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Convex projective structures on Gromov–Thurston
manifolds

MICHAEL KAPOVICH

We study Gromov–Thurston examples of negatively curved n–manifolds which do
not admit metrics of constant sectional curvature. We show that for each n> 3 some
of the Gromov–Thurston manifolds admit strictly convex real-projective structures.

53C15, 53C20; 20F06

1 Introduction

Gromov and Thurston in [10] constructed, for each n � 4, examples of compact n–
manifolds which admit metrics of negative curvature, with arbitrarily small pinching
constants, but do not admit metrics of constant curvature. We review these examples in
Section 3. The main goal of this paper is to put convex projective structures on Gromov–
Thurston examples. Suppose that ��RPn is an open subset and � �PGL.nC1;R/

is a subgroup acting properly discontinuously on �. The quotient orbifold QD�=�

has the natural projective structure c . The structure c is said to be (strictly) convex iff
� is a (strictly) convex proper subset of RPn . In this case we refer to Q as (strictly)
convex projective orbifold.

Our main result then is the following theorem.

Theorem 1.1 Gromov–Thurston examples admit strictly convex projective structures.

We refer the reader to Section 7 for the more precise statement. Our theorem will be
proven in Section 7 via “bending” of the original hyperbolic structure on a certain
hyperbolic manifold M (used to construct Gromov–Thurston examples) in the manner
similar to [10], where flat-conformal structures were constructed on certain negatively
curved manifolds.

There are two parts in this proof: (1) Producing a projective structure, (2) prov-
ing that the structure is convex. Then strict convexity of the structure follows from
the Benoist’s theorem below (Theorem 1.2), since Gromov–Thurston examples have
Gromov-hyperbolic fundamental groups.
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Part (1) is dealt with by solving a certain product of matrices problem, which is a
special case of a Lie-theoretic problem interesting on its own right, see Section 5. The
projective manifolds M 0 are then built by gluing convex subsets of the hyperbolic
manifolds M . By passing to the universal cover we obtain a tessellation of zM 0 by
convex polyhedra in Hn , each of which has infinitely many facets.

Dealing with (2) is especially interesting, since, at present, there is only one general
method for proving convexity of projective structures, namely via Vinberg–Tits fun-
damental domain theorem [17]. Unfortunately, this theorem applies only to reflection
groups, which cannot be used in higher dimensions. Our approach to proving convexity
is to adapt Vinberg’s arguments in a more general context of manifolds obtained by
gluing convex cones with infinitely many faces. In this setting, Vinberg’s arguments
(requiring polyhedrality of the cones) do not directly apply and we modify them by
appealing to the small cancellation theory, see Section 4.

Remark J Lee recently proved a generalization of the fundamental domain theorem
for projective structures coming from a certain class of compact convex polyhedra not
covered by Vinberg–Tits theorem, see [14]. It is interesting to note that while one of
the key geometric ingredients of our proof is the geometry of CAT .0/ spaces, the
proof of J Lee uses the geometry of Alexandrov spaces (with curvature � 1).

The main motivation for this paper comes from the following beautiful theorem.

Theorem 1.2 (Y Benoist, [2]) Suppose that a convex projective orbifold M is
compact. Then M is strictly convex iff � D �1.M / is Gromov-hyperbolic.

Examples of convex-projective structures on compact orbifolds are provided by the
quotients of round balls in RPn by discrete cocompact groups of automorphisms. The
Hilbert metric on such examples is a Riemannian metric of constant negative sectional
curvature. Thus such orbifolds are hyperbolic. By deforming the above examples in
RPn one obtains other examples of strictly convex projective manifolds/orbifolds.

In 2002 I was asked by Bruce Kleiner and Francois Labourie if one can construct
examples of compact strictly convex projective manifolds which are not obtained by
deforming hyperbolic examples. The main goal of this paper is to prove that such
examples indeed exist in all dimensions � 4. Independently, such examples were
constructed by Yves Benoist in dimension 4 using reflection groups, see [3]. The paper
[3] also produces “exotic” strictly convex subsets � in RPn for all n� 3: The metric
space .�; dH / is Gromov-hyperbolic but is not quasi-isometric to Hn , where dH is
the Hilbert metric on �. However these examples do not appear to admit discrete
cocompact groups of automorphisms.
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Organization of the paper In Section 2 we review the basics of convex projective
structures; we also prove a relative rigidity result for certain hyperbolic manifolds with
corners. In Section 3 we describe Gromov–Thurston examples in details and prove that
they are not homotopy-equivalent to hyperbolic manifolds.

In Section 4 we prove the main technical result of this paper, a convexity theorem for
a certain class of projective structures. It is used to prove convexity of the projective
structures on Gromov–Thurston examples. In Section 5, we use hyperbolic geometry
in order to solve an algebraic “product of matrices” problem, which is the algebraic
ingredient of the proof of Theorem 1.1. In Section 6 we describe the bending defor-
mations of projective structures. These deformations are used in order to convert the
algebraic results of Section 5 into projective structures on Gromov–Thurston examples.
In Section 7 we put everything together and prove Theorem 1.1.

Acknowledgments During the work on this paper I was partially supported by the
NSF grant DMS-04-05180. I am grateful to John Millson for explaining to me the
construction of arithmetic examples in Section 3, to Yves Benoist and Bruce Kleiner for
useful conversations and to Martin Bridson for several remarks concerning geometry
and topology of the complex Z used in this paper. I am also grateful to the referee for
several useful suggestions.

2 Geometric preliminaries

2.1 Projective structures

Let X be a real-analytic n–manifold and G Õ X be a real-analytic Lie group action.
An .X;G/–structure on an n–manifold M is a maximal atlas AD f.Ui ; �i/W i 2 Ig

where the Ui are open subsets of M and �i W Ui! �i.Ui/�X are charts, so that the
transition maps

�j ı�
�1
i

are restrictions of elements of G . Every .X;G/–structure on M determines a pair

.dev; �/

where devW zM ! X is a local homeomorphism defined on the universal cover of
M and �W �1.M /! G is a representation so that dev is �–equivariant. The map
dev is called the developing map and � is called the holonomy representation of A.
Conversely, each pair .dev; �/, where � is a homomorphism �1.M /!G and dev is
a �–equivariant local homeomorphism, determines an .X;G/–structure on M .
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Remark Analogous definitions make sense for orbifolds.

Clearly, every open subset ��X has a canonical .X;G/–structure can induced from
X . If � �G acts properly discontinuously and freely on � then can projects to the
quotient manifold �=� .

The most relevant examples of .X;G/–structures for this paper are:

(1) (Real) projective structures, where X DRPn , GDPGL.nC1;R/ is the group
of projective transformations.

(2) Affine structures, where X D Rn , G D GL.n;R/Ë Rn is the group of affine
transformations.

Clearly, every affine structure is also projective. Conversely, given any projective
structure on M n there is a canonical affine structure on the appropriate line bundle
over M n , induced by the tautological line bundle over RPn .

We refer the reader to Goldman [8; 9] and Choi–Goldman [5] for the foundational
material on real-projective structures.

2.2 Convex sets

For a subset E � RPn , let Span.E/ denote the smallest subspace in RPn containing
E . We will use the notation xE to denote the closure of a subset E of a topological
space.

A subset K�RnC1 is called a convex homogeneous cone if it is convex and is invariant
under multiplication by positive numbers. The cone K is proper if K ¤ RnC1 .

A subset C � RPn is said to be convex if it is the image of a convex homogeneous
cone yC � RnC1 n f0g under the projection

projW RnC1
n f0g ! RPn:

An open subset C �RPn is convex if and only there exists a linear subspace RPn�1�

RPn such that C is a convex subset of the affine space An D RPn nRPn�1 .

Suppose that � is an open convex subset of RPn . Then � is said to be strictly convex
if its frontier contains no nondegenerate segments.

Given a point x 2 Rn and a set B � Rn , let †D Conex.B/ denote the union of all
segments xb; b 2 B . We will refer to x as the tip and B as the base of this cone.

Lemma 2.1 If B is convex then † is also convex.
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Proof Let p; q 2 †. Then there exist a; b 2 B such that p 2 ax; q 2 bx . Thus the
segment pq is contained in the planar triangle �.a; b;x/ with the vertices a; b;x .
Since ab � B , it follows that

pq ��.a; b;x/�†:

Lemma 2.2 Let C � Rn be an open convex subset, x 2 xC and y 2 C . Then the
half-open interval .x;y� WD xy n fxg is contained in C .

Proof Let B � C denote an open round ball centered at y and let †D Conex.B/

denote the cone with the tip at x and base B , which is the union of the segments
connecting x to the points of B . Then the open segment .x;y/ is contained in the
interior †0 of †. By convexity, †� xC . Hence .x;y/�†0 � C .

Suppose that A is a projective structure on an n–manifold M . Let zA denote the lift
of A to the universal cover zM of M .

Definition 2.3 The projective structure A is called convex if devW . zM ; zA/! RPn is
an isomorphism onto a convex subset in RPn .

In other words, convex projective structures appear as quotients �=� , where ��RPn

is convex and � is a properly discontinuous group of projective transformations of �.

2.3 Relative rigidity

The results of this section will be used in the proof of Theorem 3.3. The key problem
discussed here is a special case of the following relative version of Mostow Rigidity
and Calabi Local Rigidity.

Problem 1

(1) Let .X;g0/ be a compact convex hyperbolic manifold of dimension n � 3.
Suppose that gt is a continuous family of hyperbolic metrics on X so that all the
manifolds .X;gt / are convex hyperbolic manifolds and the induced path metric
on @X is constant. Does it follows that all manifolds .X;gt / are isometric?

(2) Suppose that X1;X2 are compact convex hyperbolic manifolds of dimension
n� 3 and

hW .X1; @X1/! .X2; @X2/

is a homotopy-equivalence of pairs, which induces an isometry of the boundaries
with respect to the induced path metric. Does it follow that h is homotopic to
an isometry X1!X2 ?

Geometry & Topology, Volume 11 (2007)
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The problem is closely related to Kapovich [11, Problem 11.8]. To the best of my
knowledge, both parts of Problem 1 are open even for nD 3. We will consider this
problem in the special setting of manifolds with corners defined below.

Definition 2.4 Let .X;g/ be a metrically complete hyperbolic n–manifold with
convex boundary. We will say that .X;g/ is a convex hyperbolic manifold with
codimension 2 geodesic corners if the following holds. The boundary @X is the union
Y C[Y � , where Y ˙ are compact totally-geodesic submanifolds of dimension n� 1,
so that Y C \ Y � D Z is an n� 2–dimensional totally-geodesic submanifold. The
submanifold Z will be called the corner in X . See Figure 1.

Y �

Z

Y C

X

Y �

Y C

z ˛.z/

X

Figure 1: Manifold with codimension 2 corners.

We then obtain the induced path metric gj@X on the boundary of X . Clearly, the
induced metric is hyperbolic. At each point z 2Z we have the dihedral angle ˛.z/ at
which Y C meets Y � along Z . The dihedral angle ˛.z/ is locally constant along Z .
To simplify the notation we will frequently omit the metric g and will simply say that
X itself is a convex hyperbolic manifold with codimension 2 geodesic corners. Given
two such manifolds X1;X2 , a proper isometry

@X1! @X2

is an isometry of the induced metrics which carries Z1 to Z2 . We will say that X is
symmetric if it admits an isometric involution � W X !X which fixes Z pointwise and
interchanges Y C and Y � .

One can prove the following relative version of Calabi’s Local Rigidity Theorem
(although we do not need it for this paper).
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Theorem 2.5 Let X be a compact manifold of dimension � 3, gt is a continuous
family of hyperbolic metrics on X so that all the manifolds .X;gt / are convex hyper-
bolic manifolds with codimension 2 geodesic corner Z (which does not depend on the
metric) and the induced path metrics on @X are all isometric. Then all the manifolds
.X;gt / are isometric.

For the purposes of the proof of Theorem 3.3, we will need the following simple relative
version of the Mostow Rigidity Theorem.

Lemma 2.6 Let n � 3. We assume that X1;X2;X3 are symmetric n–dimensional
compact convex hyperbolic manifold with codimension 2 geodesic corners, so that the
dihedral angles at the corners of X1;X2;X3 are constant and equal to

˛1 D
�

m
; ˛2 D

�

m� 1
; ˛3 D

2�

2m� 1

respectively, where m 2 Z, m � 2. Then there cannot exist a pair of homotopy-
equivalences

f13W .X1; @X1/! .X3; @X3/; f23W .X2; @X2/! .D3; @X3/

which restrict to proper isometries on the boundaries of these manifolds.

