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Convex Relaxations and Approximations of

Chance-Constrained AC-OPF Problems
Lejla Halilbašić, Student Member, IEEE, Pierre Pinson, Senior Member, IEEE,

and Spyros Chatzivasileiadis, Senior Member, IEEE

Abstract—This paper deals with the impact of linear approxi-
mations for the unknown nonconvex confidence region of chance-
constrained AC optimal power flow problems. Such approxi-
mations are required for the formulation of tractable chance
constraints. In this context, we introduce the first formulation of a
chance-constrained second-order cone (SOC) OPF. The proposed
formulation provides convergence guarantees due to its convexity,
while it demonstrates high computational efficiency. Combined
with an AC feasibility recovery, it is able to identify better solu-
tions than chance-constrained nonconvex AC-OPF formulations.
To the best of our knowledge, this paper is the first to perform
a rigorous analysis of the AC feasibility recovery procedures
for robust SOC-OPF problems. We identify the issues that arise
from the linear approximations, and by using a reformulation of
the quadratic chance constraints, we introduce new parameters
able to reshape the approximation of the confidence region. We
demonstrate our method on the IEEE 118-bus system.

Index Terms—Chance-constrained AC-OPF, convex relax-
ations, second order cone programming, AC feasibility recovery.

I. INTRODUCTION

POWER system operations increasingly rely on the AC

Optimal Power Flow (OPF) to identify optimal decisions

[1], while higher shares of intermittent renewable generation

add an additional layer of complexity and call for mod-

eling approaches which account for uncertainty. Literature

considers uncertainty either in the form of stochastic for-

mulations, which optimize over several possible realizations

(i.e. scenario-based), or in the form of robust formulations,

where chance constraints are incorporated in the optimization

problem accounting for a continuous range of uncertainty. This

paper focuses on chance-constrained optimization.

Chance constraints define the maximum allowable violation

probability ǫ of inequality constraints and reduce the noncon-

vex feasible space of the AC-OPF to a desired confidence

region, which is also nonconvex as depicted in blue in Fig. 1.

This confidence region includes only operating points which

under any realization of the uncertainty ξ are guaranteed to

remain within the feasible space of the original AC-OPF (in

green in Fig. 1) with a probability of at least (1 − ǫ). The

notion of preventively securing the system against uncertainty

by restricting the feasible space is also in line with the

concept of transmission reliability margins used for the cross-

border capacity management in the ENTSO-E region [2].
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Fig. 1. Left: Illustration of the feasible space of the AC-OPF and the
chance-constrained AC-OPF (confidence region). Right: Illustration of the
approximation of the confidence region using linear cuts.

Additionally, chance constraints offer the benefit of being

relatively easily adaptable to a wide range of uncertainty be-

havior and safety requirements. Their application ranges from

robust formulations – such as targeting joint chance constraints

[3], [4], not relying on the assumption of any distribution

[5], [6] or accounting for a family of possible distributions

(i.e., distributionally robust) [6]–[9] – to less conservative

frameworks, which consider single system constraints with

different levels of robustness [10], [11]. The latter accounts

for the fact that there are usually only few active constraints

[12], which could compromise system security and need to be

treated more cautiously.

As the AC-OPF is a nonlinear and nonconvex problem, it

is impossible to formulate tractable chance constraints able

to cover the whole continuous uncertainty space. Instead,

literature has proposed tractable approximations. Recent re-

search has focused on developing formulations of the chance-

constrained AC-OPF based on either partial or full lineariza-

tions, and analytical chance constraint reformulations [5], [11],

[13]–[16], while other works propose a combination of convex

relaxations based on semidefinite programming (SDP) for the

power flow equations and a scenario-based reformulation of

the chance constraints [3], [4].

The main challenge of the chance-constrained AC-OPF lies

in approximating the unknown nonconvex confidence region.

Common to all approaches in [3]–[8], [10]–[16] is that they

approximate the impact of the uncertainty by a linearization

allowing to reformulate the chance constraints to tractable

deterministic constraints. These are tighter than the original

AC-OPF constraints and represent linear cuts to the original

feasible space in order to approximate the confidence region.

