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Abstract. In a paper by the author and B. Weissbach it was proved that the 
projection body and the difference set of a d-simplex (d -> 2) are polars. Obviously, 
for d =2 a convex domain has this property if and only if its difference set is 
bounded by a so-called Radon curve. A natural question emerges about further 
classes of convex bodies in R d (d->3) inducing the mentioned l~olarity. The aim 
of this paper is to show that a convex d-polytope (d -> 3) is a simplex if and only 
if its projection body and its difference set are polars. 

1. Definitions and Background Material  

Let R d (d  >i 3) denote  the d -d imens iona l  Euc l idean  vector  space  with scalar  
p roduc t  ( . ,  .), norm I1" H, and  unit  sphere  S d 1:= {u c R d I(u, u ) - -  1}. For  bas ic  
no ta t ion  the r eade r  is referred to [4], [5], and  [7]. In par t icu lar ,  we write pd  for 
the set o f  convex  d-polytopes, i.e., compac t ,  convex subsets  of  R d with n o n e m p t y  
in ter ior  and  a finite number  of  ext reme poin ts  (vertices).  

Fo r  P c pd  with n -> d + l facets let ai denote  the ou tward  normal  vector  o f  
the ith (d  - l ) - f a c e ,  where  lla, U represents  the area  of  this facet ( i ~  {1 . . . .  , n}). 
Then the vec tor  sum of  line segments  given by 

n n 

l i P : =  • conv{o, a ,}=~ Y~ c o n v { - a , ,  a,} 
i - - I  I~-I 

(1) 

is ca l led  the projection body of  P (see Sect ion 7 in [4], and  [11]). The po ly tope  
l i P  is a d-zonotope (see [9] and  [11]) with center  o, i.e., bes ides  the body  H P  
i tself  each face o f  it has a center  of  symmetry .  Moreover ,  every segment  s u m m a n d  
conv{o, ai} (i -- 1 , . . . ,  n) genera tes  a zone of  facets in bd  l iP ,  that  is the intersec-  
t ion with the z o n o t o p e  o f  suppor t ing  hype rp l anes  with normal  vectors o r thogona l  
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to conv{o, ai}. For that reason l iP  has exactly m zones, where m-< n is the 
number of nonoriented facet normals of P. As is well known, a ( d - 2 ) - f l a t  
corresponds to each zone of the zonotope (and vice versa) in the so-called 
projective diagram ,ffd~ of liP, which is a dissection of real projective (d - 1)- 
space by (d -2 ) - f l a t s  with no common point into cells of various dimensions. 
More precisely, assuming these cells to be relatively bounded, every (d - r -  1)- 
cell represents the intersection of S d-~ and the closed normal cones of two 
opposite r-faces o f I I P  (r = 0, . . . ,  d - 1). Hence ,ifd ~ is the projective representa- 
tion of the usual spherical image (see Section 1.5 of [ 1 ]) of the centrally symmetric 
polytope UP. Further, by 

( l i P ) * : = { x c R a l ( x , y ) < - 8  2 for a l l y e l i P }  (2) 

the polar body of H P  with respect to 8 �9 S d-~ (8 c R +) is defined. This polarity 
implies (see once more Section 1.5 of [1]) that /~d ~ coincides with the central 
projection of ( l iP)*,  i.e., the projection of the (d -2 ) - ske le ton  of ( l iP)* from 
the center o onto the hyperplane at infinity belonging to the projective augmenta- 
tion of R d. (This way of projecting a polytope onto the real projective (d - 1 )- space 
is briefly discussed in Section 23 of [6]. Notice further that the (d -2)-skeleton 
ofa  polytope P c pd is the union of its faces with dimensions not larger than d - 2.) 

The intersection of the (d -2 ) - ske l e ton  of P c  pd and some hyperplane is 
called a (d -2 ) -c i rc le  of P, if it is homeomorphic to a (d -2)-sphere .  A polytope 
p ~ pd with center o is said to be (d - 2)-equatorial if, for each (d - 1)-subspace 
H through a ( d -  2)-face, the intersection of H and the (d - 2)-skeleton of P is 
a (d -2) -c i rc le .  Moreover, such an intersection is called a ( d - 2 ) - e q u a t o r  of P. 
From the described correspondence between rid ~ and the central projection of 
(UP)* it follows immediately that ( l iP)* is a (d -2 ) -equa to r ia l  polytope. 
(Clearly, the (d-2) -equa tor ia l i ty  is only a necessary property of polars of 
d-zonotopes (see [2]). For necessary and sufficient conditions we can consult 
[14], whereas polars of (d -2 ) -equa to r i a l  polytopes are investigated in [3].) 