Proof The idea of the proof is to construct two homotopy-equivalent non-isometric
hyperbolic n–manifolds W 0;W 00 by gluing copies of X1;X2;X3 in two different ways
and then obtain a contradiction with the Mostow Rigidity Theorem.

(1) We construct W 0 by gluing 2m � 1 copies of X3 (the manifolds X3 � fig,
i D 1; : : : ; 2m� 1) via isometries between the copies of Y C

3
and Y �

3
. Here we

are using the fact that X3 is symmetric; therefore we have the isometry from
Y C

3
� fig to Y �

3
� fi C 1g. See Figure 2. The resulting manifold is a connected

compact manifold which is clearly hyperbolic away from the image Z0 of the
union of corners

2m[
iD1

Z3 � fig:

Since the total angle along Z0 is

.2m� 1/
2�

2m� 1
D 2�;

the manifold W 0 is hyperbolic. We let Y 0i ; i D 1; : : : ; 2m� 1 denote the sub-
manifolds with boundary in W 0 , which are the images of

Y C
3
� fig; i D 1; : : : ; 2m� 1:
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Y C
1

Z1

X1

Y �
1

Z2

Y C
2

Y �
2

X2

Y C
3

Z3

Y �
3

X3

W 00

X1

Y 002

Y 001

X2

X1
Y 003

W 0

X3

Y 02

X3

Y 0
1

Y 0
3

X3

Figure 2: Gluing manifolds W 0;W 00 in the case mD 2 .

Thus Z00 D @Y 0i for each i .

(2) We take m copies of X1 , m� 1 copies of X2 and glue them together using
isometries interchanging Y ˙i , i D 1; 2, as in Figure 2. As in Part 1, the resulting
manifold W 00 is hyperbolic since

m
�

m
C .m� 1/

�

m� 1
D 2�:

We let Z00 � W 00 denote the image of the union of corners of the manifolds
X1 � fig;X2 � fj g. Let Y 00i denote the submanifolds with boundary in W 00

which are the images of

Y C
1
� fig; i D 1; : : : ;m; Y C

2
� fig; i DmC 1; : : : ; 2m� 1:

Define a map

f W W 00!W 0
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by using the maps

f13 � figW X1 � fig !X3 � fig; i D 1; : : : ;m;

f23 � figW X2 � fig !X3 � fig; i DmC 1; : : : ; 2m� 1:

We leave it to the reader to verify that we get a homotopy-equivalence f W W 00!W 0 .
By the construction, f .Z00/DZ0 and

f .Y 00i /D Y 0i ; i D 1; : : : ; 2m� 1:

By Mostow Rigidity, there is an isometry �W W 00 ! W 0 homotopic to f . Since
Y 0i ;Z

0;Y 00i ;Z
00 are totally-geodesic, it follows that

�.Z00/DZ0; �.Y 00i /D Y 0i ; i D 1; : : : ; 2m� 1:

Therefore for each i , the dihedral angles between Y 00i ;Y
00
iC1

are equal to the dihedral
angles between Y 0i ;Y

0
iC1

. The former angles however are equal to ˛3 and the latter
are equal to ˛2 or ˛3 respectively. Contradiction.

We now show that Lemma 2.6 can be improved provided that n� 4. The requirement
that n � 4 stems from the fact that our proof uses the Mostow Rigidity Theorem in
dimension n� 1.

Lemma 2.7 Let n�4. We assume that X1;X2 are symmetric n–dimensional compact
convex hyperbolic manifolds with codimension 2 geodesic corners, so that the dihedral
angles at the corners of X1;X2 are constant and equal to

˛1 D
�

m
; ˛2 D

�

m� 1

respectively, where m 2 Z, m� 2. Then there is no proper homotopy-equivalence

f12W .X1; @X1/! .X2; @X2/:

Proof Suppose that the homotopy-equivalence f12 exists. Since the boundaries of
X1;X2 (with the induced hyperbolic metrics) are compact hyperbolic n�1–manifolds
and n � 1 � 3, it follows from Mostow rigidity that f12 is homotopic to a proper
homotopy-equivalence which is an isometry of the boundaries of these manifolds. We
retain the notation f12 for the new homotopy-equivalence.

We will use the manifolds X1;X2 to construct a third manifold with corners X3 so
that X1;X2;X3 satisfy the assumptions of Lemma 2.6.

Take m isometric copies of the manifold X1 :

X1 � fig; 1� i �m;
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and m� 1 isometric copies of the manifold X2 :

X2 � fig;mC 1� i � 2m� 1;

and glue them together similarly to the proof of Lemma 2.6. Since

m
�

m
C .m� 1/

�

m� 1
D 2�;

the resulting manifold M is a compact connected hyperbolic n–manifold. The homoto-
py-equivalence f12W X1!X2 yields a homotopy-action

�W Z2m�1 Õ M

which cyclically permutes the above copies of X1 and X2 . We now use the assumption
that X1 is symmetric (the earlier arguments were only using the symmetry of the
boundaries of X1 and X2 ). Let �1W X1! X1 be an isometric reflection fixing Z1 ,
the fundamental domain for h�1i is a manifold with corners X4 which “half” of X1 ;

@X4 D Y C
4
[Y �4 ;

where Y C
4
D Y C

1
.

Since all the “pieces” of M were properly homotopy-equivalent to X1 , it follows that
the homotopy-action � extends to a homotopy-action of the dihedral group

�W D2m�1 Õ M:

A “fundamental domain” for this action is the image of X4 in the appropriate copy of
X1 in M . By abusing the notation, we again denote this image by X1 . By applying
the Mostow Rigidity Theorem (in dimension n) we replace the above homotopy-action
with an isometric action

�W D2m�1 Õ M:

The fixed hypersurfaces for the reflections in �.D2m�1/� Isom.M /, of course, are
not the same as the fixed hypersurfaces for the corresponding reflections in �.D2m�1/,
but they are homotopic to each other. Therefore we can choose a fundamental domain
for the action � to be a manifold with corners X5 �M , so that

@X5 D Y C
5
[Y �5 ;

�1.X5/D �1.X4/� �1.M /;

�1.Y
˙
5 /D �1.Y

˙
4 /� �1.M /:

We let � 2D2m�1 be such that �.�/ is an isometric reflection fixing Y �
5

and set

X3 WDX5[ �.�/.X5/:
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Then X3 is a compact hyperbolic n–manifold with geodesic corners,

@X3 D Y C
5
[ �.�/.Y C

5
/D Y C

3
[Y �3 :

The corner Z3 of X3 is homotopic to the corner of X5 . Clearly, the angle along Z3

equals
2�

2m� 1
:

Since X4 is properly homotopy-equivalent to X5 (with homotopy-equivalence preserv-
ing the corners), we obtain a proper homotopy-equivalence

hW X1!X3:

The boundary @X3 of X3 (with the induced metric) is a hyperbolic n� 1–manifold,
which is properly homotopy-equivalent to the hyperbolic n� 1–manifold @X1 . There-
fore we can homotop h to another proper homotopy-equivalence f13W X1!X3 , which
restricts to an isometry of the boundaries of these manifolds. We set

f23 WD f13 ıf21

where f21 is the homotopy-inverse to f12W X1!X2 . Without loss of generality we
may assume that f21j@X2 D .f12j@X1/

�1 and, therefore, is an isometry. Thus f23

restricts to an isometry @X2! @X3 .

The triple X1;X2;X3 satisfies all the assumptions of Lemma 2.6. Therefore we obtain
a contradiction with that Lemma 2.6.

3 Gromov–Thurston examples

In this section we review Gromov–Thurston examples [10] of compact n–manifolds
(more generally, orbifolds) which admit metrics of negative curvature but do not admit
metrics of constant curvature. Note that Gromov and Thurston [10] have other examples
as well. These examples will not be discussed here.

Consider the quadratic form

'.x/D x2
1 C � � �Cx2

n �
p

px2
nC1

where p is a (positive) prime number, and n � 2. Let z� D Aut.'/\GL.nC 1;Z/;
then z� is a cocompact arithmetic subgroup in Aut.'/ŠO.n; 1/.

We let H denote the Lorentzian model of the hyperbolic space Hn :

fx W '.x/D�1;xnC1 > 0g:
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Consider the linear subspace

V D fx 2 RnC1
W x1 D x2 D 0g:

The intersection V \H is a totally-geodesic codimension 2 hyperbolic subspace. The
stabilizer of V in z� acts cocompactly on V \H since it is isomorphic to the set of
integer points in the algebraic group

Aut.x2
3 C � � �Cx2

n �
p

px2
nC1/:

Suppose that W � RnC1 is a rational codimension 1 linear subspace containing V .
Then the Lorentzian (with respect to ' ) involution �W fixing W pointwise belongs to
GL.nC 1;Q/. Thus the groups z� and �W

z��W are commensurable. Therefore, there
exists a finite index subgroup �W �

z� which is normalized by �W . By applying this
procedure to two appropriately chosen rational hyperplanes W C;W � passing through
V we obtain the following lemma.

Lemma 3.1 Given a number m� 1 there exists a subgroup y� � Aut.'/ commensu-
rable to z� , which contains a dihedral subgroup Dm fixing V pointwise. The generating
involutions in Dm acts as reflections.

By passing to an appropriate torsion-free normal subgroup � � y� we get a compact
hyperbolic manifold M D H=� . Let x� denote the subgroup of y� generated by �
and the dihedral subgroup Dm .

The group Dm acts on M isometrically with a fundamental domain O (that can be
identified with the orbifold M=DmDHn=x� ), which is a manifold with corners so that
the corner (which is possibly disconnected) corresponds to the hyperbolic subspace
V \Hn . Then we can think of the manifold M as obtained by gluing 2m copies of
X . The dihedral angle at the corner is �=m. By abusing the notation we will keep the
notation V for the corner of M .

The boundary of O nV is the union of two codimension 1 totally-geodesic (possibly
disconnected) submanifolds. We denote the closures of these submanifolds Y C;Y �

(they correspond to the hyperplanes W C;W � � Hn ); then V D Y C\Y � .

Assumption 2 We assume from now on that the manifold M admits an isometric
action D2m Õ M of a dihedral group D2m which contains Dm as an index 2 subgroup
and fixes V .

Therefore there is an isometric involution � W O!O which fixes V and interchanges
Y C and Y � . We now construct new a manifold (without boundary) M 0 by gluing
2m� 2 copies of O , cf Section 2.3.
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M

W1 O

W2

V

remove

M 0

V

glue

Figure 3: Constructing the manifold M 0 .

Remark Another class of Gromov–Thurston examples is obtained by gluing 2mC 2

copies of O . Construction of convex projective structures on such manifolds is possible,
but is a bit more complicated than the one explained in this paper, therefore these
manifolds will not be discussed here.

We will think of M;M 0 as doubles of the manifolds N;N 0 which are obtained by
gluing m;m� 1 copies of O respectively. Thus M 0 is obtained by “subtracting” two
copies of O from M .

In Section 7 we will use an alternative description of M 0 . Assumption 2 implies that
the manifold N 0 admits a reflection symmetry � 0 fixing the submanifold V . Then
M 0 is diffeomorphic to the manifold obtained by gluing two copies of N 0 via the
involution � 0j@N 0 of the boundary.

Proposition 3.2 (Gromov, Thurston, [10]) For every sufficiently large m, the mani-
fold M 0 admits a metric of negative sectional curvature varying in the interval

Œ�1C �m;�1�:

Moreover, limm!1 �m D 0.

Remark Note that M 0 admits a canonical singular Riemannian metric which is
smooth and hyperbolic away from V . The negatively curved Riemannian metric on

Geometry & Topology, Volume 11 (2007)
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M 0 is obtained by modifying the above singular metric on a regular R–neighborhood
of V . This modification works provided that R is sufficiently large, which is achieved
by taking large m. Alternatively, one can fix m and pass to an appropriate finite-index
subgroup of � .

Thus �1.M
0/ is Gromov-hyperbolic provided that m is sufficiently large.

Theorem 3.3 (Gromov–Thurston [10]) If n� 4 then M 0 is not homotopy-equivalent
to a closed manifold of constant (negative) sectional curvature.