As visualized in Fig. 1, depending on the quality of the

cuts the identified operating points may either lie outside the

confidence region (solution 2) [11] or are too conservative
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(solution 1) as in the case of sample-based reformulations [3],

[4] and the distributionally robust case in [7]. A less conser-

vative distributionally robust OPF has recently been proposed

in [9] which considers ambiguity sets of distributions based

on historical forecast error data and the Wasserstein metric.

Data-driven DRO frameworks are a promising intermediate

approach between stochastic optimization which rely on the

assumption of a certain distribution, and robust optimization

for the worst-case uncertainty realization. They leverage the

knowledge from observed historical data and other statistical

information to provide robustness for the uncertainty distribu-

tion. However, several challenges remain such as the choice

of an appropriate radius for the ambiguity set and maintaining

computational efficiency under the necessary sample based

reformulations.

The authors in [11], [13], [14] develop an iterative frame-

work for approximating the chance-constrained AC-OPF by

alternating between an AC-OPF and a computation of the

constraint tightenings (i.e., the linear cuts) based on a first-

order Taylor series expansion around the forecasted operating

point, which is more accurate than the full linearization in

[5]. Due to the nonconvex nature of the AC-OPF, however,

the algorithm is not guaranteed to converge. Convergence

and robustness are still challenges even for the standard AC-

OPF, which particularly for large networks often fails to

succeed [17], [18]. The authors in [16] use a first order Taylor

expansion to linearize the AC power flow equations around

the forecasted operating point and to model the uncertainty

impact. The resulting approximation of the chance-constrained

AC-OPF achieves a high computational efficiency due to its

convexity and an improved cost performance by optimizing

over affine response policies. Despite its increased robustness

though, the method still relies on the availability of an AC-

OPF solution at the forecasted operating point to allow for

the linearization of the power flow equations. Otherwise, the

method’s solution quality is determined by the quality of the

input AC-OPF solution, which can be highly suboptimal [18].

The SDP relaxation of the chance-constrained AC-OPF devel-

oped in [3] improves on the approximation of the confidence

region by optimizing over affine control policies, while in [4]

we additionally aim at providing AC feasible solutions and

global optimality guarantees. However, as SDP solvers are still

under development it can be computationally challenging.

This paper focuses on second-order cone relaxations (SOC)

of the AC-OPF as a good trade-off between approaches for

two reasons. First, compared with the original AC-OPF for-

mulation, SOC relaxations define a convex problem which is

guaranteed to converge. Second, SOC relaxations are computa-

tionally more efficient than SDP relaxations. It must be noted

that compared to SDP, SOC relaxations provide a less tight

relaxation, and require strengthening [19] or other procedures

to recover an AC feasible point. Such procedures are often

necessary in the SDP formulation as well though.

SOC-OPF algorithms considering uncertainty have been

proposed in [20]–[22], where the authors develop convex for-

mulations of the robust two-stage AC-OPF problem focusing

on the worst-case uncertainty realization. Specifically, in [21]

and [22] SOC relaxations are used within the framework

of an affinely adjustable robust OPF (first proposed in [23]

for a DC-OPF). However, both papers consider only affine

policies for active power generation neglecting the impact

of the uncertainty on all other control and state variables.

A very extensive framework for relaxations of robust AC-

OPFs is provided in [20], where the authors develop three

methods using conic duality to obtain tractable formulations

of the robust AC-OPF based on SOC-, SDP-, and DC-OPFs.

To guarantee AC feasible solutions, the conic OPF models

are used to approximate the second stage of the two-stage

robust optimization problem and are then solved alternately

with an AC-OPF, which represents the first stage problem.

However, as in [11] this results in a nonconvex iterative

program, which is not guaranteed to converge. None of the

papers mentioned address the issue of AC infeasibility of the

SOC-OPF solutions.

The main contributions of this work are:

• the first formulation of a chance-constrained SOC-OPF

(CC-SOC-OPF), able to provide both convergence guar-

antees and high computational efficiency; coupled with

an AC feasibility recovery it can identify better solutions

than the chance-constrained nonconvex AC-OPF formu-

lation

• the approximation of quadratic apparent power flow

chance constraints with linear chance constraints using

results proposed in [24]

• the introduction of new parameters able to reshape the

approximation of the confidence region, along with a

rigorous analysis of the linear approximations; these

parameters offer a high degree of flexibility for the

robustness of the solution.