Finally, the difference set of P ~ pd is defined by 

DP:= P + ( - 1 ) P  

= { x c  R a Ix = x l - x 2  with xl, x2e P} (3) 

(see Section 7 of [4]). It should be noticed that we use D M  in an analogous 
manner if M c R d is an arbitrary point set. 

2. Proof  of  the Result 

We shall show the announced characteristic property of d-simplices (d >- 3) by 
proving the more general statement that a convex d-polytope P is a simplex if 
and only if the central projection of  D P  and the projective diagram of l iP  
coincide. To see this, four lemmas are taken into consideration. 
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Lemma 1. Let P ~ pd ( d >- 3) be a polytope with coincidence between the central 
projection o f  D P  and the projective diagram o f  l iP.  Then P is simplicial, i.e., each 
face t  o f  the polytope is a ( d - 1)-simplex. 

Proof  If  F(Q,  u) is written for the intersection of a polytope Q c  pd and its 
supporting hyperplane with outward normal direction u c S d ~, then for P c pd 
and each u c S d -~ the relation 

F ( D P ,  u ) =  F(P,  u )+  F ( ( - 1 ) P ,  u) (4) 

holds (see Section 15 of[5]) .  Further, it is known that every simplex (of dimension 
d - 1) is indecomposable in the sense of vector addition, i.e., it has only positively 
homothetic summands [5, Section 15]. By the supposition of this lemma the 
central projection of D P  is a projective ( d -  l ) -arrangement  of m ( d - 2 ) - f l a t s  
with no common point. As is shown in [12], such an arrangement has (at least) 
m ( d - l ) - c e l l s  which are projective simplices. Hence D P  has (at least) 2m 
simplices as facets. By their indecomposability they cannot be vector sums of 
r-faces (1-<-r <- d - 2 )  of  P and ( - 1 ) P  in the sense of  (4). Thus each of their m 
nonoriented facet normals is also a facet normal of P, corresponding to simplex 
facets of  this polytope in each case. Therefore nonsimplices as ( d -  1)-faces of 
P are excluded. [] 

Lemma 2. Let P be a convex d-polytope ( d >- 3). For every ( d - 2)-equator f 4  c 
bd D P  there exists exactly one ( d -2 ) -c i rc le  M ~ bd P with 

(x~-x2)c~7/  =:> x~ ,x2cM.  

Proof  For genera t ing /~  it suffices to use the (d -2 ) - ske le ton  of P (see (4) and 
the definition of M). Let us consider the union of all difference sets generated 
from the intersections of this skeleton with hyperplanes whose normals are 
orthogonal to lin/~7/. Clearly, M is exactly the relative boundary of this union. 
We assume that more than one such difference set meets M. Then there would 
exist a point x c / ~  belonging to the relative boundaries of two such difference 
sets DP~ and DP2, whose generators P~, P: ~ P lie in different parallel hyper- 
planes. Hence 

X = X l - - x 2 = y l - - y 2 ,  X I , x 2 E P 1 ,  y l , y 2 c  P2, 

would hold. Since conv{x~, x2, Yl, Y2} is a nondegenerate parallelogram, x would 
be a relatively interior point of  conv{y~- x2, x~-Y2}  c DP. 

By (y~ -x2) ,  (x~ -Y2)~ lin M', x cannot lie in a face of D P  which fully belongs 
to l in/~.  But this contradicts the definition of /~. Thus /~ is generated by 
the difference set of exactly one linear (d - 1)-cut of the used (d -2) -ske le ton .  
The additivity of faces of convex bodies under vector addition (see (4)) 
implies that this linear cut is homeomorphic  to a ( d - 2 ) - s p h e r e ,  i.e., it is a 
(d - 2)-circle. [] 
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Lemma 3. Let conv M~ (i = 1, 2) be two ( d - 1 )-simplices whose relative boundaries 
M~ are ( d -2)-c irc les  o f  P 6 pd. I f  each Mi generates a ( d -2 ) - equa tor  1Qli c bd D P  
(in the sense o f  the preceding lemma ), then the simplices conv M~ coincide in d - 1 
pairs o f  extreme points. 

