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Abstract

This tutorial summarizes recent advances in the convex relaxation of the optimal power flow (OPF) problem,
focusing on structural properties rather than algorithms. Part I presents two power flow models, formulates OPF and
their relaxations in each model, and proves equivalence relations among them. Part II presents sufficient conditions
under which the convex relaxations are exact.
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I. INTRODUCTION

For our purposes an optimal power flow (OPF) problem is a mathematical program that seeks to minimize
a certain function, such as total power loss, generation cost or user disutility, subject to the Kirchhoff’s
laws as well as capacity, stability and security constraints. OPF is fundamental in power system operations
as it underlies many applications such as economic dispatch, unit commitment, state estimation, stability
and reliability assessment, volt/var control, demand response, etc. There has been a great deal of research
on OPF since Carpentier’s first formulation in 1962 [1]. An early solution appears in [2] and extensive
surveys can be found in e.g. [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14].

Power flow equations are quadratic and hence OPF can be formulated as a quadratically constrained
quadratic program (QCQP). It is generally nonconvex and hence NP-hard. A large number of optimization
algorithms and relaxations have been proposed. A popular approximation is a linear program, called DC
OPF, obtained through the linearization of the power flow equations e.g. [15], [16], [17], [18], [19]. See
also [20] for a more accurate linear approximation. To the best of our knowledge solving OPF through
semidefinite relaxation is first proposed in [21] as a second-order cone program (SOCP) for radial (tree)
networks and in [22] as a semidefinite program (SDP) for general networks in a bus injection model. It is
first proposed in [23], [24] as an SOCP for radial networks in the branch flow model of [25], [26]. See
Remark 6 below for more details. While these convex relaxations have been illustrated numerically in [21]
and [22], whether or when they will turn out to be exact is first studied in [27]. Exploiting graph sparsity
to simplify the SDP relaxation of OPF is first proposed in [28], [29] and analyzed in [30], [31].

Convex relaxation of quadratic programs has been applied to many engineering problems; see e.g. [32].
There is a rich theory and extensive empirical experiences. Compared with other approaches, solving OPF
through convex relaxation offers several advantages. First, while DC OPF is useful in a wide variety of
applications, it is not applicable in other applications; see Remark 10. Second a solution of DC OPF may not
be feasible (may not satisfy the nonlinear power flow equations). In this case an operator may tighten some
constraints in DC OPF and solve again. This may not only reduce efficiency but also relies on heuristics
that are hard to scale to larger systems or faster control in the future. Third, when they converge, most
nonlinear algorithms compute a local optimal usually without assurance on the quality of the solution. In
contrast a convex relaxation provides for the first time the ability to check if a solution is globally optimal.
If it is not, the solution provides a lower bound on the minimum cost and hence a bound on how far
any feasible solution is from optimality. Unlike approximations, if a relaxed problem is infeasible, it is a
certificate that the original OPF is infeasible.

This two-part tutorial explains the main theoretical results on semidefinite relaxations of OPF developed
in the last few years. Part I presents two power flow models that are useful in different situations, formulates
OPF and its convex relaxations in each model, and clarifies their relationship. Part II [33] presents sufficient
conditions that guarantee the relaxations are exact, i.e. when one can recover a globally optimal solution
of OPF from an optimal solution of its relaxations. We focus on basic results using the simplest OPF
formulation and does not cover many relevant works in the literature, such as stochastic OPF e.g. [34],
[35], [36], distributed OPF e.g. [37], [38], [39], [40], [41], [42], new applications e.g. [43], [44], or what
to do when relaxation fails e.g. [45], [46], [47], to name just a few.
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A. Outline of paper

Many mathematical models have been used to model power networks. In Part I of this two-part paper
we present two such models, we call the bus injection model (BIM) and the branch flow model (BFM).
Each model consists of a set of power flow equations. Each models a power network in that the solutions
of each set of equations, called the power flow solutions, describe the steady state of the network. We
prove that these two models are equivalent in the sense that there is a bijection between their solution sets
(Section II). We formulate OPF within each model where the power flow solutions define the feasible set
of OPF (Section III). Even though BIM and BFM are equivalent some results are much easier to formulate
or prove in one model than the other; see Remark 2 in Section II.

The complexity of OPF formulated here lies in the nonconvexity of power flow equations that gives rise
to a nonconvex feasible set of OPF. We develop various characterizations of the feasible set and design
convex supersets based on these characterizations. Different designs lead to different convex relaxations
and we prove their relationship (Sections IV and V). When a relaxation is exact an optimal solution of the
original nonconvex OPF can be recovered from any optimal solution of the relaxation. In Part II [33] we
present sufficient conditions that guarantee the exactness of convex relaxations.

Branch flow models are originally proposed for networks with a tree topology, called radial networks,
e.g. [25], [26], [48], [49], [50], [51], [23], [52], [53]. They take a recursive structure that simplifies the
computation of power flow solutions, e.g. [54], [55], [48]. The model of [25], [26] also has a linearization
that offers several advantages over DC OPF in BIM; see Remark 10. The linear approximation provides
simple bounds on the branch powers and voltage magnitudes in the nonlinear BFM (Section VI). These
bounds are used in [56] to prove a sufficient condition for exact relaxation.

We make algorithmic recommendations in Section VII based on the results presented here.
This extended version differs from the journal version only in the addition of two Appendices. Appendix

VIII provides some mathematical preliminaries and Appendix IX proofs of all main results. Even though
all proofs can be found in their original papers, we provide proofs here because (i) it is convenient to have
all proofs in one place and in a uniform notation, and (ii) some of the formulations and presentations here
are slightly different from those in the original papers.

B. Notations

Let C denote the set of complex numbers, R the set of real numbers, and N the set of integers. For
a ∈ C, Re a and Im a denote the real and imaginary parts of a respectively. For any set A ⊆ Cn, convA
denotes the convex hull of A. For a ∈ R, [a]+ := max{a,0}. For a,b ∈ C, a ≤ b means Re a ≤ Re b and
Im a≤ Im b. We abuse notation to use the same symbol a to denote either a complex number Rea+ i Ima
or a 2-dimensional real vector a =(Rea, Ima) depending on the context.

In general scalar or vector variables are in small letters, e.g. u,w,x,y,z. Most power system quantities
however are in capital letters, e.g. S jk,Pjk,Q jk, I j,Vj. A variable without a subscript denotes a vector with
appropriate components, e.g. s := (s j, j = 0, . . . ,n), S := (S jk,( j,k) ∈ E). For vectors x,y, x ≤ y denotes
componentwise inequality.

Matrices are usually in capital letters. The transpose of a matrix A is denoted by AT and its Hermitian
(complex conjugate) transpose by AH . A matrix A is Hermitian if A = AH . A is positive semidefinite (or
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psd), denoted by A � 0, if A is Hermitian and xHAx ≥ 0 for all x ∈ Cn; in particular if A � 0 then by
definition A = AH . For matrices A,B, A � B means A−B is psd. Let Sn be the set of all n×n Hermitian
matrices and Sn

+ the set of n×n psd matrices.
A graph G = (N,E) consists of a set N of nodes and a set E ⊆ N×N of edges. If G is undirected then

( j,k) ∈ E if and only if (k, j) ∈ E. If G is directed then ( j,k) ∈ E only if (k, j) 6∈ E; in this case we will
use ( j,k) and j→ k interchangeably to denote an edge pointing from j to k. We sometimes use G̃ = (N, Ẽ)
to denote a directed graph. By “ j ∼ k” we mean an edge ( j,k) if G is undirected and either j→ k or
k→ j if G is directed. Sometimes we write j ∈ G or ( j,k) ∈ G to mean j ∈ N or ( j,k) ∈ E respectively.
A cycle c := ( j1, . . . , jK) is an ordered set of nodes jk ∈ N so that ( jk, jk+1) ∈ E for k = 1, . . . ,K with the
understanding that jK+1 := j1. In that case we refer to a link or a node in the cycle by ( jk, jk+1) ∈ c or
jk ∈ c respectively.

II. POWER FLOW MODELS

In this section we describe two mathematical models of power networks and prove their equivalence. By
a “mathematical model” we mean a set of variables and a set of equations relating these variables. These
equations are motivated by the physical system, but mathematically, they are the starting point from which
all claims are derived.

A. Bus injection model

Consider a power network modeled by a connected undirected graph G(N+,E) where N+ := {0}∪N,
N := {1,2, . . . ,n}, and E ⊆ N+×N+. Each node in N+ represents a bus and each edge in E represents
a transmission or distribution line. We use “bus” and “node” interchangeably and “line” and “edge”
interchangeably. For each edge (i, j) ∈ E let yi j ∈C be its admittance. A bus j ∈ N+ can have a generator,
a load, both or neither. Let Vj be the complex voltage at bus j ∈ N+ and |Vj| denote its magnitude. Bus 0
is the slack bus. Its voltage is fixed and we assume without loss of generality that V0 = 1∠0◦ per unit (pu).
Let s j be the net complex power injection (generation minus load) at bus j ∈ N+.

The bus injection model (BIM) is defined by the following power flow equations that describe the
Kirchhoff’s laws:

s j = ∑
k: j∼k

yH
jk Vj(V H

j −V H
k ), j ∈ N+ (1)

Let the set of power flow solutions V for each s be:

V(s) := {V ∈ Cn+1 | V satisfies (1)}

For convenience we include V0 in the vector variable V := (Vj, j ∈ N+) with the understanding that V0 :=
1∠0◦ is fixed.

Remark 1: Bus types. Each bus j is characterized by two complex variables Vj and s j, or equivalently,
four real variables. The buses are usually classified into three types, depending on which two of the four
real variables are specified. For the slack bus 0, V0 is given and s0 is variable. For a generator bus (also
called PV -bus), Re(s j) = p j and |Vj| are specified and Im(s j) = q j and ∠Vj are variable. For a load bus
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(also called PQ-bus), s j is specified and Vj is variable. The power flow or load flow problem is: given two
of the four real variables specified for each bus, solve the n+1 complex equations in (1) for the remaining
2(n+ 1) real variables. For instance when all n buses j 6= 0 are all load buses, the power flow problem
solves (1) for the n complex voltages Vj, j 6= 0, and the power injection s0 at the slack bus 0. This can
model a distribution system with a substation at bus 0 and n constant-power loads at the other buses. For
optimal power flow problems p j and |Vj| on generator buses or s j on load buses can be variables as well.
For instance economic dispatch optimizes real power generations p j at generator buses; demand response
optimizes demands s j at load buses; and volt/var control optimizes reactive powers q j at capacitor banks,
tap changers, or inverters. These remarks also apply to the branch flow model presented next.

B. Branch flow model

In the branch flow model we adopt a connected directed graph G̃ = (N+, Ẽ) where each node in N+ :=
{0,1, . . . ,n} represents a bus and each edge in Ẽ ⊆ N+×N+ represents a transmission or distribution line.
Fix an arbitrary orientation for G̃ and let m := |Ẽ| be the number of directed edges in G̃. Denote an edge by
( j,k) or j→ k if it points from node j to node k. For each edge ( j,k) ∈ Ẽ let z jk := 1/y jk be the complex
impedance on the line; let I jk be the complex current and S jk = Pjk + iQ jk be the sending-end complex
power from buses j to k. For each bus j ∈ N+ let Vj be the complex voltage at bus j. Assume without loss
of generality that V0 = 1∠0◦ pu. Let s j be the net complex power injection at bus j.

The branch flow model (BFM) in [24] is defined by the following set of power flow equations:

∑
k: j→k

S jk = ∑
i:i→ j

(
Si j− zi j|Ii j|2

)
+ s j, j ∈ N+ (2a)

I jk = y jk(Vj−Vk), j→ k ∈ Ẽ (2b)

S jk = Vj IH
jk, j→ k ∈ Ẽ (2c)

where (2b) is the Ohm’s law, (2c) defines branch power, and (2a) imposes power balance at each bus. The
quantity zi j|Ii j|2 represents line loss so that Si j− zi j|Ii j|2 is the receiving-end complex power at bus j from
bus i.

Let the set of solutions x̃ := (S, I,V ) of BFM for each s be:

X̃(s) := {x̃ ∈ C2m+n+1 | x̃ satisfies (2)}

For convenience we include V0 in the vector variable V := (Vj, j ∈ N+) with the understanding that V0 :=
1∠0◦ is fixed.

C. Equivalence

Even though the bus injection model (1) and the branch flow model (2) are defined by different sets of
equations in terms of their own variables, both are models of the Kirchhoff’s laws and therefore must be
related. We now clarify the precise sense in which these two mathematical models are equivalent. We say
two sets A and B are equivalent, denoted by A≡ B, if there is a bijection between them [57].

Theorem 1: V(s)≡ X̃(s) for any power injections s.
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Remark 2: Two models. Given the bijection between the solution sets V(s) and X̃(s) any result in one
model is in principle derivable in the other. Some results however are much easier to state or derive in one
model than the other. For instance BIM, which is widely used in transmission network problems, allows
a much cleaner formulation of the semidefinite program (SDP) relaxation. BFM for radial networks has a
convenient recursive structure that allows a more efficient computation of power flows and leads to a useful
linear approximation of BFM; see Section VI. The sufficient condition for exact relaxation in [56] provides
intricate insights on power flows that are hard to formulate or prove in BIM. Finally, since BFM directly
models branch flows S jk and currents I jk, it is easier to use for some applications. We will therefore freely
use either model depending on which is more convenient for the problem at hand.