The remainder of this paper is organized as follows: Section

II introduces the approximation of the AC-OPF based on a

SOC relaxation, while Section III focuses on the formulation

of the CC-SOC-OPF. Results from a case study are presented

in Section IV. Section V concludes and Section VI discusses

directions for future work.

II. AC-OPF REFORMULATIONS AND RELAXATIONS

The AC-OPF is a nonlinear and nonconvex optimization

problem, which aims at determining the least-cost, optimal

generation dispatch satisfying all demand under consideration

of generator active and reactive power, line flow and nodal

voltage magnitude limits [25]. It is commonly defined in the

space of x := {P,Q,V, θ} variables, which are defined per

node and represent active power injections, reactive power in-

jections, voltage magnitudes and voltage angles, respectively.

Thus, set x consists of 4|N | optimization variables, where N
denotes the set of network nodes. Bold letters indicate vectors

or matrices.

Alternatively, the AC-OPF can be represented using an

extended and modified set of optimization variables of size

(4|N | + 2|L|) [19], [26], [27], where L denotes the set

of lines (i.e., network edges). New variables are introduced

to capture the nonlinearities and nonconvexities of the AC

power flow equations: (a) ui := V 2
i , (b) cl := ViVj cos(θij)

and (c) sl := −ViVj sin(θij), where each transmission line
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l ∈ L is associated with a tuple (i, j) defining its sending

and receiving node. As a result, the AC-OPF is transformed

from the space of x := {P,Q,V, θ} variables to the space of

y := {P,Q,u, θ, c, s} variables and is given by

min
y

∑

i∈G

cGi

(

PG
i

)

(1)

s.t. Pi = Giiui +
∑

l=(i,j)

(

Gijcl −Bijsl

)

+
∑

l=(j,i)

(

Gijcl +Bijsl

)

, ∀i ∈ N (2)

Qi = −Biiui −
∑

l=(i,j)

(

Bijcl +Gijsl

)

−
∑

l=(j,i)

(

Gijcl −Bijsl

)

, ∀i ∈ N (3)

0 = c2l + s2l − uiuj , ∀l ∈ L, (4)

0 = θj − θi − atan
(sl

cl

)

, ∀l ∈ L, (5)

S2
ij ≤ (Sl)

2, S2
ji ≤ (Sl)

2, ∀l ∈ L, (6)

Vi
2 ≤ ui ≤ Vi

2
, ∀i ∈ N , (7)

PG
i ≤ PG

i ≤ PG
i , QG

i ≤ QG
i ≤ QG

i , ∀i ∈ G, (8)

− ViVj ≤ cl, sl ≤ ViVj , ∀l ∈ L, (9)

θref = 0. (10)

The objective function (1) minimizes active power genera-

tion costs. Superscript G denotes the contribution of conven-

tional generators to the power injection Pi and Qi at node i

(summarized in vectors P and Q for all nodes), while G ⊆ N
contains only nodes, which have conventional generators con-

nected to them. Constraints (2) and (3) represent nodal active

and reactive power balance equations, respectively. Equation

(4) arises from the variable transformation, while voltage

angles are reintroduced through constraint (5). The latter can

be omitted for radial networks. Constraints (7) – (9) limit the

decision variables within their upper and lower bounds, which

are denoted with over- and underlines. The two inequalities in

(6) constrain the apparent power flow in both directions of the

line, where S2
ij (and analogously S2

ji) is defined as

S2
ij = P 2

ij +Q2
ij

=
(

−Gijui +Gijcl −Bijsl

)2

+
(

(Bij −Bsh
ij )ui −Bijcl −Gijsl

)2

, ∀l ∈ L.

(11)

Note that we assume a π-model of the transmission line

with reactive shunt elements Bsh
ij only. Equation (10) sets the

voltage angle of the reference bus to zero.

The optimization problem (1) – (10) is an exact reformula-

tion of the original AC-OPF and still nonlinear and nonconvex.