Proof. Since every edge of these simplices is also an edge of P, conv M~ lies in 
a closed half-space with respect to aft Mj, {i , j}  = {1, 2}. Let v~, v2e vert P be two 
extreme points ofconv M2 with v~, v2~ cony M~. We now distinguish two subcases 
regarding the relative position of conv M~ and conv{v~, v2}. 

1. There exists no parallel projection of  R d onto aft Ms with the property that 
the image of  conv{v~, v2} is contained in conv Ms. Then we choose a parallel 
projection such that the image of  conv{v~, v2} covers the longest chord of the 
same direction in cony Ms. The following considerations confirm the existence 
of such a projection. 

For aff{v~, v2}llatr Ms all possible image lines of  aft{v1, v2} in aft Ms are 
parallel. Thus one of  them contains the longest chord of  conv M~ with the same 
direction. By the supposition this chord is contained in an image of  conv{v~, v2} 
on this line. For aft{v1, v2}~aff M~ we use the point {Po} := aff{v~, v2} m aft MI.  If  
{ v 3 , . . . ,  Vd+2} denotes the vertex set of conv Ms, then 

Po = h 3 v 3  + ' ' ' +  hd+2Vd+2, 

d+2 

~. h i = l ,  
i=3  

is obtained. The assumed projection property implies Po~ conv Ms. Therefore at 
least one hi above has to be negative and at least one positive. Without loss of 
generality we can write 

A 3 < 0 , . . . , h k < 0  , /~k+l :> 0 ,  . . . , /~d+2 ~ 0 ( 3 < k < d + 2 )  

and define 

Introducing 

k d+2  

TI "=  ~ h i # 0 ,  3"2 . =  ~ hi~0,  3"2+3"2_1. 
i=3 i = k + l  

1 k 1 d+2 
p ~ : = - - Y  l~iv i and p2: = -  ~ hivi, ( 5 )  

3-1 i=3 3-2 i = k + l  

we see by P0 = rlp~ + r2p2 (r~ + r2 = 1) that Po is a point from aff{p~, Pz}. On the 
other hand, by (5) we have 

Hence 

Pl E conv{v3 , . . . ,  Vk}, P2 e conv{vk+l . . . .  , Vd+2}. 

aff{p~, P2} ~ conv Ms = c o n v  (Pl, P2}. 
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Obviously, the sets { v 3 , . . . ,  vk} and {Vk+~,..., Vd+2} represent a dissection of 
ext conv MI. Since conv Ml is a (d - 1)-simplex, there exist two uniquely deter- 
mined parallel ( d - 2 ) - f l a t s  Hi ,  H2 in aft M~ with 

{v3 . . . . .  vk}c H, ,  {vk+l . . . .  , Vd+2} C H2, 

and p~ c H i ,  p2 ~ H 2. Because further conv M~ is contained in conv(Hi w H2), no 
chord of conv MI parallel to cony{p1, P2} can be longer than this segment. Thus, 
the existence of a parallel projection with the demanded property is confirmed. 

Now let us fix the position of the origin relative to conv Ml and conv{v~, v2}. 
(Clearly, the presented relations are translation invariant. This determination of 
o is only taken for the sake of convenience.) We denote by v'j, v~ the images of 
v~, v2 with respect to the introduced parallel projection. Let v'~ coincide with Pl- 
Then P2 (by the supposition a relatively interior point of conv{v'~, v~}) will be 
the origin. 

Our next step is the confirmation of 

conv{v ' l -  6v'2, 6v2-v'l} c DP (6) 

for a suitable 6 with 0 < 6 <  1 (and 6 ~�89 To see this, we consider the 
parallelogram conv{v~, v2-v '~, -v~,  V'l-v2}. By (3) the vertices of  this 4-gon 
belong to DP, and with vt, v2 ~ aft MI they do not lie in aft M~. 

