piecewise ellipsoidal
sets EM (γ), Em(γ) are not contractive sets, see [11] for
further details. For the same reasons, the approach used in [8]
cannot be followed in the present work. The polyhedral set
determined here is inscribed between two convex piecewise
ellipsoidal level sets of two piecewise quadratic functions.
The algorithm computes a PWA function whose graph is
contained between the graphs of two PWQ functions. The
level sets of the resulting PWA function are polyhedral and
invariant. The desired polyhedral invariant set can then be
simply obtained by choosing an appropriate level γ and
retrieving the corresponding level set of the constructed PWA
function. An open question that remains to be addressed is
the extension of the presented procedure to MPC closed-loop
systems with disturbances.
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