However, when relaxing constraint (4) and approximating

(5), the original AC-OPF can be approximated by a convex

quadratic optimization problem, which can be solved to global

optimality. To this end, equation (4) is replaced by its convex

second-order cone representation: c2ij + s2ij ≤ uiuj , while

(5) can be linearized using a Taylor series expansion as

proposed in [27] resulting in an iterative conic algorithm.

The convergence is determined by the change in c and s

variables, e.g., ||cν − cν−1||∞ , where ν denotes the iteration

counter. Alternative convex approximations to (5) have also

been proposed in [19]. Given that we reintroduce the angle

constraint (5), the OPF no longer represents a pure relaxation

but an approximation of the original problem. We refer to

the OPF based on relaxations and approximations as Second-

Order Cone OPF (SOC-OPF). Note that (6) is already a

convex second-order cone constraint and does not need to

be reformulated. As the SOC-OPF is an approximation of

the AC-OPF, identified solutions might not be feasible to the

original problem. We address this issue in Section III, where

we propose an ex post AC feasibility recovery based on an

AC power flow analysis, while in Section IV we demonstrate

in our case study how the proposed procedure is not only able

to recover the AC-OPF solution of a nonlinear solver but can

also identify better solutions.

III. PROBABILISTIC OPTIMAL POWER FLOW

The chance-constrained OPF restricts the feasible space

to a desired confidence region (CR) and identifies optimal

decisions for the forecasted operating point, such that for any

realization of the uncertainty and appropriate remedial actions

all constraints are satisfied with a desired probability. Remedial

or corrective control actions can be either pre-determined or

embedded as optimization variables in the chance-constrained

OPF.

A. Chance-constrained SOC Optimal Power Flow

In this paper, we propose the first formulation of a CC-

SOC-OPF, which avoids the nonconvexities and convergence

issues of the chance-constrained AC-OPF [11] and can be

computationally more efficient than other convex formulations

of chance-constrained AC-OPF problems [4]. Similar to the

literature, we assume wind power generation P̃W to be the

only source of uncertainty. The actual wind realization P̃W
i is

modeled as the sum of forecasted value PW
i and deviation ξi,

P̃W
i = PW

i + ξi, ∀i ∈ W. (12)

W ⊆ N denotes the set of nodes containing wind generators,

while superscript W refers to the contribution of wind power

to the nodal power injection at node i. Recently, grid codes

also require renewable energy generators to be able to provide

reactive power [28]. We include the reactive power generation

of wind farms as optimization variables and assume that the

reactive power output follows the deviation of the active power

output according to the optimal power factor cosφ at the

forecasted operating point. Thus, the actual realization of the

reactive wind power output is modeled as follows

Q̃W
i = λ(PW

i + ξi), ∀i ∈ W, (13)

where λ :=
√

1−cosφ2

cosφ2 is an optimization variable and denotes

the ratio between reactive and active wind power generation.

We model all decision variables ỹ(ξ) of the OPF as func-

tions of the uncertainty ξ: ỹ(ξ) = y + ∆y(ξ), where y
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represents the optimal setpoint at the forecasted operating

point and ∆y(ξ) the system response to a change in active

power injection (i.e., wind power deviation ξ). The chance-

constrained OPF minimizes the total generation cost for the

forecasted operating point and is formulated as follows

min
y

∑

i∈G

cGi

(

PG
i

)

(14)

s.t. (2) – (5), (10) for y, (15)

P

(

ỹi(ξ) ≤ yi

)

≥ 1− ǫ ∀ỹi(ξ) ∈ ỹ(ξ), (16)

P

(

ỹi(ξ) ≥ yi

)

≥ 1− ǫ ∀ỹi(ξ) ∈ ỹ(ξ), (17)

P

(

S̃2
ij(ξ) ≤ (Sl)

2
)

≥ 1− ǫ ∀l ∈ L, (18)

P

(

S̃2
ji(ξ) ≤ (Sl)

2
)