We introduce a Cartesian coordinate system in the 2-plane of the parallelogram 
by using an 2- and a )7-axis. By 

l)l = (2"1 , y , )  , -~1 , 21 ~" 0 ,  ~)'1 = (21 , 0 ) ,  

v~ = ( -2~ ,  Y2), 22, Y2 > o, y, ~ Y2, v~ = ( -2~ ,  0), 

the relations 

v2- v'~ = (-21 - 22, Y2) and - v ,  = ( - ~ ,  -)71) 

hold. For p = (2,)7) from aft{v2 - v'l, -v l}  the equation 

-22()7 + f , )  = ()7, + y2)(,z + ~,) 

is observed. The intersection of this line and the 2-axis is a point q(~, 0) with 

)7122 .J~l 
t]=-~,-)~+)7-----~, i.e., q=-v'~+Sv'2, 6=)7~+)7-----~. 

(Because)71, )72 > 0 the relation 0 < 6 < 1 is clear, and )7 ~ 372 implies 6 ~ �89 
Thus, by the symmetry of DP with respect to o the inclusion (6) is proved. 

Since lip,-p21l is the maximal chord length of cony M~ in the direction v',/llv',ll c 
s d-l, we have (V'l - 6v'2) ~ DM~ (DMI = M~ + ( -  1) M~), although the relation 
(v~-  6v'2)~ (DP n aft/~r~) holds. Thus, by Lemma 2 the ( d -  2)-circle M~ cannot 
generate a (d - 2)-equator  of  DP. 
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2. There exists a parallel projection of the line segment conv{v,, v2} into the 
set conv M,.  We now use the oppositely oriented projection, namely from 
conv{v'~, v~} onto conv{vl, v2}. Since Hv2-v,[] is an edge length of conv m2, we 
get •  v2)e ext DM2 (see [8]). By (3) the points •  v'2), •  v'~) belong 
to DP. On the other hand, the inclusions 

•  - v2) e relint conv{i(v' l  - v2), •  v~)} 

hold. Since these line segments are not fully contained in aft M2, the relative 
boundary of ME+(-1)M2 cannot be a ( d - 2 ) - e q u a t o r  of DP. [] 

Lemma 4. For P c p3, let the central projection of DP and the projective diagram 
,4~ of HP coincide. Then P is a tetrahedron. 

Proof. Clearly, this coincidence implies that P is simplicial (see Lemma 1) and 
that to each facet of  P, there exists a parallel 1-equator in bd DP. Here we 
distinguish two subcases with respect to 1-circles of  P that are generators of 
1-equators in bd DP. 

1. Let us assume that every such 1-circle is the relative boundary of a facet of  
P. Since P has only triangles as facets, we can identify the sets conv M, and the 
points vi (i = 1, 2) from the proof  of Lemma 3 with facets and vertices of P. Each 
nonsimplex P c  p3 has two vertices not contained in one of its facets. (For the 
dual version of this statement see 1-13].) Thus, assuming that nonsimplices P have 
no parallel 2-faces, Lemma 3 implies the existence of facets of  these polytopes 
not parallel to 1-equators in bd DP. On the other hand, if a nonsimplex P e p3 
has a pair {conv M, ,  conv M2} of parallel 2-faces, then by Lemma 2 (and suitable 
notation) 

(M1 + ( - 1 ) M I )  _c relint(M2 + ( -  1)M2) (7) 

must hold. Then let us consider the three facets having edges in common with 
conv M,.  Obviously, their longest chords in the directions of  these edges are the 
edges themselves. Hence by (7) the relative boundaries of these three triangles 
cannot generate 1-equators in bd DP, too. We can continue this process of  crossing 
over to further neighboring facets through all the boundary of P. But this 
contradicts the assumed existence of 2-faces in bd P whose relative boundaries 
generate 1-equators in bd DP. Thus a nonsimplex P e p3 cannot have only relative 
facet boundaries as 1-circles which generate the 1-equators of  DP. 