III. OPTIMAL POWER FLOW

A. Bus injection model

As mentioned in Remark 1 an optimal power flow problem optimizes both variables V and s over the
solution set of the BIM (1). In addition all voltage magnitudes must satisfy:

v j ≤ |Vj|2 ≤ v j, j ∈ N+ (3)

where v j and v j are given lower and upper bounds on voltage magnitudes. Throughout this paper we assume
v j > 0 to avoid triviality. The power injections are also constrained:

s j ≤ s j ≤ s j, j ∈ N+ (4)

where s j and s j are given bounds on the injections at buses j.
Remark 3: OPF constraints. If there is no bound on the load or on the generation at bus j then s j =

−∞− i∞ or s j = ∞+ i∞ respectively. On the other hand (4) also allows the case where s j is fixed (e.g.
a constant-power load), by setting s j = s j to the specified value. For the slack bus 0, unless otherwise
specified, we always assume v0 = v0 = 1 and s0 =−∞− i∞, s0 = ∞+ i∞. Therefore we sometimes replace
j ∈ N+ in (3) and (4) by j ∈ N.

We can eliminate the variables s j from the OPF formulation by combining (1) and (4) into

s j ≤ ∑
k:( j,k)∈E

yH
jk Vj(V H

j −V H
k ) ≤ s j, j ∈ N+ (5)

Then OPF in the bus injection model can be defined just in terms of the complex voltage vector V . Define

V := {V ∈ Cn+1 | V satisfies (3), (5)} (6)

V is the feasible set of optimal power flow problems in BIM.
Let the cost function be C(V ). Typical costs include the cost of generating real power at each generator

bus or line loss over the network. All these costs can be expressed as functions of V . Then the problem of
interest is:
OPF:

min
V

C(V ) subject to V ∈ V (7)
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Since (5) is quadratic, V is generally a nonconvex set. OPF is thus a nonconvex problem and NP-hard to
solve in general.

B. Branch flow model

Denote the variables in the branch flow model (2) by x̃ := (S, I,V,s) ∈C2(m+n+1). We can also eliminate
the variables s j as for the bus injection model by combining (2a) and (4) but it will prove convenient to
retain s := (s j, j ∈ N+) as part of the variables. Define the feasible set in the branch flow model:

X̃ := {x̃ ∈ C2(m+n+1) | x̃ satisfies (2), (3), (4)} (8)

Let the cost function in the branch flow model be C(x̃). Then the optimal power flow problem in the
branch flow model is:
OPF:

min
x̃

C(x̃) subject to x̃ ∈ X̃ (9)

Since (2) is quadratic, X is generally a nonconvex set. OPF is thus a nonconvex problem and NP-hard to
solve in general.

Remark 4: OPF equivalence. By Theorem 1 there is a bijection between V and X̃. Throughout this
paper we assume that the cost functions in BIM and BFM are equivalent under this bijection and we abuse
notation to denote them by the same symbol C(·). Then OPF (7) in BIM and (9) in BFM are equivalent.

Remark 5: OPF variants. OPF as defined in (7) and (9) is a simplified version that ignores other important
constraints such as line limits, security constraints, stability constraints, and chance constraints; see extensive
surveys in [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [58], [59] and a recent discussion in
[60] on real-life OPF problems. Some of these can be incorporated without any change to the results in this
paper (e.g. see [24], [61] for models that include shunt elements and line limits). Indeed a shunt element
y j at bus j can be easily included in BIM by modifying (1) into:

s j = ∑
k: j∼k

yH
jk Vj(V H

j −V H
k )+ yH

j |Vj|2

or included in BFM by modifying (2a) into:

∑
k: j→k

S jk + yH
j |Vj|2 = ∑

i:i→ j

(
Si j− zi j|Ii j|2

)
+ s j

C. OPF as QCQP

Before we describe convex relaxations of OPF we first show that, when C(V ) :=V HCV is quadratic in
V for some Hermitian matrix C, OPF is indeed a quadratically constrained quadratic program (QCQP) by
converting it into the standard form. We will use the derivation in [61] for OPF (7) in BIM. OPF (9) in
BFM can similarly be converted into a standard form QCQP.
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Define the (n+1)× (n+1) admittance matrix Y by

Yi j =


∑

k:k∼i
yik, if i = j

−yi j, if i 6= j and i∼ j

0 otherwise

Y is symmetric but not necessarily Hermitian. Let I j be the net injection current from bus j to the rest of
the network. Then the current vector I and the voltage vector V are related by the Ohm’s law I =YV . BIM
(1) is equivalent to:

s j = VjIH
j = (eH

j V )(IHe j)

where e j is the (n+1)-dimensional vector with 1 in the jth entry and 0 elsewhere. Hence, since I = YV ,
we have

s j = tr
(
eH

j VV HY He j
)

= tr
(
Y He jeH

j
)

VV H = V HY H
j V

where Yj := e jeH
j Y is an (n+1)× (n+1) matrix with its jth row equal to the jth row of the admittance

matrix Y and all other rows equal to the zero vector. Yj is in general not Hermitian so that V HY H
j V is in

general a complex number. Its real and imaginary parts can be expressed in terms of the Hermitian and
skew Hermitian components of Y H

j defined as:

Φ j :=
1
2
(
Y H

j +Yj
)

and Ψ j :=
1
2i
(
Y H

j −Y j
)

Then

Re s j =V H
Φ jV and Im s j =V H

Ψ jV

Let their upper and lower bounds be denoted by

p j := Re s j and p j := Re s j

q j := Re s j and q j := Re s j

Let J j := e jeH
j denote the Hermitian matrix with a single 1 in the ( j, j)th entry and 0 everywhere else.

Then OPF (7) can be written as a standard form QCQP:

min
V∈Cn+1

V HCV (10a)

subject to V H
Φ jV ≤ p j, V H(−Φ j)V ≤−p j (10b)

V H
Ψ jV ≤ q j, V H(−Ψ j)V ≤−q j (10c)

V HJ jV ≤ v j, V H(−J j)V ≤−v j (10d)

where j ∈ N+ in (10).
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IV. FEASIBLE SETS AND RELAXATIONS: BIM

In this and the next section we derive semidefinite relaxations of OPF and clarify their relations. The cost
function C of OPF is usually assumed to be convex in its variables. The difficulty of OPF formulated here
thus arises from the nonconvex feasible sets V for BIM and X̃ for BFM. The basic approach to deriving
convex relaxations of OPF is to design convex supersets of (equivalent sets of) V or X̃ and minimize the
same cost function over these supersets. Different choices of convex supersets lead to different relaxations,
but they all provide a lower bound to OPF. If every optimal solution of a convex relaxation happens to lie
in V or X̃ then it is also feasible and hence optimal for the original OPF. In this case we say the realxation
is exact.

In this section we present three characterizations of the feasible set V in BIM. These characterizations
naturally suggest convex supersets and semidefinite relaxations of OPF, and we prove equivalence relations
among them. In the next section we treat BFM. In Part II of the paper we discuss sufficient conditions that
guaranteed exact relaxations.

A. Preliminaries

Since OPF is a nonconvex QCQP there is a standard semidefinite relaxation through the equivalence
relation: for any Hermitian matrix M, V HMV = tr MVV H = tr MW for a psd rank-1 matrix W . Applying
this transformation to the QCQP formulation (10) leads to an equivalent problem of the form:

min
W∈Sn+1

tr CW

subject to tr ClW ≤ bl, W � 0, rank W = 1

for appropriate Hermitian matrices Cl and real numbers bl . This problem is equivalent to (10) because
given a psd rank-1 solution W , a unique solution V of (10) can be recovered through rank-1 factorization
W =VV H . Unlike (10) which is quadratic in V this problem is convex in W except the nonconvex rank-1
constraint. Removing the rank-1 constraint yields the standard SDP relaxation.

We now generalize this intuition to characterize the feasible set V in (6) in terms of partial matrices.
These characterizations lead naturally to SDP, chordal, and second-order cone program (SOCP) relaxations
of OPF in BIM, as shown in [57], [31].

We start with some basic definitions on partial matrices and their completions; see e.g. [62], [63], [64]
for more details. Fix any connected undirected graph F with n vertices and m edges connecting distinct
vertices.1 A partial matrix WF is a set of 2m+n complex numbers defined on F :

WF :=
{
[WF ] j j, [WF ] jk, [WF ]k j | nodes j and edges ( j,k) of F

}
WF can be interpreted as a matrix with entries partially specified by these complex numbers. If F is a
complete graph (in which there is an edge between every pair of vertices) then WF is a fully specified n×n
matrix. A completion W of WF is any fully specified n×n matrix that agrees with WF on graph F , i.e.,

[W ] j j = [WF ] j j, [W ] jk = [WF ] jk for j,( j,k) ∈ F

1In this subsection we abuse notation and use n,m to denote general integers unrelated to the number of buses or lines in a power network.



IEEE TRANS. ON CONTROL OF NETWORK SYSTEMS, 1(1):15–27, MARCH 2014 (WITH PROOFS) 12

Given an n×n matrix W we use WF to denote the submatrix of W on F, i.e., the partial matrix consisting
of the entries of W defined on graph F . If q is a clique (a fully connected subgraph) of F then let WF(q)
denote the fully-specified principal submatrix of WF defined on q. We extend the definitions of Hermitian,
psd, and rank-1 for matrices to partial matrices, as follows. A partial matrix WF is Hermitian, denoted by
WF =W H

F , if [WF ] jk = [WF ]
H
k j for all ( j,k) ∈ F ; it is psd, denoted by WF � 0, if WF is Hermitian and the

principal submatrices WF(q) are psd for all cliques q of F ; it is rank-1, denoted by rank WF = 1, if the
principal submatrices WF(q) are rank-1 for all cliques q of F . We say WF is 2×2 psd (rank-1) if, for all
edges ( j,k) ∈ F , the 2×2 principal submatrices

WF( j,k) :=

[
[WF ] j j [WF ] jk

[WF ]k j [WF ]kk

]
are psd (rank-1), denoted by WF( j,k) � 0 (rank WF( j,k) = 1). F is a chordal graph if either F has no
cycle or all its minimal cycles (ones without chords) are of length three. A chordal extension c(F) of F is
a chordal graph that contains F , i.e., c(F) has the same vertex set as F but an edge set that is a superset
of F’s edge set. In that case we call the partial matrix Wc(F) a chordal extension of the partial matrix WF .
Every graph F has a chordal extension, generally nonunique. In particular a complete supergraph of F is
a trivial chordal extension of F .

For our purposes chordal graphs are important because of the result [62, Theorem 7] that every psd
partial matrix has a psd completion if and only if the underlying graph is chordal. When a positive
definite completion exists, there is a unique positive definite completion, in the class of all positive definite
completions, whose determinant is maximal. Theorem 2 below extends this to rank-1 partial matrices.

B. Feasible sets

We can now characterize the feasible set V of OPF defined in (6). Recall the undirected connected
graph G = (N+,E) that models a power network. Given a voltage vector V ∈ V define a partial matrix
WG :=WG(V ): for j ∈ N+ and ( j,k) ∈ E,

[WG] j j := |Vj|2 (11a)

[WG] jk := VjV H
k =: [WG]

H
k j (11b)

Then the constraints (5) and (3) imply that the partial matrix WG satisfies 2

s j ≤ ∑
k:( j,k)∈E

yH
jk
(
[WG] j j− [WG] jk

)
≤ s j, j ∈ N+ (12a)

v j ≤ [WG] j j ≤ v j, j ∈ N+ (12b)

2The constraint (12a) can also be written compactly in terms of the admittance matrix Y as in [65]:

s ≤ diag
(

WY H
)
≤ s
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Following Section III-C these constraints can also be written in a (partial) matrix form as:

p j ≤ tr Φ jWG ≤ p j

q j ≤ tr Ψ jWG ≤ q j

v j ≤ tr J jWG ≤ v j

The converse is not always true: given a partial matrix WG that satisfies (12) it is not always possible to
recover a voltage vector V in V. Indeed this is possible if and only if WG has a completion W that is psd
rank-1, because in that case W satisfies (12) since y jk = 0 if ( j,k) 6∈ E and it can be uniquely factored as
W =VV H with V ∈V. We hence seek conditions additional to (12) on the partial matrix WG that guarantee
that it has a psd rank-1 completion W from which V ∈ V can be recovered. Our first key result provides
such a characterization.