≥ 1− ǫ ∀l ∈ L, (19)

where ǫ ∈ (0, 1) represents the allowed constraint violation

probability. Thus, the CR (i.e., the restricted feasible space) of

the chance-constrained OPF is defined by the confidence level

(1− ǫ).
Note that (16) – (19) represent separate chance constraints,

i.e., the probability of satisfying (6) – (9) is enforced for

each constraint individually and not jointly. We use separate

chance constraints as they (i) do not significantly change the

computational complexity of the problem as opposed to joint

formulations and (ii) have proven to also effectively reduce

the joint violation probability, while remaining less conser-

vative than approaches which explicitly target joint chance

constraints and usually overly satisfy them [4], [29]. Separate

chance constraints are also used to approximate joint chance

constraints [30]. They offer the flexibility to identify and

target individual constraints which are decisive for the system’s

security, while avoiding to unnecessarily limit the solution

space along other dimensions that are of minor significance

to security but could have a substantial impact on costs.

Problem (14) – (19) represents the chance-constrained for-

mulation of the exact AC-OPF (1) – (10) and can be relaxed

as described in Section II to obtain the convex CC-SOC-OPF.

All equality constraints (i.e., (2) – (5), (10)) and relaxations

of them are considered for the forecasted operating point only,

as including (12) and ỹ(ξ) directly in (15) would render the

problem semi-infinite and thus, intractable.

B. Control Policies: Modeling the System Response

In order to approximately model the system response to a

change in wind power injection ξ, we use linear policies for

all variables concerned.

1) Reserve Deployment: Fluctuations in active power gen-

eration are balanced by conventional generators, which are

assumed to provide up- and down-reserves according to their

generator participation factors γ. The participation factors are

pre-determined and proportional to each generator’s installed

capacity with respect to the total installed capacity of conven-

tional generation. The generator output is adjusted according

to the total power mismatch Ξ =
∑

i∈W
ξi [10]. Hence, the

sum of all generator contributions to the reserve deployment

needs to balance the total power mismatch Ξ, which implies

the following condition:
∑

i∈G
γi = 1, so that the total

contribution of all generators equals the total power mismatch
∑

i∈G
γi

∑

i∈W
ξi = Ξ. Similar to (12), the actual dispatch

of a conventional unit is modeled as the sum of its optimal

dispatch at the expected wind infeed and its reaction to the

wind power deviation,

P̃G
i (ξ) = PG

i +∆PG
i (ξ)

= PG
i − γiΞ +∆PU

i (ξ), ∀i ∈ G. (20)

∆PU
i (ξ) represents the unknown nonlinear changes in active

power losses, which are usually compensated by the generator

at the reference bus. Thus, this term is equal to zero for

all other generators. As for the other variables Q, u, c, s,

θ, which vary nonlinearly with the wind power injection,

we approximate ∆PU
i through a linearization around the

forecasted operating point, which is described in the next

section. Note that the participation factors can also be included

as optimization variables and defined for each wind infeed in-

dividually. However, a higher number of optimization variables

and additional second-order cone constraints in that case also

increase the computational burden.

2) Linear Decision Rules: We derive linear sensitivities of

each variable with respect to the uncertainty based on a Taylor

series expansion around the forecasted operating point. We

model the response as follows: ∆y(ξ) = ∂y
∂ξ

ξ = Υξ, such that

ỹ(ξ) = y +∆y(ξ) represents a linear decision rule (LDR)

with respect to the uncertainty. The authors in [11], [13], [31]

have derived the linear sensitivity factors from the Jacobian

matrix at the forecasted operating point of the original AC

power flow equations. The detailed derivation can be found

in [29]. In this work, we derive the linear sensitivity factors

Υ based on the Jacobian matrix of the alternative load flow

equations (2) – (5), such that we can directly use them as input

to the convex chance-contrained SOC-OPF,








∆P

∆Q

0

0









=
[

JSOC
]

∣

∣

∣

∣

∣

y









∆u

∆c

∆s

∆θ









. (21)

The derivation of Υ is presented in the appendix. The left-

hand side of equation (21) can also be expressed in terms of

the uncertain wind infeed, the generator participation factors,

the optimal ratio between reactive and active wind power

generation at the forecasted operating point and the unknown

nonlinear changes in active and reactive power. We replace the

entries for ∆P and ∆Q accordingly and modify the system of

equations considering the following assumptions aligned with

current practices in power system operations:

• the change in active power losses is compensated by the

generator at the reference bus: ∆PU
PV,PQ = 0;

• changes in reactive power generation are compensated by

generators at PV and reference buses, as PQ buses are

assumed to keep their active and reactive power injection

constant: ∆QPQ = 0;

• generators at PV and reference buses regulate their

reactive power output to keep the voltage magnitude

and thus, the square of the voltage magnitude constant:

∆uPV,ref = 0;
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• the voltage angle at the reference bus is always zero:

∆θref = 0.