2. Therefore we have to assume the existence of such a generating 1-circle 
L c bd P which is not a relative facet boundary of the nonsimplex P e p3. We 
denote by G the projective line representing L +  ( - 1 ) L  in the central projection 
A~ of DP. Then each 0-cell from G is contained in (at least) three lines of this 
projective 2-arrangement. Namely, by the connection of .A~ with l i P  the line (~ 
must represent a zone of  this zonohedron, i.e., a facet normal of  P which is 
orthogonal to aft L. Further, every edge of P in L belongs to two facets of  the 
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polyhedron whose normals are different and, additionally, different from the 
facet normal described above. Thus, arbitrarily oriented directions of these three 
normals form a linearly dependent system, whose representatives are pairwise 
linearly independent. Such a system corresponds to a triplet of projective lines 
through one 0-cell from G in fi2.  In general, for a projective 2-arrangement fi,~ 
of  m lines with no common point the following relations are known or can be 
derived without difficulty (see Section 18 of [5]). 

I f f  (i c {0, 1, 2}) denotes the number of/-cells,  p, ( j  >- 3) the number of  j-sided 
2-cells, and Wk (k-->3) the number of 0-cells which belong to k projective lines 
of A~, then with c := ~k-~3 ( k -  2)wk we obtain fo-.f~ +f2 = 1 (Euler's relation for 
~2) ,  ~j~3 Pj =f2, ~j~_~ jPj = 2fj, andf~ = 2fo+ c. It is obvious, that the first lemma 
implies P3 = m and pj = 0 ( j  > 4). A suitable combination of these equations leads 
to 2c = m - 4 .  But since (at least) three projective lines of fi~, are incident with 
every 0-cell from G, 2c cannot be smaller than m - 1. Hence we finish, as in the 
first case, with a contradiction. [] 

These lemmas allow the formulation of 

Theorem 1. For a convex d-polytope P ( d >- 3) the projective diagram of HP and 
the central projection of  DP coincide if and only if P is a simplex. 

Proof Because each simplex has this property (see [8]), only the converse 
implication remains to be verified. By means of Lemma 4 we may assume that 
in Pa ~ (d-> 4) the simplices are characterized by such a coincidence. Further, 
we also assume that for P c  pd the projective arrangement fi~-~ has this double 
meaning. We shall show that P is then a d-simplex. Let (~ be an arbitrary 
( d - 2 ) - e q u a t o r  from bd DP. Obviously, the ( d - 1 ) - p o l y t o p e  conv (~ is then 
(d -3) -equator ia l .  By Lemma 2 there exists a uniquely determined (d -2) -c i rc le  
Q c bd P with conv (~ = Q + ( -  1) Q. We write ~pa- ~ (p < m) for the relative central 
projection of DQ := Q + ( -  1) Q in the (d - 2)-plane at infinity with respect to the 
projective augmentation of lin DQ. Now let us show that the assumed correspon- 
dence -d-I -e--2 DQ, of A,, , l iP, and DP implies an analogous connection between Ap , 
and the relative projection body li(~ of cony Q =: (~. Clearly, an arbitrary relative 
facet of Q equals just a ( d - 2 ) - f a c e  of P. Thus such a face R is the intersection 
of exactly two facets of  P, whose normals span a 2-subspace totally orthogonal 
to aff R. Therefore the set of  the relative facet normals of (~ is contained in the 
set of  orthogonal images of  facet normals of  P in lin DQ. If  q is the number of 
the relative facet normals of  (~, this means q-< p. On the other hand, we have 
p-< q. This follows by Shannon's  result that fi, pa 2 contains (at least) p projective 
(d-1)-s impl i .ces ,  necessarily corresponding here to (at least) p relative facet 
normals of  Q (see Lemma 1). Hence I-IQ and DQ have the same ( d - 2 ) -  
arrangement as the relative projective diagram (resp. relative central projection). 
Hence, by the induction hypothesis (~ ~ pd-~ is a ( d -  1)-simplex. 

Now l'et C denote the complex of all ( d - 1 ) - s i m p l i c e s  Qi which generate 
(d - 2 ) - e q u a t o r s  of  D P  (i = 1 , . . . ,  m). From a statement in [13] it follows that 
each nonsimplex P ~ pd has a facet not containing two vertices of  P. This and 
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Lemma 3 imply that conv C is a d-simplex, say S. If l iP  has less than d +  1 
zones, then P is necessarily a d-parallelotope, whose difference set is not 
(d-2) -equa tor ia l .  Thus m = d + l  and D S =  DP. Finally, we confirm that this 
equality implies S = P. 