We say that a partial matrix WG satisfies the cycle condition if for every cycle c in G

∑
( j,k)∈c

∠[WG] jk = 0 mod 2π (13)

When ∠[WG] jk represent voltage phase differences across each line then the cycle condition imposes that
they sum to zero (mod 2π) around any cycle. The next theorem, proved in [57, Theorem 3] and [31],
implies that WG has a psd rank-1 completion W if and only if WG is 2×2 psd rank-1 on G and satisfies
the cycle condition (13), if and only if it has a chordal extension Wc(G) that is psd rank-1. 3

Consider the following conditions on (n+1)× (n+1) matrices W and partial matrices Wc(G) and WG:

W � 0, rank W = 1 (14)

Wc(G) � 0, rank Wc(G) = 1 (15)

WG( j,k)� 0, rank WG( j,k) = 1, ( j,k) ∈ E, (16)

Theorem 2: Fix a graph G on n+ 1 nodes and any chordal extension c(G) of G. Assuming Wj j > 0,[
Wc(G)

]
j j > 0 and [WG] j j > 0, j ∈ N+, we have:

(1) Given an (n+1)× (n+1) matrix W that satisfies (14), its submatrix Wc(G) satisfies (15).
(2) Given a partial matrix Wc(G) that satisfies (15), its submatrix WG satisfies (16) and the cycle condition

(13).
(3) Given a partial matrix WG that satisfies (16) and the cycle condition (13), there is a completion W of

WG that satisfies (14).

Informally Theorem 2 says that (14) is equivalent to (15) is equivalent to (16)+(13). It characterizes a
property of the full matrix W (rank W = 1) in terms of its submatrices Wc(G) and WG. This is important
because the submatrices are typically much smaller than W for large sparse networks and much easier to
compute. The theorem thus allows us to solve simpler problems in terms of partial matrices as we now
explain.

3The theorem also holds with psd replaced by negative semidefinite.
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Define the set of Hermitian matrices:

W := {W ∈ Sn+1 | W satisfies (12), (14)} (17)

Fix any chordal extension c(G) of G and define the set of Hermitian partial matrices Wc(G):

Wc(G) := {Wc(G) | Wc(G) satisfies (12), (15)} (18)

Finally define the set of Hermitian partial matrices WG:

WG := {WG |WG satisfies (12), (13), (16)} (19)

Note that the definition of psd for partial matrices implies that Wc(G) and WG are Hermitian. The assumption
v j > 0, j ∈ N+ implies that all matrices or partial matrices have strictly positive diagonal entries.

Theorem 2 implies that given a partial matrix Wc(G) ∈Wc(G) or a partial matrix WG ∈WG there is a
psd rank-1 completion W ∈W from which a solution V ∈ V of OPF can be recovered. In fact we know
more: given any Hermitian partial matrix WG (not necessarily in WG), the set of all completions of WG that
satisfies the condition in Theorem 2(3) consists of a single psd rank-1 matrix and infinitely many indefinite
non-rank-1 matrices; see [57, Theorems 5 and 8] and discussions therein. Hence the psd rank-1 completion
W of a WG ∈WG is unique.

Corollary 3: Given a partial matrix Wc(G) ∈Wc(G) or WG ∈WG there is a unique psd rank-1 completion
W ∈W.

Recall that two sets A and B are equivalent (A ≡ B) if there is a bijection between them. Even though
W,Wc(G),WG are different kinds of spaces Theorem 2 and Corollary 3 imply that they are all equivalent
to the feasible set of OPF.

Theorem 4: V≡W≡Wc(G) ≡WG.

Theorem 4 suggests three equivalent problems to OPF. We assume the cost function C(V ) in OPF depends
on V only through the partial matrix WG defined in (11). For example if the cost is total real line loss in
the network then C(V ) = ∑ j Re s j = ∑ j ∑k:( j,k)∈E Re

(
[WG] j j− [WG] jk

)
yH

jk. If the cost is a weighted sum of

real generation power then C(V ) = ∑ j

(
c j Re s j + pd

j

)
where pd

j are the given real power demands at buses
j; again C(V ) is a function of the partial matrix WG. Then Theorem 4 implies that OPF (7) is equivalent to

min
W

C(WG) subject to W ∈ Ŵ (20)

where Ŵ is any one of the sets W,Wc(G),WG. Specifically, given an optimal solution W opt in W, it can
be uniquely decomposed into W opt =V opt(V opt)H . Then V opt is in V and an optimal solution of OPF (7).
Alternatively given an optimal solution W opt

F in Wc(G) or WG, Corollary 3 guarantees that W opt
F has a unique

psd rank-1 completion W opt in W from which an optimal V opt ∈V can be recovered. In fact given a partial
matrix WG ∈WG (or Wc(G) ∈Wc(G)) there is a more direct construction of a feasible solution V ∈ V of
OPF than through its completion; see Section IV-D.
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C. Semidefinite relaxations

Hence solving OPF (7) is equivalent to solving (20) over any of W,Wc(G),WG for an appropriate matrix
variable. The difficulty with solving (20) is that the feasible sets W, Wc(G), and WG are still nonconvex
due to the rank-1 constraints and the cycle condition (13). Their removal leads to SDP, chordal, and SOCP
relaxations of OPF respectively.

Relax W, Wc(G) and WG to the following convex supersets:

W+ := {W ∈ Sn+1 |WG satisfies (12),W � 0}

W+
c(G) := {Wc(G) |WG satisfies (12),Wc(G) � 0}

W+
G := {WG |WG satisfies (12),WG( j,k)� 0, ( j,k) ∈ E}

Define the problems:
OPF-sdp:

min
W

C(WG) subject to W ∈W+ (21)

OPF-ch:

min
Wc(G)

C(WG) subject to Wc(G) ∈W+
c(G) (22)

OPF-socp:

min
WG

C(WG) subject to WG ∈W+
G (23)

The condition WG( j,k) � 0 in the definition of W+
G is equivalent to [WG] jk = [WG]

H
k j and (recall the

assumption v j > 0, j ∈ N+)

[WG] j j > 0, [WG]kk > 0, [WG] j j[WG]kk ≥
∣∣[WG] jk

∣∣2
This is a second-order cone and hence OPF-socp is indeed an SOCP in the rotated form.

Remark 6: Literature. SOCP relaxation for OPF seems to be first proposed in [21] for the bus injection
model (1), and in [23], [24] for the branch flow model (2) as explained in the next section. By defining a
new set of variables v j := |Vj|2, R jk := |Vj||Vk|cos(θ j−θk), and I jk := |Vj||Vk|sin(θ j−θk) where θ j :=∠Vj,
[21] rewrites the bus injection model (1) in the complex domain as a set of linear equations in these new
variables in the real domain and the following quadratic equations:

v jvk = R2
jk + I2

jk

Relaxing these equalities to v jvk≥R2
jk+I2

jk enlarges the solution set to a second-order cone that is equivalent
to W+

G in this paper. SDP relaxation is first proposed in [22] for the bus injection model and analyzed in
[27]. Chordal relaxation for OPF is first proposed in [28], [29] and analyzed in [30], [31].
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D. Solution recovery

When the convex relaxations OPF-sdp, OPF-ch, OPF-socp are exact, i.e., if their optimal solutions W sdp,
W ch

ch , W socp
G happen to lie in W, Wc(G), WG respectively, then an optimal solution V opt of the original OPF

can be recovered from these solutions. Indeed the recovery method works not just for an optimal solution,
but any feasible solution that lies in W, Wc(G) or WG. Moreover, given a W ∈W or a Wc(G) ∈Wc(G), the
construction of V depends on W or Wc(G) only through their submatrix WG. We hence describe the method
for recovering the unique V from a WG, which may be a partial matrix in WG or the submatrix of a (partial)
matrix in W or Wc(G).

Let T be an arbitrary spanning tree of G rooted at bus 0. Let P j denote the unique path from node 0 to
node j in T . Recall that V0 = 1∠0◦ without loss of generality. For j = 1, . . . ,n, let

|Vj| :=
√

[WG] j j

∠Vj := − ∑
(i,k)∈P j

∠ [WG]ik

Then it can be checked that V is in (6) and feasible for OPF.

E. Tightness of relaxations

Since W ⊆W+, Wc(G) ⊆W+
c(G)

, WG ⊆W+
G , the relaxations OPF-sdp, OPF-ch, OPF-socp all provide

lower bounds on OPF (7) in light of Theorem 4. OPF-socp is the simplest computationally. OPF-ch usually
requires more computation than OPF-socp but much less than OPF-sdp for large sparse networks (even
though OPF-ch can be as complex as OPF-sdp in the worse case [63], [64]). The relative tightness of the
relaxations depends on the network topology. For a general mesh network OPF-sdp is as tight a relaxation
as OPF-ch and they are strictly tighter than OPF-socp. For a tree (radial) network the hierarchy collapses
and all three are equally tight. We now make this precise.

Consider their feasible sets W+, W+
c(G)

and W+
G . We say that a set A is an effective subset of a set B,

denoted by Av B, if, given a (partial) matrix a ∈ A, there is a (partial) matrix b ∈ B that has the same cost
C(a) = C(b). We say A is similar to B, denoted by A ' B, if A v B and B v A. Note that A ≡ B implies
A' B but the converse may not be true. The feasible set of OPF (7) is an effective subset of the feasible
sets of the relaxations; moreover these relaxations have similar feasible sets when the network is radial.
This is a slightly different formulation of the same results in [57], [31].

Theorem 5: VvW+ 'W+
c(G)
vW+

G . If G is a tree then VvW+ 'W+
c(G)
'W+

G .
Let Copt,Csdp,Cch,Csocp be the optimal values of OPF (7), OPF-sdp (21), OPF-ch (22), OPF-socp (23)

respectively. Theorem 4 and Theorem 5 directly imply
Corollary 6: Copt ≥Csdp =Cch ≥Csocp. If G is a tree then Copt ≥Csdp =Cch =Csocp.
Remark 7: Tightness. Theorem 5 and Corollary 6 imply that for radial networks one should always

solve OPF-socp since it is the tightest and the simplest relaxation of the three. For mesh networks there is
a tradeoff between OPF-socp and OPF-ch/OPF-sdp: the latter is tighter but requires heavier computation.
Between OPF-ch and OPF-sdp, OPF-ch is usually preferable as they are equally tight but OPF-ch is usually
much faster to solve for large sparse networks. See [28], [29], [31], [30], [66] for numerical studies that
compare these relaxations.
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F. Chordal relaxation

Theorem 2 through Corollary 6 apply to any chordal extension c(G) of G. The choice of c(G) does not
affect the optimal value of the chordal relaxation but determines its complexity. Unfortunately the optimal
choice that minimizes the complexity of OPF-ch is NP-hard to compute.

This difficulty is due to two conflicting factors in choosing a c(G). Recall that the constraint Wc(G) � 0 in
the definition of W+

c(G)
consists of multiple constraints that the principal submatrices Wc(G)(q)� 0, one for

each (maximal) clique q of c(G). When two cliques q and q′ share a node their submatrices Wc(G)(q) and
Wc(G)(q′) share entries that must be decoupled by introducing auxiliary variables and equality constraints
on these variables. The choice of c(G) determines the number and sizes of these submatrices Wc(G)(q) as
well as the numbers of auxiliary variables and additional decoupling constraints. On the one hand if c(G)

contains few cliques q then the submatrices Wc(G)(q) tend to be large and expensive to compute (e.g. if c(G)

is the complete graph then there is a single clique, but Wc(G) = W and OPF-ch is identical to OPF-sdp).
On the other hand if c(G) contains many small cliques q then there tends to be more overlap and chordal
relaxation tends to require more decoupling constraints. Hence choosing a good chordal extension c(G) of
G is important but nontrivial. See [63], [64] and references therein for methods to compute efficient chordal
relaxations of general QCQP. For OPF [30] proposes effective techniques to reduce the number of cliques
in its chordal relaxation. To further reduce the problem size [66] proposes to carefully drop some of the
decoupling constraints, though the resulting relaxation can be weaker.

V. FEASIBLE SETS AND RELAXATIONS: BFM

We now present an SOCP relaxation of OPF in BFM proposed in [23], [24] in two steps. We first relax
the phase angles of V and I in (2) and then we relax a set of quadratic equalities to inequalities. This
derivation pinpoints the difference between radial and mesh topologies. It motivates a recursive version of
BFM for radial networks (Section VI) and the use of phase shifters for convexification of mesh networks
(Part II [33]).

A. Feasible sets

Consider the following set of equations in the variables x := (S, `,v,s) in R3(m+n+1):4

∑
k: j→k

S jk = ∑
i:i→ j

(
Si j− zi j`i j

)
+ s j, j ∈ N+ (24a)

v j− vk = 2Re
(

zH
jkS jk

)
−|z jk|2` jk, j→ k ∈ Ẽ (24b)

v j` jk = |S jk|2, j→ k ∈ Ẽ (24c)

4The use of complex variables is only a shorthand and should be interpreted as operations in real variables. For instance (24a) is a
shorthand for

∑
k: j→k

Pjk = ∑
i:i→ j

(
Pi j− ri j`i j

)
+ p j

∑
k: j→k

Q jk = ∑
i:i→ j

(
Qi j− xi j`i j

)
+q j
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and define the solution set as:

Xnc := {x ∈ R3(m+n+1) | x satisfies (3), (4), (24)}

Note that the vector v includes v0 and s includes s0. The model (24) is first proposed in [25], [26]. 5 It can
be derived as a relaxation of BFM (2) as follows. Taking the squared magnitude of (2c) and replacing |Vj|2

and |I jk|2 by v j and ` jk respectively yield (24c). To obtain (24b), use (2b)–(2c) to write Vk =Vj−z jkS jkV−1
j

and take the squared magnitude on both sides to eliminate the phase angles of V and I. These operations
define a mapping h : C2(m+n+1)→ R3(m+n+1) by: for any x̃ = (S, I,V,s), h(x̃) := (S, `,v,s) with ` jk = |I jk|2

and v j = |Vj|2.
Throughout this paper we assume the cost function C(x̃) in OPF (9) depends on x̃ only through x := h(x̃).