Proof Our proof is a variation of the argument given in [10]. By construction, the
hyperbolic manifold M is the union of m hyperbolic manifolds with codimension 2
geodesic corners isometric to a fixed manifold with corners X1 WD O . The angle at
the corner of O equals �=m. Suppose that M 0 is homotopy-equivalent to a closed
hyperbolic manifold M 00 . The group Dm�1 acts topologically on M 0 so that the
fundamental domain is homeomorphic to the manifold with corners O . By the Mostow
Rigidity Theorem, there exists an isometric action Dm�1 Õ M 00 and an equivariant
homotopy equivalence

f W M 0
!M 00:

By equivariance, f projects to a homotopy-equivalence

hW M 0=Dm�1!M 00=Dm�1

which preserves the strata of the singular loci of the corresponding orbifolds. We
identify the quotients with the fundamental domains O and O 00 for the corresponding
actions of the reflection groups Dm�1 Õ M 0;Dm�1 Õ M 00 . Thus, X2 D O 00 is a
manifold with codimension 2 corners properly homotopy-equivalent to X1 DO . The
corner of O 00 is fixed by this action of Dm�1 on M 00 . Therefore the angle at the corner
equals �=.m� 1/.

It remains to verify that the hyperbolic manifolds with corners X1 and X2 are symmetric.
By Assumption 2, the isometric action Dm Õ M extends to an isometric action
D2m Õ M . Therefore a generating involution of D2m determines a symmetry �
of X1 which fixes the corner. Hence X1 is symmetric. The symmetry � yields a
symmetry of the fundamental domain of Dm�1 Õ M 0 . Therefore the topological action
Dm�1 Õ M 0 extends to a topological action D2.m�1/Õ M 0 . The latter, in turn, yields
an isometric action D2.m�1/ Õ M 00 extending the isometric action Dm�1 Õ M 00 .
Hence the fundamental domain O 00 DX2 of Dm�1 is also symmetric.

The existence of the proper homotopy-equivalence

.X1; @X1/! .X2; @X2/
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contradicts Lemma 2.7.

Definition 3.4 When n� 4 (and m is sufficiently large), we will refer to the manifolds
M 0 as Gromov–Thurston examples.

4 A convexity theorem

In geometry one frequently constructs geometric objects by gluing together other
geometric objects. For instance, given hyperbolic n–manifolds M1;M2 with totally
geodesic boundaries and an isometry �W @M1! @M2 , one constructs a new hyperbolic
manifold M DM1[�M2 by gluing M1 and M2 via � . Under some mild assumptions,
if M1;M2 are both complete, then so is M . (For instance, it suffices to assume that the
boundaries of both M1;M2 have positive normal injectivity radii.) Another instance of
this phenomenon is Poincare’s fundamental domain theorem, where instead of gluing
manifolds with boundary one glues manifolds with corners.

Recall that in a complete connected Riemannian manifold any two points can be
connected by a geodesic. Therefore, the most natural generalization of the notion of
completeness in the category of projective structures is convexity. The problem however
is that typically, union of convex sets is not convex. Therefore we have to impose
further restrictions in order to get convexity of projective manifolds obtained by gluing
other projective manifolds.

Below is a simple example (which I owe to Yves Benoist) of failure of convexity of an
affine structure built out of convex fundamental domains.

Let P denote the convex 2–dimensional polygon in R2 with the vertices

.1; 0/; .2; 0/; .0; 1/; .0; 2/:

Let A.x/ D 2x and B be the rotation by the angle �=2. By gluing the sides of P

via A and B we obtain an affine structure on the torus. However this structure is not
convex since the image of the developing map is R2 n f0g.

The main result of this section is a version of Poincare’s fundamental domain theorem
in the context of convex projective structures. We will show that, under some conditions,
an affine manifold X obtained by linear gluing of convex homogeneous cones (with
infinitely many faces) is again convex. Projectivizing this statement we get a similar
result for projective structures.

One can also regard this result as a combination theorem for groups of linear trans-
formations (preserving the above cones). The classical Klein–Maskit combination
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P

A

B

Figure 4: Convex fundamental domain P for a nonconvex projective structure.

theorems deal with the fundamental groups of graphs of groups G D �1.G/ and the
combinatorial structure behind these combination theorems is that of a simplicial tree.
Geodesic paths in this tree correspond to the normal forms of the elements of G . In
contrast, we are dealing with the fundamental groups of 2–dimensional complexes of
groups; accordingly, the combinatorial structure of the stratification of X is encoded
in a 2–dimensional cell complex Z . The normal forms that we will be using are
represented by local geodesics in the 1–skeleton of Z . In our analysis of the local
geodesics we are helped by the fact that Z satisfies a strong form of a certain small
cancellation condition; this enables us to describe all local geodesics connecting given
pair of vertices of Z .

For the rest of this section we will assume that C is an open proper convex homogeneous
cone in Rn .
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Definition 4.1

(1) An (open) facet of C is a maximal open convex homogeneous .n�1/–dimension-
al cone contained in the boundary of C .

(2) A codimension k face of C is a maximal open convex .n� k/–dimensional
cone in xC , which is contained in the boundary of C provided that k ¤ 0.

We will use the notations xF ; xC , etc to denote the closures in Rn of faces, cones, etc.
Accordingly, we will refer to closed facets, closed codimension k faces of C , etc.

Let F be a certain collection of faces of F of codimension � 2, so that C 2 F . We
define a new convex cone C 0 as

C 0 D
[

F2F

F:

Then C � C 0 � xC . For a face F 2 F we let F 0 denote the closure of F in C 0 . By
abusing the notation we will continue to refer to the sets F 0 as faces of C 0 .

For each face F of C define the limit set

ƒ.F / WD xF nF 0:

Assumption 3 We assume that C and F are such that:

(1) Each face F 2F of codimension ¤0 is the intersection of the higher-dimensional
faces H 0i 2 F .

(2) For each pair of distinct facets F1;F2 2 F , either xF1\
xF2 D f0g or

xF1\
xF2 n f0g D F 01\F 02

is a codimension 2 face F 2 F .

(3) For each facet F 2F we require ƒ.F / to have empty interior in @F . Therefore,
for every x 2 Rn , the cone †x.ƒ.F // does not locally separate Rn .

(4) We require that for each point x 2ƒ.C / there exists a sequence of distinct facets
Fj 2 F and points xj 2 Fj so that limj xj D x . In particular, the cell C has
infinitely many facets and hence n� 3.

(5) ƒ.C / is closed.

The motivation for this list of assumptions comes from the following example which
will appear in Section 7. Suppose that the projectivization of C 0 is isomorphic to a
closed convex subset H �Hn�1 . (Here we use the projective model for the hyperbolic
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space.) Suppose that G is a discrete subgroup of Isom.Hn�1/ � PGL.n;R/ which
preserves H and such that H=G is compact.

Then the projectivization proj.ƒ.C / n f0g/ of ƒ.C / is the limit set of the group G .
Therefore the limit set ƒ.C / satisfies (4) and (5). Moreover, for each facet F � C 0 ,
the limit set proj.ƒ.F // is the limit set of the stabilizer of proj.F / in G . Therefore
C also satisfies (2) and (3), cf Susskind and Swarup [16].

In fact, the hyperbolic manifold with corners H=G will be the manifold O which
appeared in Section 3. The faces of the cone C will correspond to the totally-geodesic
boundary strata of O . In particular, all the faces will have codimension � 2. This
explains the part 1 of Assumption 3.

Suppose now that X is an affine n–manifold obtained by gluing countably many copies
C 0j ; j 2 J; of the cone C 0 via linear isomorphisms of facets F 0 of C 0 . We will refer
to the cones Cj as cells in X . Cells whose intersection is a facet are called adjacent.
Strata of X are the the faces F 0i of cones Cj . We refer to this partition of X into
strata as the stratification of X .

Assumption 4 We assume that:

(1) For each point in every codimension 2 face E of Cj �X , the tessellation of X

by the adjacent cells is locally isomorphic to a tessellation of Rn by cones cut
off by a family of t hyperplanes passing through a codimension 2 subspace, so
that 4� t <1. (Thus the number of cones containing E is 2t 2 Œ8;1/.) See
Figure 5.

(2) For every pair of cells C 0i ;C
0

j sharing a facet F , the union C 0i [C 0j is convex.

(3) X simply-connected.

Note that this assumption is satisfied in a number of important cases, eg for tessellations
corresponding to linear reflection groups and in the example which appears in Section
7.

In a similar fashion we define a cell complex xX by extending the above gluing maps
to the closed cells xCj . The origin 0 2 xX is the point corresponding to 0 in the closed
cone C . We give X and xX the quotient topology with respect to the projectionG

j2J

Cj !X;
G
j2J

xCj !
xX :

Since X contains infinitely many cells, the space xX is not locally compact (the origin
is incident to infinitely many cells).
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Figure 5: In this example t D 4 .

Remark More generally, one can allow spaces X built out of non-isomorphic convex
cones Cj . The argument used in our proof still apply in this case, but we do not need
this for the purposes of this paper.

We will refer to the closed faces F 0 of X as the strata of X . Hence X becomes a
stratified space with the strata of codimension 0, 1 and 2.

We then have a developing map devW X ! Rn , which is a linear isomorphism on each
cell Cj . The developing map extends naturally to a continuous map devW xX ! Rn .
This map determines the notion of a segment Œx;y� in xX , which is defined as a path
which is mapped by dev homeomorphically to a straight-line segment in Rn .

Definition 4.2 A subset G of xX is called convex if every two points in G can be
connected by a segment contained in G .

A wall H in X is a maximal connected subset of X which is the union of facets F 0j so
that each point x 2H has a neighborhood U �H mapped by dev homeomorphically
to an open disk (or a half-disk) of a hyperplane in Rn . Thus the developing map sends
each wall to a subset of a hyperplane in Rn . Therefore, a segment � �X can intersect
a wall H transversally in at most one point.

Remark One can show that every wall is a manifold without boundary.

The main result of this section is the following theorem.

Theorem 4.3 Suppose that X satisfies Assumption 3 and Assumption 4. Then:

(1) xX is convex and devW xX ! Rn is a continuous bijection onto a convex homoge-
neous cone in Rn .
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(2) X is convex and the developing map dev is a homeomorphism of X onto a
proper open convex homogeneous cone in Rn .

Proof We first sketch the main steps of the proof. Our proof is modelled on the
standard arguments appearing in the proofs of Poincaré’s fundamental domain theorem
(cf Vinberg [17]).

Before studying geometry of the spaces X and xX , we analyze the combinatorial
structure of these complexes. Our main tool is the small cancellation theory for the
2–dimensional cell complex Z below which encodes this combinatorics. (The q–
dimensional cells in Z correspond to the codimension q strata in the stratification of
X and the inclusion relation in Z is the reverse inclusion with respect to the relation
between the strata of X .) The main results of this combinatorial analysis are:

(1) Proposition 4.8 which establishes convexity and compactness of the unions of
geodesics geo.v; w/ in Z.1/ connecting vertices v;w 2Z.0/ .

(2) Lemma 4.11 which shows that generic line segments Œx;y� � X project to
geodesic paths in Z.1/ .

The geodesic paths in Z.1/ then correspond to minimal galleries in xX . Such galleries
are chains of cells

C 00[ � � � [C 0k

in X so that the consecutive cells share a facet. Minimality of such a gallery means
that it has the least length (ie the number of cells) among all galleries connecting C 0

0

to C 0
k

.

The key for proving Theorem 4.3 is to show that the union of closed minimal galleries
Gal.A;B/ connecting cells A and B is convex in xX . This is done by induction on the
length of the galleries. The induction step is based on Proposition 4.12 which, roughly
speaking, claims that the set Y D Y .x/ of points y 2 B which can be connected to
a point x 2 A by a segment Œx;y�� Gal.A;B/ is both closed and open. The actual
statement of the proposition is somewhat more complicated. Proof of the closedness of
Y is a direct corollary of finiteness of the number of cells in Gal.A;B/, which, in turn,
follows from compactness of geo.v; w/. Proof of openness of Y is less obvious. If
the segment Œx;y��Gal.A;B/ is contained in Gal.A;B/DGal.A;B/\X , then the
existence of Œx;y0��Gal.A;B/ for y0 near y follows from the fact that Gal.A;B/ is
a locally convex subset of the affine manifold X (cf Lemma 2.2). The main difficulty
in the proof stems from the fact that the segment Œx;y� can (a priori) pass through the
points of xX nX .
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Once convexity of xX is established, the proof of convexity of X is essentially a
topological argument. We prove (Lemma 4.9) that for every W D Gal.A;B/, the
complement W nX is contained in the boundary of W . Therefore, by Lemma 2.2, for
x 2A and y 2B0 the segment Œx;y� is contained in X . The proof in the case when
x 2A0;y 2 B0 requires a more complicated argument.