We have So_ P. For {eo , . . . ,  e d } : =  v e r t  S in [8] the relation 

v e r t D S = { e , - e j } ,  i, j 6 { O  . . . .  ,d},  i r  (8) 

was shown. If there exists an extreme point z of P with z ~ S ,  then + ( z - z ' ) ~  
vert DS holds, where z' denotes a suitable point from vert P. For z '~ vert S this 
relation contradicts (8), and z' r vert S implies the existence of a pair k, l from 
{0 , . . . ,  d} with +(ek-e~) = +(z--z ' ) .  But then ek-e l  would be from the relative 
interior of c o n v { e  k -- z', Z -- er} c DP, contradictory to ( e  k -- et) ~ vert DP. [] 

3. Formulation of the Result and Its Equivalents 

For assertions which are equivalent to the announced polarity property we 
introduce some additional notions. Let _V~(P, u) denote the inner 1-quermass of 
p ~ pa at u ~ S d-~, i.e., the length of the longest chord of this polytope in direction 
u. On the other hand, by V,l I(P, u) we define the outer (d - 1)-quermass (bright- 
ness) of P at u, i.e., the area of the orthogonal image of P in {xe R d I (x ,  14)- -0}  

(see Section 7 of [4]). A (compact) d-prism Du with generators in direction u is, 
by definition, the nondegenerate vector sum of a polytope from p d - i  and a line 
segment with this direction. If  under the condition P c  D. the volume V(D, )  is 
minimal, then this prism is said to be optimally circumscribed about P ~ p d .  Now 
we are ready for 

Theorem 2. The following properties of  a convex d-polytope P (d->3) are 
equivalent: 

(A) The polytope P is a d-simplex. 
(B) The difference set D P  and the projection body l i P  are polars with respect 

to a sphere 6. S d-~ for some 6 ~ R +. 
(C) The inner 1-quermass and the brightness of  P satisfy 

y,(P, u). G - , ( P ,  u)  = a ~ 

for each u c S d-~ and some 6 ~ R +. 
(D) For P all optimally circumscribed d-prisms have the same volume. 

A,, , and D P  is a necessary Proof. Since the introduced correspondence of  liP, -d-1 
condition for the polarity of I I P  and D P  with respect to 6. S d-~, by [8] and the 
first theorem, (A)C:~(B) is confirmed. From the definitions of l i P  and D P  it 
follows that Y1(P, u), u ~ S  d-~, is reciprocal to the restriction g(DK, u):= 
min{p > O[ u ~ p D K }  to S a-~ of the distance function of DP, whereas ~"a-~(P, u) 
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represents the correspondingly restricted support function h(FIP, u):= 
max{(u, Y)IY c riP} of liP. Since polarity of l i P  and D P  with respect to 6. S a-I  
(~5 c R +) is equivalent to h(FIP, u ) / g ( D K ,  u) = 62 for all u c S a 1 [7, Section 12], 
(B)r is verified. Let Tu denote a chord from P c  pa of maximal length in 
direction u. Then both endpoints of Tu lie in parallel supporting hyperplanes of 
P [4, Section 7]. Therefore min{ V(D~)] p_c D,} = Va-I(P, u) �9 Vj(P, u) for each 
U ~  S d 1 and (C)r  are obtained. [] 

4. Concluding Remarks 

Obviously, by Theorem 2 the polarity of H P  and the central symmetrization �89 

[7, Section 20], [4, Section 9] is also a characteristic property of  simplices in pa 
(d---3). We might extend the investigations to the set K a of convex bodies 
(compact,  convex sets with interior points) in R a and ask whether the polarity 
of  I l K  and D K  implies that K ~ ( K a \ P  a) is a d-ellipsoid (d->3).  For d = 2 ,  
Theorem 2 remains true if K a is written instead of pa and if simplices are 
replaced by convex domains whose difference sets are bounded by Radon curves 
[7, Section 13]. Assuming polarity of H K  and DK, we can estimate the constant 
62 (see Theorem 2) in terms of the volume V ( K )  of K c K a for d -> 2. Namely, 
by [8] and a result from [10] we have 

20Jd 1 7Fd/2 
- -  V ( K ) ~ 8 2 < - d V ( K ) ,  wd .-- 

Wd F(1 + d /2 ) '  
d_>2. 
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