For example for total real line loss C(x̃) =∑( j,k)∈Ẽ Rez jk` jk. If the cost is a weighted sum of real generation
power then C(x̃) = ∑ j(c j p j + pd

j ) where p j are the real parts of s j and pd
j are the given real power demands

at buses j; again C(x̃) depends only on x.
Then the model (24) is a relaxation of BFM (2) in the sense that the feasible set X̃ of OPF in (9) is an

effective subset of Xnc, X̃vXnc, since h(X̃)⊆Xnc. We now characterize the subset of Xnc that is equivalent
to X̃.

Given an x := (S, `,v,s) ∈ R3(m+n+1) define β (x) ∈ Rm by

β jk(x) := ∠
(

v j− zH
jkS jk

)
, j→ k ∈ Ẽ (25)

Even though x does not include phase angles of V , x implies a phase difference across each line j→ k ∈ Ẽ
given by β jk(x). The subset of Xnc that is equivalent to X̃ are those x for which there exists θ such that
θ j−θk = β jk(x). To state this precisely let B be the m×n (transposed) reduced incidence matrix of G̃:

Bl j =


1 if edge l ∈ Ẽ leaves node j

−1 if edge l ∈ Ẽ enters node j

0 otherwise

where j ∈ N. Consider the set of x ∈ Xnc such that

∃θ that solves Bθ = β (x) mod 2π (26)

i.e., β (x) is in the range space of B (mod 2π). A solution θ(x), if exists, is unique in (−π,π]n. Define the
set

X := {x ∈ R3(m+n+1) | x satisfies (3), (4), (24), (26)}

The following result characterizes the feasible set X̃ of OPF in BFM and follows from [24, Theorems 2,
4].

Theorem 7: X̃≡ X⊆ Xnc.
The bijection between X̃ and X is given by h defined above restricted to X̃. Its inverse h−1(S, `,v,s) =

5The original model, called the DistFlow equations, in [25], [26] is for radial (distribution) networks, but its extension here to mesh
networks is trivial.
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(S, I,V,s) is defined on X in terms of θ(x) by:

Vj :=
√

v j eiθ j(x), j ∈ N (27a)

I jk :=
√

` jk ei(θ j(x)−∠S jk), j→ k ∈ Ẽ (27b)

The condition (26) is equivalent to the cycle condition (13) in the bus injection model. To see this fix any
spanning tree T = (N,ET ) of the (directed) graph G̃. We can assume without loss of generality (possibly
after re-labeling the links) that ET consists of links l = 1, . . . ,n. Then B can be partitioned into

B =

[
BT

B⊥

]
where the n×n submatrix BT corresponds to links in T and the (m−n)×n submatrix B⊥ corresponds to
links in T⊥ := G\T . Similarly partition β (x) into

β (x) =

[
βT (x)
β⊥(x)

]
The next result, proved in [24, Theorems 2 and 4], provides a more explicit characterization of (26)
in terms of β (x). When it holds this characterization has the same interpretation of the cycle condition
in (13): the voltage angle differences implied by x sum to zero (mod 2π) around any cycle. Formally
let β̃ be the extension of β from directed to undirected links: for each j → k ∈ Ẽ let β̃ jk(x) := β jk(x)
and β̃k j(x) := −β jk(x). We say c := ( j1, . . . , jK) is an undirected cycle if, for each k = 1, . . . ,K, either
jk→ jk+1 ∈ Ẽ or jk+1→ jk ∈ Ẽ with the interpretation that jK+1 := j1; ( jk, jk+1) ∈ c denotes one of these
links.

Theorem 8: An x ∈ Xnc satisfies (26) if and only if around each undirected cycle c we have

∑
( j,k)∈c

β̃ jk(x) = 0 mod 2π (28)

In that case θ(x) = P
(
B−1

T βT (x)
)

is the unique solution of (26) in (−π,π]n, where P(φ) projects φ to
(−π,π]n.

Theorem 8 determines when the voltage magnitudes v of a given x can be assigned phase angles θ(x) so
that the resulting x̃ := h−1(x) is a power flow solution in X̃.

B. SOCP relaxation

The set Xnc that contains the (equivalent) feasible set X of OPF is still nonconvex because of the quadratic
equalities in (24c). Relax them to inequalities:

v j ` jk ≥ |S jk|2, ( j,k) ∈ Ẽ (29)

and define the set:

X+:={x ∈ R3(m+n+1) | x satisfies (3), (4), (24a), (24b), (29)}
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Clearly X̃ h≡ X⊆ Xnc ⊆ X+; see Figure 1. Moreover X+ is a second-order cone in the rotated form.

h

h−1

C2(m+n+1) R3(m+n+1)

Xnc

X X

X+

Fig. 1: Feasible sets X̃ of OPF (9) in BFM, its equivalent set X (defined by h) and its relaxations Xnc and
X+. If G̃ is a tree then X= Xnc.

The three sets X, Xnc, X+ define the following problems:
OPF:

min
x

C(x) subject to x ∈ X (30)

OPF-nc:

min
x

C(x) subject to x ∈ Xnc (31)

OPF-socp:

min
x

C(x) subject to x ∈ X+ (32)

The next theorem follows from the results in [24] and implies that OPF (9) is equivalent to minimization
over X and OPF-socp is its SOCP relaxation. Moreover for radial networks voltage and current angles can
be ignored and OPF (9) is equivalent to OPF-nc.

Theorem 9: X̃≡ X⊆ Xnc ⊆ X+. If G̃ is a tree then X̃≡ X= Xnc ⊆ X+.
Let Copt be the optimal cost of OPF (9) in the branch flow model. Let Copf, Cnc, Csocp be the optimal

costs of OPF (30), OPF-nc (31), OPF-socp (32) respectively defined above. Theorem 9 implies
Corollary 10: Copt =Copf ≥Cnc ≥Csocp. If G̃ is a tree then Copt =Copf =Cnc ≥Csocp.
Remark 8: SOCP relaxation. Suppose one solves OPF-socp and obtains an optimal solution xsocp :=

(S, `,v,s) ∈X+. For radial networks if xsocp attains equality in (29) then xsocp ∈Xnc and Theorem 9 implies
that an optimal solution x̃opt := (S, I,V,s) ∈ X̃ of OPF (9) can be recovered from xsocp. Indeed x̃opt =

h−1(xsocp) where h−1 is defined in (27). Alternatively one can use the angle recovery algorithms in [24,
Part I] to recover x̃opt. For mesh networks xsocp needs to both attain equality in (29) and satisfy the cycle
condition (26) in order for an optimal solution x̃opt to be recoverable. Our experience with various practical
test networks suggests that xsocp usually attains equality in (29) but, for mesh networks, rarely satisfes (26)
[23], [24], [56], [31]. Hence OPF-socp is effective for radial networks but not for mesh networks (in both
BIM and BFM).
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C. Equivalence

Theorem 9 establishes a bijection between X and the feasible set X̃ of OPF (9) in BFM. Theorem 4
establishes a bijection between WG and the feasible set V of OPF (7) in BIM. Theorem 1 hence implies that
X≡ X̃≡V≡WG. Moreover their SOCP relaxations are equivalent in these two models [57], [31]. Define
the set of partial matrices defined on G that are 2×2 psd rank-1 but do not satisfy the cycle condition (13):

Wnc := { Wnc | WG satisfies (12),WG( j,k)� 0, rank WG( j,k) = 1 for all ( j,k) ∈ E }

Clearly WG ⊆Wnc ⊆W+
G in general and WG =Wnc ⊆W+

G for radial networks.
Theorem 11: X≡WG, Xnc ≡Wnc and X+ ≡W+

G .
The bijection between X+ and W+

G is a linear mapping defined as follows. Let WG⊆C2m+n+1 denote the
set of Hermitian partial matrices (including [WG]00 = v0 which is given). Let x := (S, `,v,s) denote vectors
in R3(m+n+1). Define the linear mapping g : W+

G → X+ by x = g(WG) where

S jk := yH
jk
(
[WG] j j− [WG] jk

)
, j→ k

` jk := |y jk|2
(
[WG] j j +[WG]kk− [WG] jk− [WG]k j

)
, j→ k

v j := [WG] j j, j ∈ N+

s j := ∑
k: j∼k

yH
jk
(
[WG] j j− [WG] jk

)
, j ∈ N+

Its inverse g−1 :X+→W+
G is WG = g−1(x) where [WG] j j := v j for j ∈N+ and [WG] jk := v j−zH

jkS jk =: [WG]
H
k j

for j→ k. The mapping g (and its inverse g−1) restricted to WG (Wnc) and X (Xnc) define the bijection
between them.

VI. BFM FOR RADIAL NETWORKS

Theorem 9 implies that for radial networks the model (24) is exact. This is because the reduced incident
matrix B in (26) is n×n and invertible, so the cycle condition is always satisfied [24, Theorem 4]. Hence a
solution in Xnc can be mapped to a branch flow solution in X̃ by the mapping h−1 defined in (27). For radial
networks this model has two advantages: (i) it has a recursive structure that simplifies computation, and (ii)
it has a linear approximation that provides simple bounds on branch powers S jk and voltage magnitudes
v j, as we now show.

A. Recursive equations and graph orientation

The model (24) holds for any graph orientation of G̃. It has a recursive structure when G̃ is a tree. In
that case different orientations have different boundary conditions that initialize the recursion and may be
convenient for different applications. Without loss of generality we take bus 0 as the root of the tree. We
discuss two different orientations: one where every link points away from bus 0 and the other where every
link points towards bus 0. 6

6An alternative model is to use an undirected graph and, for each link ( j,k), the variables (S jk, ` jk) and (Sk j, `k j) are defined for both
directions, with the additional equations S jk +Sk j = z jk` jk and `k j = ` jk.
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Case I: Links point away from bus 0. Model (24) reduces to:

∑
k: j→k

S jk = Si j− zi j`i j + s j, j ∈ N+ (33a)

v j− vk = 2Re
(

zH
jkS jk

)
−|z jk|2` jk, j→ k ∈ Ẽ (33b)

v j` jk = |S jk|2, j→ k ∈ Ẽ (33c)

where bus i in (33a) denotes the unique parent of node j (on the unique path from node 0 to node j),
with the understanding that if j = 0 then Si0 := 0 and `i0 := 0. Similarly when j is a leaf node7 all S jk = 0
in (33a). The model (33) is called the DistFlow equations and first proposed in [25], [26].

Its recursive structure is exploited in [48] to analyze the power flow solutions given an (s j, j ∈ N), as
we now explain using the special case of a linear network with n+1 buses that represents a main feeder.
To simplify notation denote

(
S j( j+1), ` j( j+1)

)
and z j( j+1) by (S j, ` j) and z j respectively. Then the DistFlow

equations (33) reduce to (v0 is given):

S j+1 = S j− z j` j + s j+1, j = 0, . . . ,n−1 (34a)

v j+1 = v j−2Re(zH
j S j)+ |z j|2` j, j = 0, . . . ,n−1 (34b)

v j` j = |S j|2, j = 0, . . . ,n−1 (34c)

S0 = s0, Sn = 0 (34d)

Let x j := (S j, ` j,v j), j ∈N+. If s0 were known then one can start with (v0,s0) and use the recursion (34a)–
(34c) to compute x j in terms of s0 = S0, i.e., (34) can be collapsed into functions of the scalar variable s0

(recall that (s j, j ∈ N) are given):

x j = f j(s0), j ∈ N+ (35)

Use the boundary condition (34d), Sn = fn(s0) = 0, to solve for the scalar variable s0. The other variables
x j can then be computed from (35). This method can be extended to a general radial network with laterals
[48]. See also [67], [68] for techniques for solving the nonlinear equations (35), and [54], [55] for a different
recursive approach called the forward/backward sweep for radial networks.
Case II: Links point towards bus 0. Model (24) reduces to:

Ŝ ji = ∑
k:k→ j

(
Ŝk j− zk j ˆ̀k j

)
+ s j, j ∈ N+ (36a)

v̂k− v̂ j = 2Re
(

zH
k jŜk j

)
−|zk j|2 ˆ̀k j, k→ j ∈ Ẽ (36b)

v̂k ˆ̀k j = |Ŝk j|2, k→ j ∈ Ẽ (36c)

where i in (36a) denotes the node on the unique path between node 0 and node j. The boundary condition
is defined by S ji = 0 in (36a) when j = 0 and Sk j = 0, `k j = 0 in (36a) when j is a leaf node. An advantage
of this orientation is illustrated in the next subsection in proving a simple bound on v̂ j. The proof establishes

7A node j is a leaf node if there exists no i such that i→ j ∈ Ẽ.
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formally that there is a bijection between the solution set of (33) and that of (36):

−Sk j ↔ Ŝ jk− z jk ˆ̀jk

`k j ↔ ˆ̀jk

v j ↔ v̂ j

B. Linear approximation and bounds

By setting ` jk = 0 in (33) we obtain a linear approximation of the the branch flow model, with the graph
orientation where all links point away from bus 0:

∑
k: j→k

Slin
jk = Slin

i j + s j, j ∈ N+ (37a)

vlin
j − vlin

k = 2Re
(

zH
jkSlin

jk

)
, j→ k ∈ E (37b)

where bus i in (37a) denotes the unique parent of bus j. The boundary condition is: Slin
i0 := 0 in (37a)

when j = 0, and Slin
jk = 0 in (37a) when j is a leaf node. This is called the simplified DistFlow equations

in [26], [69]. It is a good approximation of (33) because the loss z jk` jk is typically much smaller than the
branch power flow S jk.