We now begin the proof of Theorem 4.3. Let Z denote the complex dual to the
stratification of X into faces. The vertices of Z are the cells in X . Each facet F in
X yields an edge e �Z connecting the vertices corresponding to the cells adjacent to
F . Each codimension 2 face E in X yields a 2–cell in Z , whose edges correspond
to the facets in X containing E .

Then Z is a regular 2–dimensional cell complex, in particular, nonempty intersections
between cells in Z are again cells. Each 2–face c of Z is a 2t –gon for a certain t � 4

(depending on c ). Part 4 of Assumption 3 implies that each vertex of Z is contained
in infinitely many edges.

We will equip Z with the weak topology. According to Corollary A.2 in the Appendix,
Z is simply-connected.

Let T WDZ.1/ be the 1–skeleton of Z . We define a path metric d on T by declaring
each edge of this graph to have the unit length. We also metrize Z by declaring each
facet of Z to be isometric to the regular Euclidean polygon with sides of the unit
length. This yields a path metric � on Z . Since Z is not locally finite, the topology
determined by � does not agree with the weak topology on Z . Nevertheless, according
to a theorem of Dowker [6], the map

Z! .Z; �/

is a homotopy-equivalence. In particular, .Z; �/ is simply-connected.

Since C and its facets are convex it follows that the links of vertices of Z contain no
bigons. Therefore Z satisfies the following properties

Property 5
(1) Each 2–cell in Z has at least 7 edges. (In fact, at least 8 edges.)

(2) For every vertex v of Z , the combinatorial length of each embedded circle in
the link of v is at least 3.

Therefore Z satisfies the small cancellation condition C 0.1=7/, where the pieces are
the edges of T , see Ghys and de la Harpe [7, Appendix]. The same properties also
imply that .Z; �/ is a CAT .0/ metric space, see Bridson and Haefliger [4]. Thus Z

is contractible. The main difficulty is that Z is not locally finite. This is where we
deviate from Vinberg’s proof [17].
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4.1 Local geodesics in T

Definition 4.4 A path p in T is a local geodesic (or Dehn-reduced) if it contains no
backtracks and no subpaths of length > t contained in a single 2t –gonal 2–cell of Z .

The main result of this section is Proposition 4.8. It proves that the union geoloc.x;y/

of all local geodesics in T connecting vertices x and y , is a finite subgraph in T ,
which is strongly convex. For every pair of vertices z; w in geoloc.x;y/, every local
geodesic connecting z and w is contained in geoloc.x;y/.

A degenerate bigon in T has two vertices x;y and two equal edges ˛; ˇ , which are
local geodesics in T .

Given two vertices x;y 2 T which belong to a common 2t –gonal 2–cell c of Z and
which are distance t apart, there are exactly two geodesics ˛; ˇ � T (of the length t )
connecting x to y .

More generally, define a corridor K in Z as a union of 2–cells c1; : : : ; cl (l � 1) of
the complex Z so that for each i :

(1) ci ; ciC1 share an edge ei , called an interior edge of the corridor K .

(2) The edges ei�1; ei are “antipodal” on the boundary of ci .

Thus each corridor K yields a wall in X . Consider the topological circle � which is
the boundary of the corridor KD c1[� � �[cl . Pick two vertices x;y 2 � which break
� in the union of two local geodesics ˇ; 
 connecting x and y . (Note that x and y

are not uniquely determined by K .)

Definition 4.5 In case both ˇ; 
 are local geodesics, we refer to ˇ[ 
 as a simple
bigon with the vertices x;y . We will say that K connects the vertices x and y .

Since Z satisfies the condition C 0.1=7/, according to [7, Proposition 39, Part (i)], all
local geodesic bigons B D ˇ[ 
 in T are concatenations of degenerate bigons and
simple bigons. See Figure 6.

Remark The proofs in [7, Appendix] are given under the assumption that the cell
complex is the Cayley complex of a finitely-presented group. However the proofs
needed for [7, Proposition 39, Part (i)] do not require this assumption.

We will think of the bigon B together with the union of corridors bounded by the
simple sub-bigons in B as a (Van Kampen) diagram D embedded in Z so that the
boundary of D is B . (To be more precise, one has to take the reverse of the path 

here but we will ignore this issue.) As usual, we define the area, Area.B/ WDArea.D/,
to be the number of the 2–cells which appear in D .
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x

ˇ




y

Figure 6: A geodesic bigon with the vertices x;y , which is the union of
three simple bigons and one degenerate bigon.

Remark Since Z is 2–dimensional and contractible, it is easy to see that the diagram
D is the least area disk bounded by the bigon B .

We let ab � .Z; �/ denote the geodesic segment connecting the points a and b . We
observe that for each corridor K connecting vertices x and y , the segment xy is
contained in K . Moreover, the intersection of xy with the boundary of K is finite. It
therefore follows that a corridor connecting x and y is unique.

x

y

z

K

xy

Figure 7: A corridor K with the vertices x;y , so that xy \ @K D fx;y; zg .

Claim 4.6 Suppose that B D ˛[ˇ is a bigon with vertices x and y which bounds
a corridor D . Then for every pair of vertices z 2 ˛;w 2 ˇ such that d.z; w/ > 1 we
have:

For every corridor K connecting z and w , K shares a 2–cell with D .
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Proof Under the above assumptions, the geodesic segment zw �Z has nonempty
intersection with the interior of a 2–cell c �D . Since the complement zw n int.K/ is
finite, it follows that c �K .

Lemma 4.7

(1) Let B D ˛[ˇ be a bigon with vertices x and y . Then

Area.B/� 1
2

min.length.˛/; length.ˇ//:

(2) length.˛/� 2 length.ˇ/.

(3) length.˛/� 2d.x;y/.

(4) Area.B/� d.x;y/.

Proof

(1) For every 2–cell ci in the diagram D bounded by B , let ˛i WD˛\ci , ˇi WDˇ\ci .
Then

min.length.˛i/; length.ˇi//� 2:

This immediately implies (1).

(2) For each ci , length.˛i/C length.ˇi/� length.@ci/� 2 and

max.length.˛i/; length.ˇi//�
1
2

length.@ci/:

Therefore
j length.˛i/� length.ˇi/j � 2:

Since
min.length.˛i/; length.ˇi//� 2;

we obtain
length.˛i/� 2 length.ˇi/:

The assertion (2) follows.

(3) Let 
 be a geodesic in T connecting x to y . By applying Part 2 to the bigon
˛[ 
 , we obtain

length.˛/� 2 length.
 /D 2d.x;y/:

(4) By combining (1) and (3) we obtain

Area.B/� 1
2

length.˛/� d.x;y/:

Proposition 4.8 Let x;y 2 T , be vertices so that d.x;y/ D d . Then there exist
diagrams D;Dloc �Z bounded by bigons Bloc;B with vertices x;y so that:
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(1) The union geoloc.x;y/ of all local geodesics connecting x to y is equal to D
.1/
loc .

The union geo.x;y/ of all geodesics connecting x to y is equal to D.1/ .
In particular, there are only finitely many local geodesics connecting x and y .

(2) The set geo.x;y/ is convex in T . The set geoloc.x;y/ is strongly convex,
ie, every local geodesic connecting vertices in geoloc.x;y/ is contained in
geoloc.x;y/.

(3) The distance between any two vertices in geo.x;y/ is � d . In particular,
diam.geo.x;y//D d .

Proof Since by Lemma 4.7, the bigons connecting x and y have area � d.x;y/,
there exists a (locally geodesic) bigon Bloc D ˛[ˇ connecting x and y and having
maximal area among such bigons. Let Dloc denote the diagram in Z bounded by Bloc .
We leave it to the reader to verify that D

.1/
loc is contained in geoloc.x;y/. It is done by

examining the corridors in Dloc .

We now claim that for each pair of vertices z; w in Dloc ,

geoloc.z; w/�Dloc:

This will prove both geoloc.x;y/DD
.1/
loc and strong convexity of geoloc.x;y/. More-

over, it will show that the number of local geodesics in geoloc.x;y/ is finite, since the
cell complex Dloc is finite.

Suppose that there exists a local geodesic 
 � T connecting z and w , which is not
contained in Dloc . Without loss of generality, we may assume that 
 \Dloc D fz; wg

(otherwise we replace 
 with its subpath).

Case 1 z; w belong to ˛ . Let ˛xz; ˛zw; ˛wy denote the subpaths of ˛ connecting x

and z , z and w , w and y respectively. The bigon

B0 WD 
 [˛zw

bounds a diagram D0 �Z whose interior is disjoint from Dloc . Set

˛0 WD ˛xz [ 
 [˛wy

Then the bigon ˛0 [ˇ with the vertices x;y , bounds the diagram Dloc [D0 whose
area is greater than Area.Dloc/. Contradiction.

Case 2 z and w are separated by a point in Dloc . In this case we replace ˛ and ˇ
by appropriately chosen (local) geodesics ˛0; ˇ0 �D.1/ which still bound Dloc so that
z; w 2 ˛0 . Then we are done by Case 1.
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Case 3 z; w belong to the same corridor K�Dloc . Without loss of generality we may
assume that d.z; w/ > 1 (otherwise the local geodesic connecting z and w is unique
and is contained in D

.1/
loc ). Then there exists a local geodesic ı �K.1/ connecting z

to w . The bigon
B0 D 
 [ ı

bounds a diagram K0 � Z . This diagram has to be a corridor, since, otherwise, the
intersection 
 \K consists of more than two points. By Claim 4.6, the intersection
K\K0 contains a 2–cell F . Since 
 \F consists of at least one edge, we obtain a
contradiction with our assumption on the intersection 
 \C .

Therefore geoloc is strongly convex.

In order to define the diagram D we observe that some of the simple bigons B0 whose
concatenation is Bloc are not geodesic. One of the sides of B0 is geodesic while
the other is not. Therefore we construct B by replacing each non-geodesic simple
bigon in Bloc with its geodesic side. Let D denote the diagram bounded by B . Since
geoloc is strongly convex, for every pair of vertices z; w 2D.1/ , every local geodesic

 connecting z and w is contained in D

.1/
loc . If 
 is geodesic, then, by the construction

of D , it follows that 
 �D.1/ . Therefore D.1/ is convex.

This proves the first two assertions of Proposition. In order to prove the third assertion
observe that if z; w 2D.1/ do not belong to a common corridor, then each geodesic
Œz; w��D.1/ connecting z to w can be extended to a geodesic connecting x and y .
Therefore in this case d.z; w/� d.x;y/.

Suppose that z; w belong to a common corridor C �D . Then d.x;y/ is at least h,
which is half of the perimeter of C . On the other hand, z; w subdivide the boundary of
C in two arcs. The length of the shorter of these arcs is at most h. Therefore d.z; w/�

h� d.x;y/. Finally, x;y 2 geo.x;y/ and d.x;y/D d . Thus diam.geo.x;y//D d .
Thus the proposition is proved.

Remark Clearly, the proof of the above proposition used only the fact that Z is
simply-connected and satisfies Property 5.

4.2 Segments in X , galleries and geodesics in T

In this section we relate segments in X and local geodesics in the graph T . The main
result here is that generic segments in X correspond to geodesics in T .

Lemma 4.9 Consider the union W � xX of finitely many closed cells xCi , iD1; : : : ; k .
Then int.W /�X . In particular, 0 is never in the interior of W .
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Proof Since two closed cells can share at most one facet, the set W projects to a
finite subgraph p.W /� T . The complement W nX is the union

k[
iD1

ƒ.Ci/:

Pick a point x 2ƒ.Ci/. Then, according to Part 4 of the Assumption 3, there exists an
infinite sequence of facets Fj � @Ci and points xj 2 Fj such that

x D lim
j

xj :

Since the graph p.W / contains only finitely many edges, only a finite number of the
facets Fj are contained in a cell in W different from Ci . Therefore all but finitely
many of xj ’s belong to the boundary of W , which implies that x cannot belong to the
interior of W .