The next result provides simple bounds on (S,v) in terms of their linear approximations (Slin,vlin). Denote
by T j the subtree rooted at bus j, including j. We write “k ∈ T j” to mean node k of T j and “(k, l) ∈ T j”
to mean edge (k, l) of T j. Denote by Pk the set of links on the unique path from bus 0 to bus k.

Lemma 12: Fix any v0 and s ∈ R2(n+1). Let (S, `,v) and (Slin,vlin) be solutions of (33) and (37) respec-
tively with the given v0 and s. Then

(1) For i→ j ∈ E

Slin
i j = − ∑

k∈T j

sk

Si j = − ∑
k∈T j

sk +

zi j`i j + ∑
(k,l)∈T j

zkl`kl


(2) For i→ j ∈ E, Si j ≥ Slin

i j with equality if only if `i j and all `kl in T j are zero.
(3) For j ∈ N+

vlin
j = v0 − ∑

(i,k)∈P j

2Re
(

zH
ikSlin

ik

)
v j = v0 − ∑

(i,k)∈P j

(
2Re

(
zH

ikSik
)
−|zik|2`ik

)
(4) For j ∈ N+, v j ≤ vlin

j .

Lemma 12 says that the power flow Si j on line (i, j) equals the total load −∑k∈T j sk in the subtree rooted
at node j plus the total line loss in supplying these loads. The linear approximation Slin

i j neglects the line
losses and underestimates the required power to supply these loads.
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Lemma 12(1)–(3) can be easily proved by recursing on (33a)–(33b) and (37). Since Si j≥ Slin
i j but |zik|2`ik≥

0, a direct proof of Lemma 12(4) is not obvious. Instead, one can make use of Lemma 13 below and define
a bijection between the solutions (S, `,v) of (33) and the solutions (Ŝ, ˆ̀, v̂) of (36) in which v = v̂. It can be
checked that the solutions of (37) and those of (38) are related by Slin =−Ŝlin and vlin = v̂lin. Then Lemma
13(4) implies Lemma 12(4).

A linear approximation of (36) is (setting ˆ̀k j = 0):

Ŝlin
ji = ∑

k:k→ j
Ŝlin

k j + s j, j ∈ N+ (38a)

v̂lin
k − v̂lin

j = 2Re
(

zH
k jŜ

lin
k j

)
, k→ j ∈ Ẽ (38b)

Lemma 13: Fix any v0 and s ∈ R2(n+1). Let (Ŝ, ˆ̀, v̂) and (Ŝlin, v̂lin) be solutions of (36) and (38) respec-
tively with the given v0 and s. Then

(1) For all j→ i ∈ E

Ŝlin
ji = ∑

k∈T j

sk

Ŝ ji = ∑
k∈T j

sk − ∑
(k,l)∈T j

zkl ˆ̀kl

(2) For all j→ i ∈ E, Ŝ ji ≤ Ŝlin
ji with equality if and only if all `kl in T j are zero.

(3) For j ∈ N+

v̂lin
j = v0 + ∑

(i,k)∈P j

2Re
(

zH
ik Ŝlin

ik

)
v̂ j = v0 + ∑

(i,k)∈P j

(
2Re

(
zH

ik Ŝik
)
−|zik|2 ˆ̀ik

)
(4) For j ∈ N+, v̂ j ≤ v̂lin

j .
Lemma 13 says that the branch power Ŝ ji (towards bus 0) equals the total power injection ∑k∈T j sk in the
subtree rooted at bus j minus the line losses in that subtree. The linear approximation Ŝlin

ji neglects the line
losses and hence overestimates the branch power flow. Lemma 13 can be easily proved by recursing on
(36a)–(36b) and (38).

Remark 9: Bounds for SOCP relaxation. Lemmas 12 and 13 do not depend on the quadratic equalities
(33c) and (36c) as long as ` jk ≥ 0. In particular the lemmas hold if the equalities have been relaxed to
inequalities v j` jk ≥ |S jk|2. These bounds are used in [56] to prove a sufficient condition for exact SOCP
relaxation for radial networks.

Remark 10: Linear approximations. For radial networks the linear approximations (37) and (38) of
BFM have two advantages over the (linear) DC approximation of BIM. First they have a simple recursive
structure that leads to simple bounds on power flow quantities. Second DC approximation assumes r jk = 0,
fixes voltage magnitudes, and ignores reactive power, whereas (37) and (38) do not. This is important for
distribution systems where r jk are not negligible, voltages can fluctuate significantly and reactive powers
are used to regulate them. On the other hand (37) and (38) are applicable only for radial networks whereas
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DC approximation applies to mesh networks as well. See also [20] for a more accurate linearization of
BIM that addresses the shortcomings of DC OPF.

VII. CONCLUSION

We have presented a bus injection model and a branch flow model, formulated several relaxations of OPF,
and proved their relations. These results suggest a new approach to solving OPF summarized in Figure 2.
For radial networks we recommend solving OPF-socp in either BIM or BFM though there is preliminary

OPFBsocp)

OPF)solu2on)

Recover)

or 
cycle)

condi2on)

Y)

rankB1)

OPFBch) OPFBsdp)

Y)

WG
socp

Y,)mesh)

2x2)rankB1)

Y)

radial)

OPFBsocp)

cycle)

condi2on)Y)

equality)

Y)

radial)

Y,)mesh)

Wc(G )
ch W sdp xsocp

V opt xopt

Fig. 2: Solving OPF through semidefinite relaxations.

evidence that BFM can be more stable numerically. For mesh networks we recommend solving OPF-ch for
small networks and OPF-socp followed by a heuristic search for a feasible point for large networks. Also
see Remarks 7 and 8.

The key for this solution strategy is that the relaxations are exact so that an optimal solution of the original
OPF can be recovered. In Part II of this paper [33] we summarize sufficient conditions that guarantee exact
relaxation.
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APPENDIX

VIII: MATHEMATICAL PRELIMINARIES

In this appendix we summarize some basic concepts in optimization, matrix completion and chordal
relaxation that we use in this two-part tutorial. For notations see Section I. More details can be found in,
e.g., [70], [71], [72], [63], [64], [73], [74], [62].

A. QCQP, SDP, SOCP

Quadratic constrained quadratic program (QCQP) is the following problem:

min
x∈Cn

xHC0x (39a)

subject to xHClx≤ bl, l = 1, . . . ,L (39b)

where x ∈ Cn, for l = 0, . . . ,L, Cl ∈ Sn (so that xHClx are real), and bl ∈ R are given. If Cl , l = 0, . . . ,L,
are positive semidefinite then (39) is a convex QCQP. Otherwise it is generally nonconvex.

Any psd rank-1 matrix X has a unique spectral decomposition X = xxH . Using xHClx = tr ClxxH =: tr ClX
we can rewrite a QCQP as the following equivalent problem where the optimization is over Hermitian
matrices:

min
X∈Sn

tr C0X (40a)

subject to tr ClX ≤ bl, l = 1, . . . ,L (40b)

X � 0, rank X = 1 (40c)

While the objective function and the constraints in (39) is quadratic in x they are linear in X in (40a)–(40b).
The constraint X � 0 in (40c) is convex (Sn

+ is a convex cone). The rank constraint in (40c) is the only
nonconvex constraint. Removing the rank constraint results in a semidefinite program (SDP):

min
X∈Sn

tr C0X (41a)

subject to tr ClX ≤ bl, l = 1, . . . ,L (41b)

X � 0 (41c)

SDP is a convex program and can be efficiently computed. We call (41) an SDP relaxation of QCQP (39)
because the feasible set of (40) is a subset of the feasible set of SDP (41). A strategy for solving QCQP
(39) is to solve SDP (41) for an optimal Xopt and check its rank. If rank Xopt = 1 then Xopt is optimal
for (40) as well and an optimal solution xopt of QCQP (39) can be recovered from Xopt through spectral
decomposition Xopt = xopt(xopt)H . If rank Xopt > 1 then, in general, no feasible solution of QCQP can be
directly obtained from Xopt but the optimal objective value of SDP provides a lower bound on that of
QCQP.

To derive the Lagrangian dual of SDP (41), form the Lagrangian, for y := (yl, l = 1, . . . ,L)≥ 0,

L(X ;y) := trC0X +
L

∑
l=1

yl (trClX−bl) = tr

(
C0 +∑

l
ylCl

)
X − bT y



IEEE TRANS. ON CONTROL OF NETWORK SYSTEMS, 1(1):15–27, MARCH 2014 (WITH PROOFS) 27

Then the primal problem (41) is equivalent to minX�0 maxy≥0 L(X ;y) and its dual is maxy≥0 minX�0 L(X ;y)
(if we allow their objective values to be ±∞). Hence the dual objective function is

min
X�0

L(X ;y) =

{
−bT y if C0 +∑l ylCl � 0
−∞ otherwise

Hence the dual problem is:

min
y≥0

bT y subject to C0 +
L

∑
l=1

ylCl � 0

A pair (Xopt,yopt) is a primal-dual optimal if and only if

1) Primal feasibility: Xopt � 0 and trClXopt ≤ bl , l = 1, . . . ,L.
2) Dual feasibility: yopt ≥ 0 and C0 + ∑

L
l=1 yopt

l Cl � 0.
3) Complementary slackness: tr

(
C0 + ∑l yopt

l Cl

)
Xopt = 0.

A special case of SDP is a second-order cone program (SOCP):

min
x∈Cn

cH
0 x (42a)

subject to ‖Clx+bl‖ ≤ cH
l x+dl, l = 1, . . . ,L (42b)

where c0 ∈ Cn defines the cost and, for l = 1, . . . ,L, Cl ∈ C(nl−1)×n, bl ∈ Cnl−1, cl ∈ Cn, and dl ∈ R are
given. Here cl , l = 0, . . . ,L, are such that cH

l x are real and ‖ · ‖ is the Euclidean norm, ‖u‖ :=
√

uHu.
The feasible set defined by (42b) is called a second-order cone and is a convex set. SOCP includes linear
program and convex QCQP as special cases [72]. Even though an SOCP can be formulated as a standard
SDP, solving an SOCP via SDP is generally much less efficient. The number of iterations to reduce the
duality gap to a constant fraction of itself is bounded above by O(

√
L) for SOCP and by O(

√
∑l nl) for

SDP [72]. Moreover each iteration is much faster for SCOP than for SDP.
For optimal power flow problems, we use SOCP in the following rotated form:

min
x∈Cn

cH
0 x

subject to ‖Clx+bl‖2 ≤ (cH
l x+dl)(ĉH

l x+ d̂l), l = 1, . . . ,L

This can be converted to the standard form (42) via the transformation: for any complex vector u ∈Cl , any
real numbers a,b ∈ R,

‖u‖2 ≤ ab, a≥ 0, b≥ 0 ⇔

∥∥∥∥∥
[

2u
a−b

]∥∥∥∥∥ ≤ a+b

In this paper we formulate optimal power flow (OPF) problems as QCQPs and describe SDP and SOCP
relaxations of OPF. The third relaxation we will discuss is chordal relaxation based on the notion of chordal
extension of a network graph. We now review some basic concepts in graph theory, partial matrices and
completions, and show that a chordal relaxation is indeed a semidefinite program.
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B. Graph, partial matrix and completion

Consider a graph G= (N,E) with N := {1, . . . ,n}. G can either be undirected or directed with an arbitrary
orientation. Two nodes j and k are adjacent if j ∼ k ∈ E. A complete graph is one where every pair of
nodes is adjacent. A subgraph of G is a graph F = (N′,E ′) with N′ ⊆ N and E ′ ⊆ E. A clique of G is a
complete subgraph of G. A maximal clique of G is a clique that is not a subgraph of another clique of G.

By a path connecting nodes j and k we mean either a set of distinct nodes ( j,n1, . . . ,ni,k) such that
( j ∼ n1),(n1 ∼ n2), . . . ,(ni ∼ k) are edges in E or this set of edges, depending on the context. A cycle
(n1, . . . ,ni) is a path such that (n1 ∼ n2), . . . ,(ni ∼ n1) are edges in E. By convention we exclude a pair of
adjacent nodes ( j,k) as a cycle. We will only consider connected graphs in which there is a path between
every pair of nodes.