Definition 4.10 Let q be a local geodesic in T . Then it corresponds to a chain of
cells

C 00; : : : ;C
0
k

which correspond to the vertices in q , so that the intersections C 0i \C 0
iC1

correspond
to the edges in q . We will call the union

C 00[ � � � [C 0k

the gallery gal.q/ corresponding to the path q . We define a closed gallery as

xC0[
xC1[ � � � [

xCk :

The number k is the length of the gallery, it equals the length of the path q in T . If q

is a geodesic in T , by abusing notation we will refer to k as the distance between C0

and Ck and we will refer to the gallery gal.q/ as a minimal gallery.

We call a segment Œx;y�� xX generic if the open segment .x;y/ is entirely contained
in the union of open cells and open facets and is not contained in a facet. Therefore
.x;y/ is not contained in a wall. Each generic segment � D Œx;y� determines a path
q D p.�/ in T . The vertices z0; z1; : : : ; zk and edges of this path correspond to the
open cells C0; : : : ;Ck and open facets in X which cover the open segment .x;y/.

Lemma 4.11 For a generic segment � , the path p.�/ is a geodesic in T .
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Proof It follows immediately from convexity of the cells in X and Part 1 of the
Assumption 4, that p.�/ is a local geodesic. Let x;y denote the end-points of p.�/.
By Proposition 4.8, there exists a diagram Dloc �Z bounded by a bigon B with the
vertices x;y , so that p.�/ is contained in D

.1/
loc . If for each corridor K �Dloc , the

intersection p.�/\K is a geodesic in T , then Proposition 4.8 implies that the path
p.�/ is a (global) geodesic.

Suppose that p.�/ is not a global geodesic. Without loss of generality we may assume
that p.�/ contains no shorter non-geodesic subpath connecting vertices of T . Therefore
D is a corridor and the boundary of D is formed by the union of p.�/ and a geodesic
q which is shorter than p.�/.

In this case there is a wall H in X whose intersection with the gallery gal.p.�//
is not connected. (The wall H passes through the facets in X corresponding to the
interior edges of the corridor D .) However the segment � can intersect the wall H

transversally in at most one point. Contradiction.

Remark The above lemma is analogous to the familiar description of geodesics in
Cayley graphs of Coxeter groups.

4.3 Convexity of closed minimal galleries

In this section we will prove Part 1 of Theorem 4.3. We will show that every two points
x;y in xX , the union of closed minimal galleries in xX connecting x and y is convex.

Given two cells A;B in X , let Gal.A;B/ and Gal.A;B/ denote the unions of all
minimal galleries

A0 D C 00[C 01[ � � � [C 0l D B0;

and minimal closed galleries

xAD xC0[
xC1[ � � � [

xCl D
xB;

connecting A to B . Since Gal.A;B/ contains only finitely many cells (see Proposition
4.8), it follows that Gal.A;B/ is the closure of Gal.A;B/ in X . The space Gal.A;B/
has a natural path metric induced by the pull-back of the Euclidean metric under the
map devW xX ! Rn . With respect to this metric, Gal.A;B/ is a proper metric space, ie
closed metric balls are compact.

We will prove existence of a segment in xX connecting points x;y by induction on the
(combinatorial) distance between the cells containing x and y .

In case when the points x;y 2 xX belong to the same cell, there is nothing to prove
(since each cell is convex).
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Suppose that for every pair of cells A;B in X within distance � k � 1, the union
of closed galleries Gal.A;B/ is convex. Our goal is to prove that the same assertion
holds for all cells within distance k .

Fix two cells A;B which are distance k apart and which correspond to vertices
a; b 2 T . Our main goal is to show that there exists a segment Œx;y�� Gal.A;B/ for
all x 2 xA;y 2 xB . Convexity of Gal.A;B/ will be proven as a corollary.

First, note that for each cell D � Gal.A;B/ which is adjacent to B , the gallery
Gal.A;D/ is contained in Gal.A;B/ and its projection to T has diameter k�1. Thus
Gal.A;D/ is convex by the induction hypothesis.

Let ˆ WD fF1; : : : ;Flg denote the set of facets of B which are contained in the interior
of Gal.A;B/. Then for each facet F 2ˆ there exists a gallery

A0 D C 00[C 01[ � � � [C 0k�1[C 0k D B0;

so that F D C 0
k�1
\C 0

k
.

Fix a point x in the open cell A and let y 2 xB vary. Let Y � xB denote the set of points
y 2 xB such that there exists a segment Œx;y�� Gal.A;B/. Let Ygen D Ygen.x/� Y

denote the set of points y such that the segment Œx;y� is generic.

Let Ysing � Y denote the (possibly empty) closed set of points y 2 Y such that
the segment Œx;y� � Gal.A;B/ exists and passes through the set ƒ.F / for some
codimension 2 face F of B . (Recall that the set ƒ.F /, which includes the origin, is
defined as xF nF 0 .) Set Bsing WD Ysing \B . Since B has dimension � 3, it follows
(from the dimension count and Part 3 of Assumption 3) that Bsing does not locally
separate B . Set

Breg WD B nBsing

and
Yreg WD Y \Breg

Clearly,
Ygen\B � Yreg\B � Breg:

In what follows, for a subset W � B we let int xB.W / denote the interior of W in xB .
For a subset W � Breg we let

clBreg.W / WD cl.W /\Breg

denote the closure of W in Breg .
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Proposition 4.12

(1) cl.Ygen/� Y .

(2) clBreg.Ygen\B/� int xB.Yreg/.

(3) int xB.Yreg/� clBreg.Ygen\B/. Thus clBreg.Ygen\B/D int xB.Yreg/.

(4) Each facet F 2ˆ, is contained in int xB.Yreg/.

Proof

(1) Consider a sequence yj 2 Ygen which converges to some y 2 xB . Then, since
Gal.A;B/ is closed and proper, the sequence of segments

Œx;yj �� Gal.A;B/

subconverges to a segment Œx;y�� Gal.A;B/. Therefore y 2 Y .

(2) For every y 2 Ygen the segment � D Œx;y��Gal.A;B/ crosses a facet F of B

and an adjacent cell D . Since Gal.A;D/ is convex, it follows that there exists
a (unique) point z D z� 2 Œx;y� so that

Œz;y�� xB; Œx; z/\ xB D∅:

Consider a sequence yj 2 Ygen which converges to a point y 2 Breg . Then
(similarly to the proof of 1), we can assume that the segments �j D Œx;yj �

converge to the segment Œx;y�. Then the sequence zj WD z�j converges to some
z 2 @B \ Œx;y�. Without loss of generality (by passing to a subsequence if
necessary) we can assume that all zj ’s belong to a common facet F of B , so
that xF D xD\ xB , where D � Gal.A;B/. Thus z 2 xF � xD .
Since y 2 Breg , there are only three possibilities:
(a) z 2 F .
(b) z belongs to an (open) codimension 2 face contained in @F .
(c) z does not belong to X ; therefore it belongs to the intersection xD \ xB

and is not contained in any closed cell other than xB and xD (see Part 2 of
Assumption 3).

In all three cases, there exists a convex neighborhood U of the point z in

Gal.A;D/[ xB

so that U\X is also convex. (In case (a) it follows since X is an affine manifold;
in case (b) it follows from Part 1 of Assumption 4 and convexity of Gal.A;D/;
in case (c) it follows from Part 2 of this assumption.)
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Recall that x 2A� int.Gal.A;D//, the latter is convex. Thus, by Lemma 2.2,

Œx; z/� int.Gal.A;D//:

According to Lemma 4.9, int.Gal.A;D//�X . Therefore Œx; z/�X .
Convexity of xB and Lemma 2.2 imply that .z;y� � B � X . Pick points
z0 2 int.U / \ Œx; z/; z00 2 int.U / \ .z;y�. Convexity of Gal.A;B/ \ U then
implies that z 2 int.Gal.A;B//; hence the entire segment Œx;y/ is contained in
the interior of Gal.A;B/. Therefore, since this interior is an affine manifold,
there exists a neighborhood V of y in B such that for each y0 2 V , there exists
a segment Œx;y0� � Gal.A;B/. In particular, every such y0 belongs to Yreg .
Thus y 2 int xB.Yreg/.

(3) For y 2 int xB.Y /, let V � Y be an open ball containing y . Since the union of
facets of the cell C is dense in C 0 nC , we see that V nYgen is nowhere dense
in V . Hence Ygen\V is dense in V and therefore y 2 cl.Ygen/. The assertion
3 follows.

(4) The proof of this assertion is analogous to the last part of the proof of 2. For each
y 2 F the segment Œx;y� is contained in int.Gal.A;B// and thus we can use a
neighborhood V of y as above. To show that y 2 Yreg note that the segment
Œx;y� � X cannot pass through the origin. This segment is disjoint from the
boundaries of codimension 2 faces of B since the latter are contained in the
boundary of Gal.A;B/.

Corollary 4.13 xB D Y D cl.Ygen/.

Proof By Part 3 of Proposition 4.12,

clBreg.Ygen\B/D int xB.Yreg/:

Thus int xB.Yreg/ is both closed and open in Breg . By Part 4 of Proposition 4.12, the
set int xB.Yreg/ is nonempty. Since Breg is connected (recall that Bsing does not locally
separate B ), we conclude that int xB.Yreg/DBreg . Thus Breg�Y . Since BregDBnBsing

is dense is xB , by applying Part 1 of Proposition 4.12, we conclude that

xB � cl.Breg/D cl.int xB.Y \Breg//D cl.Ygen/� Y:

Thus xB D Y D cl.Ygen/.

Therefore, for each point y 2 xB there exists a segment Œx;y��Gal.A;B/� xX . Recall
that we assumed that x 2A, ie belongs to the open cell. For a point y 2 xB and x 2 xA,
pick a sequence xj 2A converging to x . Then there exist a sequence yj 2 Ygen.xj /
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which converges to y ; the segments Œxj ;yj � are all contained in Gal.A;B/. Therefore,
by properness of Gal.A;B/, we conclude that the segments Œxj ;yj � converge to a
segment Œx;y�� Gal.A;B/.

Thus we proved that for each pair of cells A and B within distance � k , and each pair
of points x 2 xA;y 2 xB , there exists a segment Œx;y�� Gal.A;B/� xX .

Claim 4.14 The set Gal.A;B/ is convex for every pair of cells A;B which are
distance k apart.

Proof Pick two cells A;B which are distance k apart and which correspond to vertices
a; b 2 T . Recall that the union of galleries Gal.A;B/ projects to the convex subset
geo.a; b/ of T . Let z; w 2 Gal.A;B/. Then these points belong to cells C ;D �

Gal.A;B/. These cells project to vertices c; d 2 geo.a; b/. Since geo.a; b/ is convex,
the union of closed galleries Gal.C;D/ projects to a subset geo.c; d/ � geo.a; b/.
Moreover, since diam.geo.a; b//D k , it follows that diam.geo.c; d// � k and thus
d.C;D/ � k . Hence Œz; w� � Gal.C;D/ and Gal.C;D/ is contained in Gal.A;B/.
Therefore Œz; w�� Gal.A;B/ and convexity of Gal.A;B/ follows.

Hence, by induction, we conclude that xX is convex. It follows that devW xX ! Rn is a
continuous map onto a convex cone K �Rn . To see that this map is injective note that
for distinct points x;y 2 xX there exists a segment Œx;y� � X ; since the restriction
of dev to Œx;y� is injective, it follows that dev.x/¤ dev.y/. Thus devW xX !K is a
continuous bijection. (At the moment we do not know is this map is a homeomorphism
since xX is not locally compact.)

This proves the first assertion of Theorem 4.3.

4.4 Convexity of X

We now prove convexity of X . The idea is to use Lemma 4.9 in conjunction with
Lemma 2.2. Let x;y 2X . We first give a proof in the easier case when x belongs to an
open cell A. Let xB denote a closed cell containing y . Then the segment Œx;y�� xX is
contained in the closed gallery W DGal.A;B/. As dev.W / is a closed convex subset
of Rn and dev.x/ belongs to the interior of dev.W /, by Lemma 2.2, we conclude that

dev.Œx;y�/� int.dev.W //[fdev.y/g:

Since dev jW is a homeomorphism to its image, the open segment .x;y/ is contained
in the interior of W . Thus, by Lemma 4.9, this segment is entirely contained in X .
As x;y belong to X , it follows that Œx;y��X .
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Consider now the general case. Our proof will be similar to the above argument, except
that we will have to generalize slightly the proof of Lemma 2.2. Pick a relatively
compact neighborhood U of x in X . Then U is covered by finitely many cells
A0j �X . Choose a cell B0 containing y . For every x0 2 U , the segment Œx0;y�� xX
is covered by a finite union of closed faces contained in

W D
[
j

Gal.Aj ;B/:

Therefore the cone Coney.U / with the tip y and the base U is covered by finitely
many closed cells. Thus the developing map dev sends Coney.U / homeomorphically
onto a convex subset

† WD dev.Coney.U //D Conedev.y/.dev.U //� Rn:

Clearly, the open segment .dev.x/; dev.y// is contained in the interior of †. It follows
that the open segment .x;y/ is also contained in the interior of W . Hence, according
to Lemma 4.9, the open segment .x;y/ is contained in X .

Thus dev is a continuous bijection of X onto a convex homogeneous cone K0 in
Rn . Invariance of domain implies that devW X ! K0 is a homeomorphism. Since
0 2 xX nX and devW xX ! Rn is 1–1, it follows that 0 62K0 and hence K0 is a proper
cone.

5 Products of matrices

In this section we will consider the following problem.

Problem 6 Let G be a Lie group with a fixed collection of 1–parameter subgroups
G1; : : : ;Gk �G . Analyze the image of the map

ProdW
kY

iD1

Gi!G

given by Prod.g1; : : : ;gk/D g1 � � � � �gk .

In the case when G D SO.3/, this problem is ultimately related to the variety of
geodesic k –gons in S3 with the fixed side-lengths, Kapovich and Millson [13]. (See
Kapovich and Millson [12] or Maubon [15], for the relation of this product problem to
bending deformations of flat conformal structures.)
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Here we consider the case of G D GL.2;R/; the subgroups Gi are orthogonal con-
jugates of the group of diagonal matrices fDiag.1; et /; t 2 Rg. The specific problem
which we are interested in is as follows.

Problem 7 Describe the intersection of the image of Prod with the orthogonal sub-
group SO.2/�GL.2;R/.

Let gl.2;R/Dp˚o.2/ denote the Cartan decomposition of the Lie algebra of GL.2;R/.
The Lie algebras pi of Gi ’s are contained in p. Let e WD .1; : : : ; 1/ 2

Q
i Gi . Then

derivative
d ProdeW ˚ipi! gl.2;R/

is the map
.�1; : : : ; �k/ 7!

X
i

�i :

Therefore its image is contained in p and hence is orthogonal to o.2/. Thus one cannot
approach Problem 7 by making infinitesimal calculations.

There is probably a purely algebraic or analytic solution to Problem 7; we will use
hyperbolic geometry instead.

The main result of this section is Theorem 5.3, which shows that for certain 1–parameter
subgroups Gi of GL.2;R/ (i D 1; : : : ; 4), the image of the product map

ProdW G1 � � � � �G4!GL.2;R/

contains rotations by all the angles � 2 .��=4; 0�.

We start by describing the subgroups Gi . Given a basis .v; w/ of R2 and t 2 R we
define the matrix

ADAv;w;t

to be the linear transformation which fixes v and sends w to etw :

AD

�
1 0

0 et

�
:

The 1–parameter group G1 will consist of the transformations Av;w;t , where fv;wg
is an orthonormal basis in R2 . The subgroups G2;G3;G4 will be conjugate to G1 by
the rotations by the angles �=4, �=2 and 3�=4.

Our strategy for analyzing the product map Prod is to understand how the groups Gi

act on the hyperbolic plane.

Consider the projective action of GL.2;R/ on the circle RP1 (which we identify with
the boundary of the hyperbolic plane H2 ). We will use the notation ŒA� 2 PGL.2;R/
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for the projection of the matrix A 2 GL.2;R/. The vectors v;w project to the fixed
points Œv�; Œw� of the projective transformation ŒA�. Then Œv� is the repulsive and Œw� is
the attractive fixed point of ŒA�W RP1! RP1 , provided that t > 0. If t < 0, then the
attractive and repulsive fixed points are interchanged.

We identify the hyperbolic plane H2 with the unit disk in R2 in such a way that the
group O.2/�GL.2;R/ fixes the origin 0 in H2 . The projective line RP1 becomes
the ideal boundary of H2 .

Then the hyperbolic geodesic LA D Œv�Œw�� H2 invariant under ŒA� passes through
the origin 0 (and hence is a Euclidean straight line). We parameterize the geodesic LA

with the unit speed and orient LA in the direction from Œv� to Œw�, thereby identifying
it with the real line. The origin in H2 corresponds to zero in R . We let L˙

A
denote the

positive and negative rays (starting at 0) in LA corresponding to this orientation.

In these coordinates, the isometry ŒA� acts on LA by r 7! rC t . The isometry ŒAw;v;t �
acts on H2 by the translation r 7! r � t along the geodesic LA . By considering the
action of SO.2/ by conjugation we see the following.

Let RDR� 2 SO.2/ be the rotation by the angle � . Then the matrix

R�Av;w;tR
�1
� DAR.v/;R.w/;t

acts on H2 by the translation r 7! r C t along the geodesic

R�=2.Œv�/ R�=2.Œw�/:

We now consider the 1–parameter groups

G1 D fAe1;e2;t W t 2 Rg; G2 DR�=4G1R��=4;

G3 DR�=2G1R��=2 D fAe2;e1;t W t 2 Rg; G4 DR��=4G1R�=4:

Geometrically, these are groups of translations along two orthogonal hyperbolic geode-
sics L1 and L2 in H2 (Gi and GiC2 translate along Li in the opposite directions,
i D 1; 2). Given a matrix Ai 2Gi we let `i WD `.Ai/ denote the translation length of
ŒAi � along its invariant geodesic; here we are ignoring the orientation so that `i � 0.

Thus, in order for Ai 2Gi ; i D 1; : : : ; 4 to have the product equal to R� , it is necessary
and sufficient to have:

(1) The product of the eigenvalues of Ai ’s is equal to 1 (ie the product of four
matrices is in SL.2;R/). Equivalently,

t1C t2C t3C t4 D 0:
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(2) The composition of the hyperbolic translations

ŒA1� ı ŒA2� ı ŒA3� ı ŒA4�

is the rotation R�=2 around the origin in H2 . In particular, the above product of
hyperbolic isometries has to fix the intersection L1\L2 .

Remark Similar description, of course, will be valid for more general choices of
1–parameter groups Gi which are conjugate to G1 by rotations R�i

, i D 1; : : : ; k .

With this geometric interpretation it is clear, for instance, that the product A1A2A3

is never a nontrivial rotation. The reason is that unless A2 D 1, ŒA1�D ŒA3�
�1 , the

product of the hyperbolic isometries does not fix the origin.

We now make the situation a bit more symmetric and require that

`1 D `4; `2 D `3:

In particular, the Condition 1 will be satisfied provided that

t1; t3 > 0; t2; t4 < 0:

We then consider the images of the origin under the compositions of the isometries
ŒA1�; ŒA2�; ŒA3�; ŒA4�. We let x0 WD x4 WD 0; xi WD ŒAi �.xiC1/, i D 1; : : : ; 4. Given a
number � 2 .0; �

2
/ set

˛ D ˛.�/ WD �
2
� �:

Lemma 5.1 For every � 2 Œ0; �
2
/ there exists a pair of continuous functions `i D

`i.�/; i D 1; 2; so that:

(1) �
cosh.`2/D cosh.`1/ sin.˛/

sinh2.`1/D cos.˛/

In particular, `i.0/D 0, i D 1; 2.

(2) For `i D `i.�/ the composition

ŒA1� ı ŒA2� ı ŒA3� ı ŒA4�

is the (counter-clockwise) rotation R� around the origin 0 2 H2 by the angle � .

Geometry & Topology, Volume 11 (2007)



Convex projective structures on Gromov–Thurston manifolds 1813

Proof Let L1;L2 be the pair of oriented geodesics in H2 (invariant under the sub-
groups ŒG1� D ŒG3�, ŒG2� D ŒG4� respectively) which intersect orthogonally at the
origin.

We orient the geodesics L1;L2 away from the points Œe1�, ŒR�=4.e1/� fixed by ŒA1� 2

ŒG1�; ŒA2� 2 ŒG2�. Let LCi denote the positive half-rays in these geodesics.

Recall that ˛ 2 .0; �
2
� and that we will be using the translation parameters so that

t1; t3 > 0; t2; t4 < 0:

The key observation is that for each ˛ 2 .0; �
2
� there exists a unique geodesic quadrilat-

eral (a Lambert quadrilateral) Q˛ D Œ0;y1;x2;y2� in H2 with the three right angles
(at the vertices 0;y1 2 LC

1
;y2 2 LC

2
) and the angle ˛ at the vertex x2 . See Figure

8. The orientation on Q˛ given by the cyclic ordering of its vertices x0; : : : ;x3 , is
clockwise, which corresponds to the assumption that � � 0.

Set
`2 D `3 WD d.0;y1/D d.0;y2/

and
`1 D `4 WD d.y2;x2/D d.y1;x2/:

It is clear that `1; `2 are continuous functions of � so that `i.0/D 0. The equations
relating ˛; `1; `2 follow immediately from the hyperbolic trigonometry, see Beardon
[1, Theorem 7.17.1].

Choose points x1 2LC
1
;x3 2LC

2
so that

d.0;x1/D `1 D d.0;x3/D `4:

Now take the hyperbolic translations g1;g3 along L1 sending x1 to 0 and 0 to y1 ,
respectively. Define the hyperbolic translations g2;g4 along L2 sending y2 to 0 and
0 to x3 , respectively. Thus the isometries g1;g4 have the translation lengths `1 D `4 ;
the isometries g2;g3 have the translation lengths `2 D `3 .

It is clear from the Figure 8 that

g2.x2/D x1;g3.x3/D x2

and therefore
g1 ıg2 ıg3 ıg4.0/D 0:

Hence the above composition of translations is a certain rotation R� around the origin.
In order to compute the angle � of rotation take two vectors �1; �2 2 T0H2 tangent
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to the geodesic rays L�
1

and L�
2

, respectively. Then the images of �1; �2 under the
derivatives

d..g1 ıg2/
�1/; d.g4 ıg3/

are tangent to the geodesic segments x2y2;x2y1 respectively. Therefore the angle �
equals �

2
�˛ (the rotation is in the counter-clockwise direction). Thus � D � .

LC
1

l2

x2

x1

y1

l4
˛

l3l1

l3

l1

�2

0

�1

l2

y2 x3

LC2

l4

Figure 8: Lambert quadrilateral.

Let Ai 2Gi denote the matrices corresponding to the hyperbolic translations gi .

Corollary 5.2
A1 �A2 �A3 �A4 DR˛

2
��

4
:

Therefore we get the following theorem.

Geometry & Topology, Volume 11 (2007)



Convex projective structures on Gromov–Thurston manifolds 1815

Theorem 5.3 For each � 2 .��
4
; 0� there is a unique pair of numbers t1 � 0; t2 � 0

so that for the set of parameters
�!
t D .t1; t2;�t2;�t1/

the product of the corresponding matrices equals the rotation R� . Moreover, the
function �!t depends continuously on � .

Projective generalization Let P � RPn be a projective hyperplane, p 2 RPn nP

and t 2 R. Then there exists a unique map ADAP;p;t 2 PGL.nC 1;R/ satisfying:

(1) A fixes P [fpg pointwise.

(2) The derivative dAp equals etI .

If we identify RPn with the compactification of the affine space An , so that p D

Œ1; 0; : : : ; 0� 2 RPn nAn and P \An is the affine hyperplane

f.x1; : : : ;xn/ W x2 D � � � D xn D 0g

passing through the origin 0, then

AD

2664
et 0 : : : 0

0 1 : : : 0

: : : : : : : : : : : :

0 0 : : : 1

3775 :
Suppose now that nD2, R2 is the affine patch of RP2 . Let P �RP2 be the projective
line tangent to the unit vector v 2 T0R2 , p 2 RP2 nR2 be the point at infinity so that
the corresponding line l through the origin contains the unit vector w orthogonal to v .
Then

AP;p;t DAv;w;t 2GL.2;R/� PGL.3;R/:

The identity extension of this linear transformation to the element yA 2 GL.n;R/ �

PGL.nC 1;R/ equals
AQ;q;t

where Q is the projective hyperplane through the origin orthogonal to w , the point
q 2 RPn nRn corresponds to the line l as above.