A cycle in G that has no chord (an edge connecting two nodes that are non-adjacent in the cycle) is
called a minimal cycle. G is chordal if all its minimal cycles are of length 3 (recall that an edge ( j,k) is
not considered a cycle). A chordal extension of G is a chordal graph on the same set of nodes as G that
contains G as a subgraph. Every graph has a chordal extension; e.g. the complete graph on the same set
of nodes is a trivial chordal extension.

Fix a graph G = (N,E) with N := {1, . . . ,n} and E ⊆ N×N. For our purposes here we assume G is
undirected so that ( j,k) ∈ E if and only if (k, j) ∈ E. A G-partial matrix (or simply a partial matrix if G
is clear from the context) is a set of complex numbers:

XG :=
(
[XG] j j ∈ C, j ∈ N, [XG] jk ∈ C,( j,k) ∈ E

)
One can treat a partial matrix XG as entries of an n× n matrix X whose entries X jk are unspecified if
( j,k) 6∈ E. See Figure 3(a) below for an example. Given a partial matrix XG we call an n×n matrix X a
completion of XG if X j j = [XG] j j, j ∈ N, and X jk = [XG] jk,( j,k) ∈ E, i.e., X agrees with XG on G.8

Consider any n× n matrix X . Given any k ≤ n nodes (n1,n2, . . . ,nk) let X(n1, . . . ,nk) denote the k× k
principal submatrix of X defined by:

[X(n1, . . . ,nk)]i j := Xi j, i, j ∈ {n1, . . . ,nk}

Any maximal clique q := (n1,n2, . . . ,nk) of G with k nodes defines a (fully specified) k× k principal
submatrix denoted by X(q) := X(n1, . . . ,nk). In particular each edge (i, j) ∈ E is a clique and defines a
2×2 principal submatrix X(i, j), which we use heavily in discussing optimal power flow problems. These
notions are extended to partial matrices with X replaced by XG.

We extend the notions of Hermitian, psd, rank-1, and trace to partial matrices as follows. We say that a
partial matrix XG is Hermitian, denoted by XG = XH

G , if [XG]k j =
(
[XG] jk

)H . An n× n matrix X is psd if
and only if all its principal submatrices (including X itself) is psd. We extend the notion of psd to partial
matrices using this property, by saying that a partial matrix XG is psd if all its “principal submatrices” that
are fully specified are psd. Formally XG is psd, denoted by XG � 0, if XG(q) � 0 for all maximal cliques
q of G. Note that if XG is psd then it is Hermitian by definition. Similarly we say that a partial matrix XG

8We abuse the XG notation: given G, XG is a partial matrix defined on G, and given an n× n matrix X , XG is the submatrix (X j j, j ∈
N,X jk,( j,k) ∈ E) of X defined by G. The meaning should be clear from the context.
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is rank-1, denoted by rank XG = 1, if XG(q) is rank-1 for all maximal cliques q of G. We say WG is 2×2
psd on G if, for all ( j,k) ∈ E, the 2×2 matrices WG( j,k) are psd, i.e.,

[WG] j j ≥ 0, [WG]kk ≥ 0, [WG] j j [WG]kk ≥
∣∣[WG] jk

∣∣2
We say WG is 2×2 rank-1 on G if, for all ( j,k) ∈ E, WG( j,k) are 2×2 rank-1 matrices, i.e., they are not
the zero matrices and

[WG] j j [WG]kk =
∣∣[WG] jk

∣∣2
Finally we say that an n×n matrix C is defined on graph G if C jk = 0 if ( j,k) 6∈ E. We extend the operation
tr to partial matrices XG: if C and XG are defined on the same graph G then

tr CXG = ∑
j∈N

C j j [XG] j j + ∑
( j,k)∈E

C jk [XG] jk

Suppose the matrices Cl in (41), l = 0, . . . ,L, are all defined on G, i.e., for all l, [Cl] jk = 0 if ( j,k) 6∈ E.
Then given any n×n matrix X , tr ClX = tr ClXG where XG is the submatrix of X defined by G. Conversely,
given a partial matrix XG that satisfies (41b), any completion X of XG satisfies (41b). Even though both
the objective function (41a) and the constraints (41b) depend only on the partial matrix XG, the constraint
X � 0 in (41c) depends also on entries not in XG. Indeed the number of complex variables in X is n2 while
the number of complex variables in XG is only n+2|E|, which is much smaller than n2 if G is large but
sparse. Hence instead of solving for a full psd matrix X directly as in SDP (41) we would like to compute
a partial matrix XG that has a psd completion X that satisfies (41b)–(41c). If the completion X is rank-1
then it also solves the problem (40) and hence yields a solution to the original QCQP (39) through spectral
decomposition of X . Theorem 2 provides an exact characterization of when this is possible.

To solve the QCQP (39), Theorem 2 suggests the following strategy that exploits the sparsity of graph
G: instead of solving SDP (41) for a psd matrix Xopt ∈ Sn

+, solve for a psd partial matrix Xopt
F defined on a

chordal extension F of G. If the solution Xopt
F turns out to be rank-1 as well then an optimal solution xopt

of QCQP (39) can be recovered from Xopt
F (see Section IV-D).

Two questions naturally arise in this approach: (i) How to formulate a semidefinite relaxation based on a
given a chordal extension F of G? (ii) How to choose a good chordal extension F of G so that the resulting
relaxation can be solved efficiently? We next illustrate the issues involved in these two questions through
an example. See [63], [64] for more details.

C. Chordal relaxation

Fix a graph G = (N,E). Let F = (N,E ′) be a chordal extension of G with E ′ ⊇ E. Let q1, . . . ,qK be
the set of maximal cliques of F and X(qk),k = 1, . . . ,K, be the set of principal submatrices of X defined
on these cliques. Consider the following problem where the optimization variable is the Hermitian partial
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matrix WF ∈ Cn+2|E ′| defined on the chordal extension F :

min
XF=XH

F

tr C0XG (43a)

subject to tr ClXG ≤ bl, l = 1, . . . ,L (43b)

XF(qk)� 0, k = 1, . . . ,K (43c)

We call this problem a chordal relaxation of QCQP (39). Recall that we assume Cl , l = 0, . . . ,L, are
all defined on G, i.e., [Cl] jk = 0 if ( j,k) 6∈ E. This implies that trClX = trClXF = trClXG. Then chordal
relaxation (43) is equivalent to SDP (41) in the sense that given any feasible solution XF of (43), there is
a psd completion X that is feasible for (41) and has the same cost, and vice versa. This is a consequence
of [62, Theorem 7] that says every psd partial matrix has a psd completion if and only if the underlying
graph is chordal. See also Theorem 5 and Corollary 6.

The first step in constructing the chordal relaxation (43) is to list all the maximal cliques qk. Even though
listing all maximal cliques of a general graph is NP-hard it can be done efficiently for a chordal graph.
This is because a graph is chordal if and only if it has a perfect elimination ordering [75] and computing
this ordering takes linear time in the number of nodes and edges [76]. Given a perfect elimination ordering
all maximal cliques qk can be enumerated and XF(qk) constructed efficiently [63]. For optimal power flow
problems the computation depends only on the topology of the power network, not on operational data,
and therefore can be done offline.

We now show that (43) is indeed an SDP by converting it into the standard form (41) with the introduction
of auxiliary variables, following the procedure described in [63]. This conversion also illustrates the difficulty
in choosing a good chordal extension F (see Remark 11 below).

The (fully specified) matrices XF(qk) in (43c) can be treated as principal submatrices of an n×n matrix
X . They may not however be integrated directly into a common n×n matrix variable X because different
XF(qk) may share entries. We now explain the issue and its resolution using the example in Figure 1. They
are the same in the general case with more cumbersome notations; see [63], [64]. Suppose we have chosen
the chordal extension F in Figure 3(b) with two overlapping cliques q1 and q2 as explained in the caption
of the figure. To decouple the two matrices XF(q1) and XF(q2), define the 3×3 matrix

X ′(q1) :=

x11 x12 x13

x21 u22 u23

x31 u32 u33


where the decoupling variables u jk are constrained to be:

u jk = x jk for j,k = 2,3 (44)

The constraints (43c) are replaced by

X ′F(q1)� 0 and XF(q2)� 0 (45)
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Fig. 3: Chordal extensions of G. (a) Graph G and the partial matrix XG. (b) A chordal extension F and its
XF that have 2 maximal cliques, q1 := (1,2,3) and q2 := (2,3,4,5). These cliques share two nodes, 2 and
3. The corresponding XF(q1) and XF(q2) are outlined in XF with the overlapping entries shaded in green.
The chordal relaxation based on this F requires 4 decoupling variables u jk. (c) Another chordal extension
F and its XF that have 3 maximal cliques, outlined and shaded in blue in XF . The chordal relaxation based
on this F requires 8 decoupling variables u jk.

Define the 7×7 block-diagonal matrix

X ′ :=

[
X ′F(q1) 0

0 XF(q2)

]
Then the chordal relaxation (43) can be written in the standard form (41) in terms of these 7× 7 block-
diagonal Hermitian matrices:

min
X ′∈S7

tr C′0X ′ (46a)

subject to tr C′lX
′ ≤ bl, l = 1, . . . ,L (46b)

tr C′rX
′ = 0, r = 1,2,3,4 (46c)

X ′ � 0 (46d)

for appropriate choices of C′l , l = 0, . . . ,L. The constraint X ′ � 0 in (46d) is equivalent to the requirement
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(45) on its submatrices and C′r in (46c) is chosen to enforce the requirement (44). Hence the chordal
relaxation (43) is indeed an SDP.

Remark 11: There are two conflicting factors in choosing a good chordal extension F . First an F that
contains fewer number of maximal cliques q generally involves larger cliques, leading to larger submatrices
XF(q); for example the complete graph F has a single maximal clique but the corresponding XF(q) = X
has n2 entries and the chordal relaxation (43) offers no computational advantage over solving (in fact it is
exactly) the original SDP (41). This argues for a chordal extension F with smaller, possibly more, maximal
cliques q. Second, however, having more maximal cliques q tends to require more decoupling variables u jk.
Every decoupling variable u jk introduces an extra equality constraint in (46c), thus increasing the required
computational effort. For instance the transformed problem based on the chordal extension in Figure 3(b)
involves 2 maximal cliques of sizes 3 and 4, and 4 additional equality constraints in (46c). The transformed
problem based on the chordal extension in Figure 3(c), on the other hand, requires 3 maximal cliques each
of size 3, and 8 additional equality constraints.

In summary even though the ambient dimension of the new variable X ′ is generally larger than that of
the original n×n matrix variable X (7×7 as opposed to 5×5 for the example in Figure 3(b)), the chordal
relaxation (43) can typically be solved much more efficiently than SDP (41) if G is large and sparse; for
OPF examples, see [30], [31]. Choosing a good chordal extension F of G is important but nontrivial. See
[63], [64] for methods to compute efficient chordal extensions and sparse SDP solutions.

APPENDIX

IX: PROOFS OF MAIN RESULTS

A. Proof of Theorem 1: equivalence

Proof: Fix any injections s ∈ Cn+1. It suffices to show that there is a bijection between the set of V
that satisfies (1) and the set of x̃ := (S, I,Ṽ ) that satisfies (2). Here we use V to denote a power flow solution
in V(s) and Ṽ to denote a component of a power flow solution x̃ in X̃(s). We now exhibit a function g that
maps V to x̃ and its inverse g−1.

To construct g fix any V that satisfies (1). Define Ṽ (V ) := V and I(V ) by (2b). Then define S jk(V ) by
(2c) (only) for j→ k ∈ Ẽ. This specifies x̃ := g(V ) := (S(V ), I(V ),Ṽ (V )). We only need to show that x̃
satisfies (2a). For each i→ j ∈ Ẽ we have by construction

Si j(V )− zi j|Ii j(V )|2 = yH
i j Vi(Vi−Vj)

H− yH
i j |Vi−Vj|2 = −yH

i j Vj(Vj−Vi)
H

Hence for each j ∈ N+

∑
k: j→k

S jk(V ) − ∑
i:i→ j

(
Si j(V )− zi j|Ii j(V )|2

)
= ∑

k: j→k
yH

jk Vj(Vj−Vk)
H + ∑

i:i→ j
yH

i j Vj(Vj−Vi)
H

= ∑
k: j∼k

yH
jk Vj(V H

j −V H
k ) = s j(V )

which is (2a).
Conversely, given an x̃ := (S, I,Ṽ ) that satisfies (2), define V := g−1(x̃) := Ṽ . That x̃ satisfies (2) implies

that g−1 as defined is indeed the inverse of g above. Moreover (2a) implies that V satisfies (1).
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B. Proof of Theorem 2: rank-1 characterization

The proof is from [31].
Proof: We will prove (1) ⇒ (2) ⇒ (3) ⇒ (1). If W is psd rank-1 then all its principle submatrices

are psd and of rank 1 (the submatrix cannot be of rank 0 because, by assumption, Wj j > 0 for all j ∈ N+).
This implies that its submatrix Wc(G) is psd and rank-1. Hence (1) ⇒ (2).