Consider now a collection P1;P2;P3;P4 of projective hyperplanes in RPn passing
through the origin, so that the intersection\

i

Pi D S

Geometry & Topology, Volume 11 (2007)



1816 Michael Kapovich

is a codimension 2 projective subspace in RPn . We assume that the consecutive
hyperplanes intersect at the angles �

4
. For each Pi let pi 2 RPn nRn be the “dual

point” ie the corresponding line li through the origin is orthogonal to Pi .

Remark Somewhat more invariantly, one can describe this setting as follows. We fix a
positive definite bilinear form on RPn so that the points pi are dual to the hyperplanes
Pi . Therefore the assumption that \

i

Pi D S

is a codimension 2 projective hyperplane in RPn implies that fp1; : : : ;p4g is contained
in a projective line s�RPn dual to S . We then are assuming that the points p1; : : : ;p4

are cyclically ordered on s so that the distance between the consecutive points is �=4.
(Note that RP1 D s has length � .)

Then Theorem 5.3 can be restated as follows.

Theorem 5.4 For each angle � 2 .��
4
; 0� there is a unique set of parameters �!t D

.t1; t2; t3; t4/ D .t1; t2;�t2;�t1/ with t1 � 0; t2 � 0 so that the composition of the
corresponding projective transformations

AP1;p1;t1
ı � � � ıAP4;p4;t4

equals the rotation R� around S by the angle � , fixing S pointwise. Moreover, the
function �!t depends continuously on � .

6 Bending

In this section we review the bending deformation of projective structures. Recall that
in the end of the previous section we defined projective transformations

ADAP;p;t 2 PGL.nC 1;R/

corresponding to the triples .P;p; t/, where P � RPn is a projective hyperplane,
p 2 RPn nP and t 2 R.

Before proceeding with the general definition we start with a basic example of bending.
Let B denote the open unit ball in Rn , which we will identify with the hyperbolic
n–space. Let H1; : : : ;Hk denote disjoint hyperbolic hyperplanes in B so that Hi

separates Hi�1 from HiC1 , i D 2; : : : ; k � 1. We assume that the Hi are cooriented
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B

H1

H2

f1

H1

f1.H2/

f

g2

H1

f .H2/

Figure 9: Projective bending.

in such a way that HiC1 is to the right from Hi , i D 1; : : : ; k . Let H˙i denote the
half-space in B bounded by Hi and lying to the left (resp. right) from Hi . We set

Bi WDHCi \H�iC1; i D 1; : : : ; k � 1

and
B0 WDH�1 ;Bk WDHC

k
:

Let Pi D Span.Hi/ denote the projective hyperplane containing Hi and let pi 2 RPn

denote the point dual to Pi with respect to the quadratic form where B is the unit ball.
Choose real numbers t1; : : : ; tk . Our goal is to bend B projectively in RPn along the
hypersurfaces Hi with the bending parameters ti , i D 1; : : : ; k . Let Ai WDAPi ;pi ;ti

,
i D 1; : : : ; k .

We will do bending inductively. First, let f1W B! RPn denote the map which is the
identity on H�

1
and A1 on HC

1
. We then would like to bend B1 WD f1.B/ along

f1.H2/. The corresponding bending map g2 is the identity on f1.H
�
2
/ and A0

2
on

f1.H
C

2
/, where

A02 DA1 ıA2 ıA�1
1 :
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Therefore the map
f2W B! g2.B1/

equals to Id on B0 D H�
1

, to A1 on B1 D HC
1
\H�

2
and to A1 ı A2 on HC

2
.

Continuing in the fashion inductively we eventually obtain the bending map

f W B! RPn

so that the restriction f jBi equals

(8) A1 ı � � � ıAi ; i D 1; : : : ; k � 1;

and f jB0 D Id. The same construction works for an arbitrary locally finite collection
H of disjoint hyperplanes Hi . We then pick a component C0 of Y DB n[iHi where
the bending map f is the identity. Given a component Ck of Y we take the finite
subcollection fH1; : : : ;Hkg of hyperplanes in H separating C0 from Ck . We then
repeat the above construction of bending map to define the restriction of bending to
Ck .

Remark More generally, if .L; �/ is a measured codimension 1 totally-geodesic
lamination in B , we can define projective bending with respect to this lamination.
However, in view of Ratner’s theorem, this generalization is not useful in the context
of bendings of compact manifolds of dimension � 3.

We now give the general definition of bending.

Let M be a projective n–manifold (or, more generally, an orbifold). Let f W zM!RPn

and �W � D �1.M /! PGL.nC 1;R/ be the developing map and the holonomy of
M .

Let L�M be a proper hypersurface (possibly contained in the boundary of M ); let
zL� zM be the preimage of L in the universal cover of M .

We call the hypersurface L flat if it satisfies the following:

(1) Each point x 2L has a neighborhood U �L so that the developing map sends
U to an open subset of a projective hyperplane in RPn .

(2) For a component zLi �
zL let �i be the stabilizer of zLi in � . The group �.�i/

stabilizes the projective hyperplane Pi D Span.f . zLi//� RPn .
We then require that for each zLi , the group �.�i/ has an isolated fixed point
pi 2 RPn which is disjoint from Pi .
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We define a cooriented weighted hypersurface L in M as follows. Consider the union
L of flat connected cooriented hypersurfaces Li in M , which intersect the boundary
of M transversally and so that for distinct Li ;Lj

Li \Lj \ i nt.M /D∅:

In this paper we will be assuming that the collection of hypersurfaces Li is locally
finite in M , although one can make the discussion more general.

Definition 6.1 A weight for L is a locally constant function �W L\i nt.M /! .0;1/,
�W Li 7! eti .

A weighted cooriented hypersurface is the pair �D .L; �/. The weighted hypersurface
�D .L; �/ lifts to a cooriented weighted hypersurface z�D . zL; z�/ in zM .

We now define the bending deformation c� of the projective structure c on M along
the weighted hypersurface �. The structure c� will have the developing map dev�Df�
satisfying the following properties.

For each component H D zLi of zL with the stabilizer �i , let Pi ;pi denote the
projective hyperplane and a point in RPn stabilized by �.�i/ as above. Let H�;HC
denote the components of zM n zL to the left and to the right of H (with respect
to the coorientation). We then require that there exists a projective transformation
g 2 PGL.nC 1;R/ so that

f�jH� D g ıf jH�;

f�jHC DAP;p;t ıg ıf jHC:

The map f� with these properties exists and can be constructed inductively similarly
to our discussion of bending of the hyperbolic space. It is clear that f� is unique up
to postcomposition with projective transformations of RPn . The description of f�
implies that this map is a local homeomorphism. Since z� is � –invariant, it follows that
the map f� is equivariant with respect to a homomorphism ��W �! PGL.nC 1;R/.

Thus the pair .f�; ��/ determines a projective structure c� on M .

The following simple lemma is used to ensure convexity of the projective structures on
Gromov–Thurston examples.

Let H be a hyperplane in Rn ; let H˙ denote the closed half-spaces in Rn bounded by
H . Suppose that D �H� is a compact convex subset; let F denote the intersection
H \D . Pick a point p 2HC . Let †D Conep.F / denote the (convex) cone with the
vertex p and the base F .
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Lemma 6.2 Suppose that for each x 2D the segment xp crosses H inside F . Then
the union D[† is convex.

Proof Under these assumptions, D[†D Cone.p;D/. Now convexity follows from
Lemma 2.1.

Suppose that pi 2HC is a sequence of points so that D;H;pi satisfy the conditions
of Lemma 6.2. Assume that limi pi D p 2 RPn nRn . Let †� RPn denote the limit
of the cones Conepi

.F / with respect to the topology given by the Hausdorff distance
between closed subsets of RPn . Let E �HC be a compact convex subset contained
in the cone † so that

D\E DD\H DE \H D F:

Corollary 6.3 D[E is convex.

Proof By taking the limit, Lemma 6.2 implies that for each pair of points x1 2†nfpg,
x2 2D , the intersection x1x2\H is contained in F . Since E is a convex subset of
†; it follows that x1x2 �D[E .

Let P WD Span.H /.

Corollary 6.4 For each t 2 R, the union

AP;p;t .E/[D

is convex.

Proof The set Et D AP;p;t .E/ is clearly convex. By the definition of AP;p;t , the
set Et is contained in the cone † and Et \H D Et \D D F . Now the assertion
follows from Corollary 6.3.

7 Construction of convex projective structures on Gromov–
Thurston manifolds

Assume as before that the hyperbolic manifold M satisfies Assumption 2 and let M 0

be the manifold constructed (using pieces of M ) as in Section 3.

Theorem 7.1 For each natural number m� 8 which is divisible by 4, the manifold
M 0 admits a convex projective structure.
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Proof The proof breaks in two steps:

(1) We first bend the (hyperbolic) projective structure c on the manifold with
boundary N 0 �M 0 (see Section 3) in order to obtain a new projective structure
c� which has flat boundary. We then construct a projective structure a0 on M 0

by gluing two copies of .N 0; c�/ via an order 2 rotation. It is important to note
here that in the following discussion we will regard N 0 as a submanifold of the
original manifold M .

(2) We use the Theorem 4.3 to verify that .M 0; a0/ is convex.

Step 1 Recall that our construction of the manifold M 0 starts with a choice of a
“half” N �M of the hyperbolic n–manifold M and a fundamental domain O �N .
Below we explain how to choose O . The boundary of N is piecewise-geodesic, it is
the union of two totally-geodesic submanifolds with boundary which we denote L0

and L5 ; the intersection L0\L5 D V is the common boundary of L0 and L5 .

Since m � 8 is divisible by 4, the dihedral group Dm acting on M contains the
dihedral subgroup D4 . The group D4 contains 4 reflections �i ; i D 1; : : : ; 4, fixing
the hypersurfaces

yLi �M; i D 1; : : : ; 4:

Whatever the choice of N and D4 is, we let

Li WD
yLi \N; i D 1; : : : ; 4:

Given N , we choose the subgroup D4 �Dm so that the angle between L1 and L0 is
�
m

and then we take O �N to be bounded by L0 and L1 , see Figure 10.

In order to define the manifold N 0 we delete the “piece” O � N from N . Figure
11 depicts the resulting manifold N 0 (which we regard as a subset of M ). The
submanifolds with boundary L2;L3;L4 separate N 0 into the submanifolds with
corners K1; : : : ;K4 , so that

@Ki DLi [LiC1; i D 1; : : : ; 4:

The angle between Li ;LiC1 equals �
4

, for i D 1; : : : ; 3, and the angle between L4

and L5 is �
4
�
�
m

.

The manifold N 0 is a submanifold with corners in the hyperbolic manifold M . We
define a hyperbolic structure h on N 0 as follows. Since N 0 is a convex subset of M ,
the universal cover zN 0 of N 0 can be identified with a convex subset

zN 0 � zM D Hn:
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L5

N

L4
�.m�4/

4m

�
4
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�
4

�
4

L2

L1L0

O

Figure 10: Submanifolds Li �N .

We let devW zN 0 ! Hn denote the identity embedding. We have the corresponding
embedding of the fundamental groups

�W �1.N
0/! �1.M /� Isom.Hn/:

We regard dev and � as the developing map and the holonomy representation respec-
tively. They determine a hyperbolic structure h on N 0 . By using the projective model
of Hn , we regard h as a projective structure c on the manifold with boundary N 0 .
Note that the boundary of N 0 is not flat with respect to c , since it is bent along V .
We will use a projective bending of c in order to eliminate this singularity and obtain
a new projective manifold .N 0; c�/ with flat boundary. In order to bend, we need a
cooriented flat weighted hypersurface in .N 0; c/, which we define below.

Since each Lj (j D 1; : : : ; 4) is totally-geodesic (with respect to the hyperbolic
structure h), it is flat as a hypersurface in the projective manifold .N 0; c/. We define
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L5

L4

L3

L2
L1

V

K1

K2

K3

K4
N 0

e2

e1

R�=m

Orientation of the
plane normal to V

Figure 11: Coorientation on L�N 0 .

coorientation for the hypersurface LDL1[ � � � [L4 �N 0 by coorienting each Lj ’s
as in Figure 11. (Each arrow indicates the direction from left to right.)