Fix a partial matrix Wc(G) that is psd and rank-1 and consider its submatrix WG. Since each link ( j,k)∈ E
is a clique of c(G) the 2×2 principle submatrix WG( j,k) is psd and rank-1. Therefore to prove that (2) ⇒
(3), it suffices to show that WG satisfies the cycle condition (13). We now prove the following statement
by induction on 3≤ k ≤ n+1: for all cycles ( j1, . . . , jk) of length k in c(G),

k

∑
i=1
∠ [WG] ji ji+1

= 0 mod 2π (47)

where jk+1 := j1. For k = 3, a cycle (n1,n2,n3) is a clique of c(G) and therefore the following principle
submatrix of Wc(G):

Wc(G)(n1,n2,n3) :=

[Wc(G)]n1n1 [Wc(G)]n1n2 [Wc(G)]n1n3

[Wc(G)]n2n1 [Wc(G)]n2n2 [Wc(G)]n2n3

[Wc(G)]n3n1 [Wc(G)]n3n2 [Wc(G)]n3n3


defined on the cycle is psd rank-1. Hence Wc(G)(n1,n2,n3) = uuH for some u := (u1,u2,u3) ∈ C3. Then

3

∑
i=1
∠ [WG] ji ji+1

= ∠
[(

u1uH
2
)(

u2uH
3
)(

u3uH
1
)]

= 0 mod 2π

Suppose (47) holds for all cycles in c(G) of length up to k > 3. Consider now a cycle ( j1, . . . , jk+1) of
length k+1 in c(G). Since c(G) is chordal there is a chord, say, ( j1, jl) ∈ E for some 1 < l < k+1. Since
both cycles ( j1, . . . , jl) and ( j1, jl, . . . , jk+1) satisfy (47) we have

l−1

∑
i=1
∠ [WG] ji ji+1

+ ∠ [WG] jl j1 = 0 mod 2π

∠ [WG] j1 jl +
k+1

∑
i=l
∠ [WG] ji ji+1

= 0 mod 2π

where jk+2 := j1. Since WG is Hermitian, adding the above equations yields

k+1

∑
i=1
∠ [WG] ji ji+1

= 0 mod 2π

proving (47) for k+1. This completes the proof of (2) ⇒ (3).
For (3)⇒ (1), fix any partial matrix WG that is 2×2 psd rank-1 and satisfies the cycle condition (13). We

now construct a psd rank-1 completion W of WG, by constructing a vector V ∈ Cn+1 such that W =VV H .
Let

|Vj| :=
√

[WG] j j
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Without loss of generality let ∠V0 = 0◦; for j = 1, . . . ,n, set

∠Vj := − ∑
(i,k)∈P j

∠ [WG]ik

where P j is any path from node 0 to node j. This is well defined because WG satisfies the cycle condition
(13). It can be checked that W =VV H is indeed a psd rank-1 completion of WG. This completes the proof.

C. Proof of Corollary 3: uniqueness of completion

The proof is from [57].
Proof: The proof of Theorem 2 shows that given a partial matrix Wc(G) ∈Wc(G), the (unique) submatrix

WG of Wc(G) has a psd rank-1 completion W ∈W. Therefore to prove the corollary it suffices to prove that
any partial matrix WG ∈WG has a unique psd rank-1 completion W ∈W. To this end fix a WG ∈WG and
suppose there are two psd rank-1 completions UUH and VV H in W. Clearly |U j|= |Vj|=

√
[WG] j j for all

j ∈ N+; moreover (∠U j, j ∈ N+) and (∠Vj, j ∈ N+) are solutions of

Bθ = β mod 2π

where B is the m×n reduced incidence matrix defined in Section V-A and β ∈ Rm with β jk := ∠ [WG] jk.
Since G is connected, m ≥ n and hence the solution θ is unique. Therefore U = V and the psd rank-1
completion of WG is unique.

D. Proof of Theorem 5: BIM feasible sets

Proof: First VvW+ vW+
c(G)
vW+

G follows from Theorem 4 and the definitions of W+, W+
c(G)

, W+
G

(recall that by assumption the cost function C depends on V,W,Wc(G) only through the submatrix WG).
Since c(G) is chordal, [62, Theorem 7] implies that every Wc(G) in W+

c(G)
has a psd completion W in W+,

i.e., W+
c(G)
vW+. Hence W+ 'W+

c(G)
.

Suppose G is a tree and consider any chordal extension c(G). We need to show that W+
G vW+

c(G)
, i.e.,

given any WG ∈W+
G there is a Wc(G) ∈W+

c(G)
with the same cost. Since G is itself chordal, [62, Theorem 7]

implies that WG has a psd completion W in W+. The submatrix Wc(G) of W defined on c(G) is the desired
partial matrix in W+

c(G)
with the same cost. This proves W+

G vW+
c(G)

and hence W+
G 'W+

c(G)
for radial

networks.

E. Proof of Theorem 7: BFM feasible sets

That X⊆ Xnc follows from their definitions. Hence we only prove X̃≡ X, following [24].
Fix any x := (S, `,v,s) in Xnc and the corresponding β (x) defined in (25). Consider the cycle condition

which is an equation in the variable (θ ,k):

Bθ = β (x)+2πk (48)

where k ∈Nm is an integer vector. Since G is connected, m≥ n and rank(B) = n. Hence, given any k, there
is at most one θ that solves (48). Conversely, given a solution θ , the corresponding k is unique, i.e., if the
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pairs (θ ,k) and (θ ,k′) are both solutions of (48), then k = k′. We therefore sometimes refer to a solution
(θ ,k) simply as θ and write k as k(θ) when we want to emphasize its dependence on θ . Given any pair
(θ ,k) with θ ∈ (−π,π]n, define its equivalence class as

σ(θ ,k) := {(θ +2πα,k+Bα) | α ∈ Nn}

Using the connectedness of G and the definition of B, one can argue that α must be an integer vector for
k+Bα to be integral. We say σ(θ ,k) is a solution of (48) if every vector in σ(θ ,k) is a solution of (48),
and σ(θ ,k) is the unique solution of (48) if it is the only equivalence class of solutions. The lemma below
implies that if a solution of (48) exists then it is unique.

We abuse (to simplify) notation and use θ to denote either an n-dimensional vector θ := (θ j, j ∈ N) or
an (n+1)-dimensional vector θ := (θ j, j ∈ N+) with θ0 := ∠V0 := 0◦, depending on the context. For each
θ ∈ (−π,π]n+1, define the mapping h̃θ (S, `,v,s) = (S, I,V,s) from R3(m+n+1) to C2(m+n+1) by:

Vj :=
√

v j eiθ j , j ∈ N+ (49a)

I jk :=
√
` jk ei(θ j−∠S jk), j→ k ∈ Ẽ (49b)

The proof of Theorem 7 relies on the following lemma that gives a necessary and sufficient condition on
θ for x̃ := h̃θ (x) to be in X̃.

Lemma 14: Fix any x := (S, `,v,s) in Xnc and the corresponding β (x) defined in (25). Then

1) x̃ := h̃θ (x) is in X̃ if and only if (θ ,k(θ)) solves (48).
2) there is at most one σ(θ ,k) with θ ∈ (−π,π]n, that is the unique solution of (48) when it exists.

Proof of Lemma 14: To prove the first claim, suppose (θ ,k) is a solution of (26) for some k = k(θ).
We need to show that (24), (48) together with (49) imply (2). Now (24a) is equivalent to (2a). Moreover
(24c) and (49) imply (2c). To prove (2b), substitute (2c) into (48) to get

θi−θ j = ∠
(
vi− zH

i jViIH
i j
)
+2πki j = ∠ Vi

(
Vi− zi jIi j

)H
+2πki j

Hence

∠Vj = θ j = ∠
(
Vi− zi jIi j

)
−2πki j (50)

From (24b), we have

|Vj|2 = |Vi|2 + |zi j|2|Ii j|2− (zi jSH
i j + zH

i jSi j)

= |Vi|2 + |zi j|2|Ii j|2− (zi jV H
i Ii j + zH

i jViIH
i j )

= |Vi− zi jIi j|2

where the second equality follows from (2c). This and (50) imply Vj = Vi− zi jIi j which is (2b). This
completes the proof that if (θ ,k(θ)) is a solution of (48) then x̃ := h̃θ (x) lies in X̃.

Conversely suppose hθ (x) ∈X. From (2b)–(2c), we have ViV H
j = |Vi|2− zH

i jSi j. Then θi−θ j = βi j +2πki j

for some integer ki j = ki j(θ). Hence (θ ,k) solves (48).
For the second claim, the discussion preceding the lemma shows that, given any k ∈Nm, there is at most
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one θ that satisfies (48). If no such θ exists for any k ∈Nm, then (48) has no solution (θ ,k). If (48) has a
solution (θ ,k), then clearly (θ +2πα,k+Bα) are also solutions for all integer vectors α ∈ Nn. Hence we
can assume without loss of generality that θ ∈ (−π,π]n. We claim that σ(θ ,k) is the unique solution of
(48). Otherwise, there is an (θ̃ , k̃) 6∈ σ(θ ,k) with Bθ̃ = β +2π k̃. Then B(θ̃ −θ) = 2π(k̃− k), or

k̃ = k+Bα where α :=
1

2π
(θ̃ −θ)

Note that both k and k̃ are integer vectors in Nm. Using the connectedness of G and the definition of B,
one can argue that α must be an integer vector in Nn for k+Bα to be integral. Then θ̃ = θ + 2πα for
some integer vector α . This means (θ̃ , k̃) ∈ σ(θ ,k), a contradiction.

Proof of Theorem 7: We now show that X̃≡X by explicitly specifying a bijection between these two
sets. Recall the mapping h : X̃→ X defined by h(S, I,V,s) = (S, `,v,s) =: x with ` j := |I j|2 and v j := |Vj|2.
Clearly it maps every x̃ ∈ X̃ to an x that is in X.

To construct its inverse, consider the family of mappings h̃θ defined in (49) from R3(m+n+1) to C2(m+n+1),
parameterized by every θ ∈Rn. Lemma 14(1) implies that, given any x in X, if we use a specific θ , namely
θ(x) that is a solution of (48), then h̃θ(x)(x) maps x to an x̃ in X̃. Moreover if we restrict θ(x) to (−π,π]n+1

then h̃θ(x)(x) is uniquely defined. Consider then the overall mapping h̃θ(x)(x) from x ∈ X to an x̃ ∈ X̃ with
θ(x) ∈ (−π,π]n+1. Note that for each x ∈ X, this mapping selects a possibly different mapping from the
family of mappings h̃θ , θ ∈ Rn+1 with θ0(x) := ∠V0 := 0◦. Clearly h(h̃θ(x)(x)) = x and h̃θ(h(x̃))(h(x̃)) = x̃.
This means that h−1(·) := h̃θ(·)(·) is an inverse of h(·).

This completes the proof of Theorem 7.
Notice that the inverse h−1(·) := hθ(·)(·) is defined by the function θ(·). Even though θ is not unique

(if θ defines an inverse of h, then θ +2πα also defines a valid inverse), the inverse h−1 is unique because
both θ and θ +2πα map a point x in X to the same point x̃ ∈ X̃ (see (49)). Hence X̃≡ X is indeed well
defined. When we fix θ to be in (−π,π]n, it fixes a unique θ that defines h−1 as well.

F. Proof of Theorem 8: BFM cycle condition

The proof is from [24].
Proof: Since m≥ n and rank(B) = n, we can always find n linearly independent rows of B to form a

basis. The choice of this basis corresponds to choosing a spanning tree of G, which always exists since
G is connected [77, Chapter 5]. Assume without loss of generality that the first n rows is such a basis and
partition B and β accordingly. Then Lemma 14 implies that hθ∗(x) ∈ X (in particular, x satisfies the cycle
condition (26)) with θ∗ ∈ (−π,π]n if and only if (θ∗,k(θ∗)) is the unique solution of[

BT

B⊥

]
θ =

[
βT

β⊥

]
+2π

[
kT

k⊥

]
(51)

with θ ∈ (−π,π]n. Since T is a spanning tree, the n×n submatrix BT is invertible. Moreover (51) has a
unique solution if and only if B⊥B−1

T (βT +2πkT ) = β⊥+2πk⊥, or if and only if

B⊥B−1
T βT = β⊥+2π k̂⊥ (52)
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for some integer vector k̂⊥ := k⊥−B⊥B−1
T kT . ((53) below implies that k̂⊥ is indeed an integer vector.)