Our next goal is to define weights for the hypersurface L. We identify the hyperbolic
space Hn with the unit ball B in the Euclidean space Rn � RPn , so that each flat
hypersurface L1; : : : ;L4;L5 corresponds (under the developing map) to a projective
hyperplane P1; : : : ;P4;P5 � RPn passing through the codimension 2 subspace Q�

RPn containing the origin. The angles between Pi ;PiC1 are the same as the angles
between Li ;LiC1 , i D 1; : : : ; 4.

For each i D 1; : : : ; 4 let pi 2 RPn nRn be the point dual to Pi (see Section 5). We
orient the 2-plane Q? normal to Q in Rn as indicated in Figure 10. It remains to
define the weight for L.

Since m> 4, according to Section 5, there exist real numbers

t1; t2; t3 D�t2; t4 D�t1
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so that

(9) AP1;p1;t1
ı � � � ıAP4;p4;t4

DR �
m
;

is the rotation around Q by the angle �
m

. Hence the rotation R �
m

sends P5 to P1 . (The
order of the composition used here agrees with the orientation used for the 2–plane
Q? .)

Let � denote the weight for L defined by Li 7! eti . Let � WD .L; �/ and c� be the
projective structure on N 0 obtained from c by bending along �.

Let zLi � Pi , i D 1; : : : ; 5 be the images of the universal covers of the submanifolds
Li under the (identity) developing map of h. Let zKi �

zN 0 , be the universal covers of
the manifolds Ki , i D 1; : : : ; 4, embedded in zN 0 so that

zKi�1\
zKi D

zLi ; i D 2; 3; 4:

Then the developing map dev� of c� satisfies:

dev� j zL1 D Id;

dev� j zK1 DAP1;p1;t1
;

and

(10) dev� j zK4 DR �
m
;

see equation (8) in Section 6.

Set c0 WD c� . Since R �
m

carries P5 to P1 , the equation (10) implies that the projective
manifold .N 0; c0/ has flat boundary. Since the rotation R �

m
belongs to the isometry

group of Hn , the restriction of the projective structure c0 to @N 0 is a hyperbolic structure,
necessarily isometric to the hyperbolic metric on the totally-geodesic boundary of
the hyperbolic manifold .N; h/. The image of the developing map of c0j@N 0 is the
hyperbolic hyperplane H1 WD P1\Hn .

Let
� 0W .@N 0; c0/! .@N 0; c0/

denote the isometric involution which interchanges L1 and L5 (see Section 3). This
involution corresponds to the order 2 rotation around Q in RPn . Thus we obtain a
projective manifold with flat boundary .N 0; c0/ and the order 2 automorphism � 0 of
its boundary.

We next glue two copies of .N 0; c0/ via � 0 . It is done as follows. Recall that the
developing map of c0j@N 0 is a diffeomorphism to the hyperbolic hyperplane H1 �Hn .
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Since @N 0 is compact, there exists a regular neighborhood T of @N 0 in N 0 , so that
the developing map of c0jT is a diffeomorphism

dev�W zT ! dev�. zT /� Hn;

to a neighborhood of H1 in one of the half-spaces in Hn determined by H1 . Hence
the restriction of c0 to T is a hyperbolic structure.

Let .N 0
˙
; c0
˙
/ denote the two copies of .N 0; c0/:

N 0˙ DN 0 � f˙1g:

The disjoint union
. yN ; yc0/D .N 0C; c

0
C/t .N

0
�; c
0
�/

is also a projective manifold with flat boundary; the automorphism � 0 determines an
automorphism

y� 0W . yN ; yc0/! . yN ; yc0/

which interchanges @N 0� and @N 0C . Set

M 0
D yN =y� DN 0C[� 0 N 0�

Let D �M 0 be the hypersurface which is the projection of @ yN .

The projective structure on M 0 nD is the restriction of the projective structures c0
˙

. It
remains to define the projective structure on M 0 near D . Observe that

T 0 WD TC[� 0 T� D T � fC1g[� 0 T � f�1g �M 0

is a neighborhood of D . The projective structures c0
˙
jT˙ are hyperbolic with geodesic

boundary and � 0W @T ! @T is a hyperbolic isometry. Therefore we get the induced
hyperbolic structure on T 0 . This hyperbolic structure determines a projective structure
which agrees with

c0˙jint.N 0˙/:

As the result we obtain the projective structure a0 on the manifold M 0 . By construction,
the manifold .M 0; a0/ admits an order 2 automorphism � which fixes the codimension
2 submanifold V 0 pointwise and corresponds (under the developing map) to the order
2 rotation in RPn . Here V 0 �M 0 is the submanifold corresponding to V �N �M .

This concludes Step 1.

Step 2 Let N 0
˙

denote the two copies of N 0 used to construct M 0 . According to our
discussion in Section 3, the hyperbolic manifold .N 0; c/ is tiled by m� 1 isometric
copies Oj of the fundamental domain O of the group Dm � Aut.M / (see Section 3).
The intersection \j Oj is the codimension 2 totally-geodesic submanifold V �N 0 .
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Let W C
1
DL1;W

C

1
; : : : ;W Cm �N 0C denote the flat hypersurfaces which appear as the

boundary components of the domains Oj nV . For each j let W �j WD �.W
C

j /�M 0 .
Then for each j , the flat hypersurfaces with boundary W �j ;W

C
j match in M 0 to form

a flat hypersurface (without boundary) Sj � .M
0; a0/ which is invariant under the

automorphism � W .M 0; a0/! .M 0; a0/.

The flat hypersurfaces Sj cut the projective manifold .M 0; a0/ into components, each
of which is (projectively) isomorphic to the convex hyperbolic manifold with corners
O .

We now pass to the universal cover X D . zM 0; za0/ of .M 0; a0/. The codimension 2
submanifold V 0 lifts to X to a disjoint union of codimension two submanifolds, each
of which is isomorphic to the open .n� 2/–disk.

The inverse image zS �X of S WD [j Sj is a union of flat hypersurfaces in X (walls)
which intersect along the codimension 2 submanifolds above. The closure C 0j of each
component of X n zS is a convex subset, which is projectively isomorphic to the universal
cover of the hyperbolic manifold with corners O . Thus we obtain a stratification of X

by closed subsets which are:

(1) Codimension 0 strata (cells): Convex sets C 0j .

(2) Codimension 1 strata: Facets F 0i � C 0j , which are .n� 1/–dimensional intersec-
tions of C 0j with walls.

(3) Codimension 2 strata: Components of the preimage of V �M 0 .

The dual complex for this stratification of X is a regular 2–dimensional cell complex
Z , where every 2–cell has 2.m�1/� 14 edges. By convexity, the links of vertices of
Z do not contain any bigons. Thus Z satisfies the C 0.1=14/ (and, hence, C 0.1=7/)
small cancellation condition.

We now analyze the unions of the adjacent cells. Suppose that C 0
1
;C 0

2
share a facet F 0 .

Lemma 7.2 C 0
1
[C 0

2
is isomorphic to a proper convex subset of RPn .

Proof Let devW X ! RPn denote the developing map of .M 0; a0/ and set B0i WD

dev.C 0i /, i D 1; 2.

Recall that the projective structure a0 on M 0 is obtained by bending of the hyperbolic
structure on M . Therefore C 0

1
[C 0

2
is isomorphic to the projective manifold that can be

described as follows. Consider the compact manifolds with corners O1;O2 �M ; they
intersect along a hypersurface W WDW C

1
. Lift these manifolds to simply-connected

regions zO1; zO2 �
zM , which share a hypersurface zW , which passes through the origin.
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Let P WD Span. zW /, and p 2 RPn nRn be the point dual to P . Clearly, O1[O2 is
convex; therefore U WD zO1[

zO2 is convex as well. Note that there exists a Euclidean
reflection � in the hyperplane H preserves the union U and interchanges zO and zO2 .
Then, by appropriately normalizing the developing map dev of .M 0; a0/, we conclude
that

devD IdW zO1! B01;

devDAP;p;t W
zO2! B02;

and
dev.F 0/D zW ;

where t depends on the pair .C 0
1
;C 0

2
/.

We are now ready to prove convexity of B0
1
[B0

2
. Suppose that there exists a point

x1 2 B0
1

such that the projective line l through x1;p crosses P at a point y which is
not in zW . Then, by symmetry, l \ zO2 contains a point x2 D �.x1/ and the segment
x1x2 contains a point y 62 U . This contradicts convexity of U .

Therefore we can apply Corollary 6.3 to B0
1
[ B0

2
(with D WD zO1;E WD zO2 ) and

conclude that B0
1
[B0

2
is convex.

We now de-projectivize the projective manifold X . We replace each cell C 0j with a

convex cone yC 0j , etc. The result is an affine .nC 1/–manifold yX which is obtained by

gluing the convex cones yC 0j . We next observe that the conditions of Theorem 4.3 are

satisfied by yX . For instance, Parts 1 and 2 of Assumption 3, follow from the fact that
the cells C 0j are isomorphic to the universal cover zO1 with the codimension 1 and 2
faces of Cj covering strata of @O1 . Parts 3, 4, and 5 follow from the fact that the limit
sets of the faces correspond to the limit sets of their stabilizers in Isom.Hn/. Part 1 of
Assumption 4, comes from the fact that the manifold .M 0; a0/ is obtained by gluing
the boundaries of two copies of .N 0; c�/ via an order 2 rotation. Part 2 of Assumption
4 follows from Lemma 7.2.

Therefore Theorem 4.3 implies that zX is isomorphic to a proper homogeneous open
convex cone in RnC1 . Thus X is isomorphic to a proper open convex subset of RPn

and therefore the manifold M 0 is a convex projective manifold. This concludes the
proof of Theorem 7.1.

Corollary 7.3 The projective manifold M 0 is strictly convex.

Proof Since M 0 admits a metric of negative curvature, its fundamental groups are
Gromov-hyperbolic. Since M 0 is convex, it is strictly convex by Theorem 1.2.
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Appendix A Dual complex to the conical stratification of an
affine manifold

The material of this section is standard, we present it for the sake of completeness. Let
X be an affine manifold which is the union of cones C 0j , j 2 J , and let Z be the cell
complex dual to the stratification of X , see Section 4. We give Z the weak topology.
The main goal of this appendix is to prove the following proposition.

Proposition A.1 Z is homotopy-equivalent to X .

Proof We define the barycentric subdivision ˇ.Z/ of Z as follows. First, take the
barycentric subdivision ˇ.T / of the 1–skeleton T of Z . Next, for each 2–cell c in
Z , pick an interior point oc 2 c . Now cone off the boundary circle @c (regarded as a
subcomplex of ˇ.Z/) from the point oc . The result is the barycentric subdivision of c .
Repeat this procedure for each 2–cell c . The resulting complex ˇ.Z/ is the simplicial
complex associated with the poset whose elements are the cells of Z . The geometric
realization of ˇ.Z/ is, of course, the same as the geometric realization of Z .

Our goal is to promote the stratification of X by the convex cones of codimension 0, 1
and 2 into an open covering by contractible sets with contractible intersections, so that
the nerve of the resulting covering is ˇ.Z/.

We begin by triangulating the space X so that each simplex in the triangulation is
linear with respect to the affine structure on X and so that each stratum in X is a union
of simplices in the resulting simplicial complex ı.X /.

A priori, stars of the disjoint strata in X (with respect to the above triangulation) are
not disjoint. To correct this, take the second barycentric subdivision Y of ı.X /. Then
disjoint strata in X have disjoint stars with respect to Y . Given a stratum S in X let
st.S/ denote the star of S in Y . Let YS denote the open star of S in Y , ie

YS WD st.S/ n
[
�2†

�;

where † consists of all simplices in Y which are disjoint from S .

We obtain an open covering U of X by the open stars YS of the strata of X . Since
disjoint strata have disjoint stars, whenever

YS1
\YS2

\YS3
¤∅;

after renumbering the strata Si , we obtain

S1 � S2 � S3:
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Therefore the nerve of the covering U is isomorphic to the poset whose elements are
the closed strata S �X , ie to the simplicial complex ˇ.Z/. Moreover, every nonempty
intersection

YS1
\YS2

\YS3

has to be equal to YS1
since

YS1
� YS2

� YS3
:

Since S1 is contractible, it follows that the open star YS1
is contractible as well. Then

the nerve ˇ.Z/ of the covering U is is homotopy-equivalent to X . Therefore Z is
also homotopy-equivalent to X .

Corollary A.2 Z is simply-connected.

Proof Since X is simply-connected, it follows that Z is simply-connected as well.
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