We can assume without loss of generality that the orientation of the network graph G̃ is such that all
the links in T are directed away from the root node 0. Let P(i j) denote the unique path from node i to
node j in T ; in particular, P(0 j) consists of links all with the same orientation as the path and P( j 0)
of links all with the opposite orientation. Then it can be verified directly that

[
B−1

T
]

ie :=

−1 if link e is in P(0 i)

0 otherwise
(53)

Hence B−1
T βT represents the (negative of the) sum of angle differences on the path P(0 i) for each node

i ∈ T : [
B−1

T βT
]

i = ∑
e

[
B−1

T
]

ie [βT ]e = − ∑
e∈P(0 i)

[βT ]e

Hence B⊥B−1
T βT is the sum of angle differences from node i to node j along the unique path in T , for

every link i→ j ∈ Ẽ \ ẼT not in the tree T . To see this, we have, for each link e := i→ j ∈ Ẽ \ ẼT ,[
B⊥B−1

T βT
]

e =
[
B−1

T βT
]

i−
[
B−1

T βT
]

j = ∑
e′∈P(0 j)

[βT ]e′− ∑
e′∈P(0 i)

[βT ]e′

Therefore (52) implies, for each link i→ j ∈ Ẽ \ ẼT ,

βi j −

(
∑

e′∈P(0 j)
[βT ]e′− ∑

e′∈P(0 i)
[βT ]e′

)
= −2π k̂⊥ (54)

Consider the basis cycle c(i, j) defined by such a link i→ j outside the spanning tree T [77, Chapter 5].
Using the definition of β̃ we have

∑
e′∈c(i, j)

β̃e′ = β̃i j + ∑
e′∈P( j 0)

β̃e′+ ∑
e′∈P(0 i)

β̃e′

= βi j− ∑
e′∈P(0 j)

βe′+ ∑
e′∈P(0 i)

βe′ = −2π
[
k̂⊥
]

i j

i.e., ∑e′∈c(i, j) β̃e′ = 0 mod 2π . Since this holds for all basis cycles, it holds for all undirected cycles. Therefore
the cycle conditions (26) and (28) are equivalent.

Finally consider the unique solution (θ∗,k(θ∗)) of (48) with θ∗ ∈ (−π,π]n. By (51) we have θ∗ =

B−1
T βT +2πB−1

T kT (θ∗). The definition of k(θ∗) and the fact θ∗ ∈ (−π,π]n imply that θ∗ =P
(
B−1

T βT
)
; see

the discussion preceding Lemma 14. This completes the proof of Theorem 8.

G. Proof of Theorem 9: radial networks

The proof is from [24].
Proof: Theorem 7 and the definition of X+ imply X̃≡ X⊆ Xnc ⊆ X+. If the network G̃ = T is a tree

then B = BT is n×n and invertible. Hence every x ∈ Xnc satisfies the cycle condition (26) and hence is in
X. Therefore X= Xnc.
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H. Proof of Theorem 11: equivalence

The proof is from [57], [31].
Proof: Consider the linear mapping g : W+

G→X+ defined right after Theorem 11 by x = g(WG) where

S jk := yH
jk
(
[WG] j j− [WG] jk

)
, j→ k ∈ Ẽ (55a)

` jk := |y jk|2
(
[WG] j j +[WG]kk− [WG] jk− [WG]k j

)
, j→ k ∈ Ẽ (55b)

v j := [WG] j j, j ∈ N+ (55c)

s j := ∑
k: j∼k

yH
jk
(
[WG] j j− [WG] jk

)
, j ∈ N+ (55d)

and the mapping g−1 : X+→W+
G with WG = g−1(x) where

[WG] j j := v j, j ∈ N+ (56a)

[WG] jk := v j− zH
jkS jk = [WG]

H
k j , j→ k ∈ Ẽ (56b)

We will prove that g and g−1 are indeed inverses of each other in three steps: (1) g maps every point
WG ∈W+

G to a point in X+; (2) g−1 maps every point x ∈X+ to a point in W+
G; and (3) g(g−1(x)) = x and

g−1(g(WG)) =WG. This defines a bijection between W+
G and X+ and establishes W+

G ≡ X+. We will then
prove the mappings g (g−1) restricted to WG (Wnc) and X (Xnc) define the bijection between these sets.

Recall the sets:

W+
G := {WG |WG satisfies (12),WG( j,k)� 0, ( j,k) ∈ E}

X+ := {x ∈ R3(m+n+1) | x satisfies (3), (4), (24a), (24b), (29)}

Step 1: g(WG) ∈ X+. (12) and (55c)–(55d) imply (3) and (4). To prove (24a), we have for j ∈ N+

∑
i:i→ j

(
Si j− zi j`i j

)
+ s j

= ∑
i:i→ j

(
yH

i j
(
[WG]ii− [WG]i j

)
− yH

i j
(
[WG]ii +[WG] j j− [WG]i j− [WG] ji

))
+ s j

= ∑
i:i→ j

(
−yH

i j
(
[WG] j j− [WG] ji

))
+ ∑

i:i→ j
yH

ji
(
[WG] j j− [WG] ji

)
+ ∑

k: j→k
yH

jk
(
[WG] j j− [WG] jk

)
= ∑

k: j→k
S jk

as desired. To prove (24b), we have for j→∈ Ẽ

2Re
(

zH
jkS jk

)
−|z jk|2` jk = 2Re

(
[WG] j j− [WG] jk

)
−
(
[WG] j j +[WG]kk− [WG] jk− [WG]k j

)
=

(
[WG] j j− [WG]kk

)
− [WG]

H
jk +[WG]k j

= v j− vk
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as desired. To prove (29) for each j→∈ Ẽ, use [WG] j j[WG] jk ≥ |[WG] jk|2 to get

v j` jk =
∣∣y jk
∣∣2 [WG] j j

(
[WG] j j +[WG]kk− [WG] jk− [WG]k j

)
≥

∣∣y jk
∣∣2([WG]

2
j j +

∣∣[WG] jk
∣∣2− [WG] j j[WG] jk− [WG] j j[WG]

H
jk

)
(57)

=
∣∣S jk
∣∣2

as desired. Hence g maps every WG ∈W+
G to a point in X+.

Step 2: g−1(x) ∈W+
G . Clearly (56a) and (3) imply (12b). To prove (12a), we have for each j ∈ N+

∑
k:( j,k)∈E

yH
jk
(
[WG] j j− [WG] jk

)
= ∑

i:i→ j
yH

ji
(
[WG] j j− [WG] ji

)
+ ∑

k: j→k
yH

jk
(
[WG] j j− [WG] jk

)
= ∑

i:i→ j
yH

i j

(
v j−

(
vi− zH

i jSi j
)H
)

+ ∑
k: j→k

yH
jk

(
v j−

(
v j− zH

jkS jk

))
= ∑

k: j→k
S jk − ∑

i:i→ j
yH

i j
(
vi− v j− zi jSH

i j
)

= ∑
k: j→k

S jk − ∑
i:i→ j

yH
i j

(
2Re(zH

i jSi j)−
∣∣zi j
∣∣2 `i j− zi jSH

i j

)
where the second equality follows from (56) and the last equality from (24b). But(

2Re(zH
i jSi j)− zi jSH

i j
)

=
(
zH

i jSi j + zi jSH
i j
)
− zi jSH

i j = zH
i jSi j

and hence

∑
k:( j,k)∈E

yH
jk
(
[WG] j j− [WG] jk

)
= ∑

k: j→k
S jk − ∑

i:i→ j

(
Si j− zi j`i j

)
= s j

This and (4) imply (12a) as desired. To prove WG( j,k)� 0 for each ( j,k) ∈ E, we have

[WG] j j[WG]kk−
∣∣[WG] jk

∣∣2 = v jvk−
∣∣∣v j− zH

jkS jk

∣∣∣2
= v jvk−

(
v2

j +
∣∣z jk
∣∣2 ∣∣S jk

∣∣2−2v j Re
(

zH
jkS jk

))
= v j

(
vk− v j +2Re

(
zH

jkS jk

))
−
∣∣z jk
∣∣2 ∣∣S jk

∣∣2
=

∣∣z jk
∣∣2(v j` jk−

∣∣S jk
∣∣2)

where the last equality follows from (24b). Therefore WG( j,k) � 0 follows from (29) as desired. Hence
g−1 maps every point x ∈ X+ to a point in W+

G .
Step 3: g(g−1(x)) = x and g−1(g(WG)) =WG. The proof uses (55), (56), (24) and follows similar argument
used in Steps 1 and 2, and is thus omitted. This completes the proof that g and g−1 are indeed inverses of
each other and establishes W+

G ≡ X+.
From (57), we have

v j` jk =
∣∣S jk
∣∣2 if and only if [WG] j j[WG]kk =

∣∣[WG] jk
∣∣2

This implies that g and g−1 restricted to Wnc and Xnc respectively are inverses of each other as well,
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establishing Wnc ≡ Xnc.
Finally to prove W ≡ X we need to show that the cycle conditions (13) and (26) are equivalent, i.e.,

WG ∈Wnc satisfies (13) if and only if x := g(WG) ∈ Xnc satisfies (26). Consider any cycle c. Using (56b)
and the definition of β̃ (x) before Theorem 8, we have

∑
( j,k)∈c

∠Wjk = ∑
( j,k)∈c

∠β̃ jk

Theorem 8 therefore implies that the cycle conditions (13) and (26) are equivalent under g and g−1.
This completes the proof of Theorem 11.

I. Proof of Lemma 12: voltage bound

The proofs of 12(1)–(3) and Lemma 13 are obvious and omitted. The proof of Lemma 12(4) makes use
of Lemma 13 and is provided here.

Proof of Lemma 12(3): Fix v0 and an s ∈ R2(n+1). Let x := (S, `,v) and xlin := (Slin, `lin,vlin) be
solutions of (33) and (37) respectively with the given v0 and s, when G̃ is oriented so that all links point
away from node 0. We will prove v≤ vlin, indirectly using Lemma 13.

Specifically consider the model where the network is oriented so that all links point towards node 0 and
consider the solutions x̂ := (Ŝ, ˆ̀, v̂) and x̂lin := (Ŝlin, ˆ̀lin, v̂lin) of (36) and (38) respectively with the given
v0 and s. Then Lemma 13 implies v̂ ≤ v̂lin. We will prove that vlin = v̂lin and v = v̂ and hence v ≤ vlin as
desired.

It is easy to see from (37) and (38) that Slin
jk =−Ŝlin

k j and vlin = v̂lin.
To show v = v̂, define the following functions:

Sk j(Ŝ, ˆ̀, v̂) := −(Ŝ jk− z jk ˆ̀jk), j→ k ∈ E (58a)

`k j(Ŝ, ˆ̀, v̂) := ˆ̀jk, j→ k ∈ E (58b)

v j(Ŝ, ˆ̀, v̂) := v̂ j, j ∈ N (58c)

Note that (S(x̂), `(x̂),v(x̂)) are functions of x̂ that is a solution of (38).9 Substituting these functions into
(36) yields

−Si j(x̂)+ z ji ˆ̀ji = − ∑
k:k→ j

S jk(x̂)+ s j, j ∈ N+

vk(x̂)− v j(x̂) = 2Re
(

zH
k j
(
−S jk(x̂)+ zk j ˆ̀k j

))
−|zk j|2 ˆ̀k j, k→ j ∈ Ẽ

` jk(x̂)vk(x̂) =
∣∣−S jk(x̂)+ zk j ˆ̀k j

∣∣2 , k→ j ∈ Ẽ

(59)

where as before i in the above is the node on the unique path between node 0 and node j. Substituting

9Since Ŝ jk represents the sending-end complex power from bus j to bus k, −Sk j(Ŝ, ˆ̀, v̂) represents the received power by bus k from bus
j, net of the line loss z jk` jk.
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ˆ̀k j = ` jk(x̂) and rearranging, these equations become

∑
k:k→ j

S jk(x̂) = Si j(x̂)− zi j`i j(x̂)+ s j, j ∈ N+ (60a)

v j(x̂)− vk(x̂) = 2Re
(

zH
jkS jk(x̂)

)
−|z jk|2` jk(x̂)

k→ j ∈ Ẽ (60b)

` jk(x̂)v j(x̂) =
∣∣S jk(x̂)

∣∣2 , k→ j ∈ Ẽ (60c)

To obtain (60c) from (59), note that the right-hand side of (59) is∣∣−S jk(x̂)+ z jk` jk(x̂)
∣∣2

=
∣∣S jk(x̂)

∣∣2 +(∣∣z jk
∣∣2 ` jk(x̂)−2Re

(
zH

jkS jk(x̂)
))

` jk(x̂)

=
∣∣S jk(x̂)

∣∣2 + (vk(x̂)− v j(x̂)
)
` jk(x̂)

where the second equality follows from (60b). This together with (59) imply (60c).
Notice that (60) is identical to (33) if we reverse the direction of the graph G̃. This means that the

functions (S(x̂), `(x̂),v(x̂)) are solutions of (33). Moreover the functions (58) can be compactly written in
vector form as: S

`

v

(Ŝ, ˆ̀, v̂) =

−I Z 0
0 I 0
0 0 I


Ŝ

ˆ̀

v̂


where the m×m matrix Z is diag(z jk, j→ k ∈ Ẽ). Clearly this mapping is invertible. This implies that there
is a one-one correspondence between the solutions x of (33) and the solutions x̂ of (36). Moreover they
have the same voltage magnitudes v = v̂.

Hence Lemma 13(4) implies that v = v̂≤ v̂lin = vlin as desired.
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