Rearranging the resulting system of equations allows us

to define the changes in all variables of interest (i.e.,

∆y \ {∆PU
PV,∆PU

PQ,∆QPQ,∆uPV,∆uref ,∆θref}) as

a function of ξ. The changes in active and reactive branch

flows due to fluctuations in wind infeed can be represented by

a linear combination of the changes in u, c and s variables,

as shown in Eq. (22) for active branch flows.

∆Pij(ξ) = −Gij∆ui +Gij∆cl −Bij∆sl, ∀l ∈ L. (22)

The chance constraints of the apparent branch flow constraints

are thus formulated as quadratic chance constraints for all

lines l := (i, j) (and analogously for the reversed power flow

direction (j, i)),

P

[(

Pij +∆Pij(ξ)
)2

+
(

Qij +∆Qij(ξ)
)2

≤
(

Sl

)2]

≥ 1− ǫ. (23)

3) Reformulating the Linear Chance Constraints: The LDR

approach coupled with the assumption that the wind deviations

ξ follow a multivariate distribution with known mean and

covariance allows us to analytically reformulate the single

chance constraints in (16) – (19) to deterministic constraints

[10]. We choose the analytical approach based on a Gaussian

distribution with zero mean given that previous work in [11]

has shown that (i) it is reasonably accurate, even when the

uncertainty is not normally distributed, and (ii) it performs

better than sample-based reformulations based on Monte Carlo

simulations and the so-called scenario approach [32]. Using

the properties of the Gaussian distribution, the linear chance

constraint P[yi+Υiξ ≤ yi] ≥ 1−ǫ is reformulated as follows:

yi +Φ−1(1− ǫ)
√

ΥiΣΥT
i ≤ yi, (24)

where Φ−1 denotes the inverse cumulative distribution func-

tion of the Gaussian distribution and Σ the (|W|×|W|) covari-

ance matrix. Note that Υi denotes the i-th row of matrix Υ and

is a (1×|W|) vector containing the sensitivity of the considered

variable w.r.t. ξ at each node in W . The derivation of how the

chance constraint is reformulated to its deterministic form can

be found in e.g., [29]. It can be observed that introducing

uncertainties results in a tightening of the original constraint

yi ≤ yi and thus, a reduction of the feasible space to the

CR defined by the confidence level (1 − ǫ). The introduced

margin Ωi = Φ−1(1−ǫ)
√

ΥiΣΥT
i secures the system against

uncertain infeeds and was termed uncertainty margin in [10].

4) Reformulating the Quadratic Chance Constraints: The

apparent flow constraint inside (23) is indeed convex but

nonlinear, which prevents a straight-forward analytical refor-

mulation of the chance constraint similar to the linear one in

(24). We therefore approximate the quadratic chance constraint

by a set of probabilistic absolute value constraints and a

nonprobabilistic quadratic constraint as proposed in [24] and

recently applied in [16]. Constraint (23) is replaced by the

following set of constraints:

P

[

|Pij +∆Pij(ξ)| ≤ kPij

]

≥ 1− βǫ, (25)

P

[

|Qij +∆Qij(ξ)| ≤ k
Q
ij

]

≥ 1− (1− β)ǫ, (26)

(kPij)
2 + (kQij)

2 ≤ (Sl)
2. (27)

kPij and k
Q
ij are optimization variables introduced to enable the

reformulation. The absolute value constraints (25) and (26),

also called two-sided linear chance constraints, are a special

type of joint chance constraints and can be approximated by

two single linear chance constraints, e.g. P[Pij +∆Pij(ξ) ≤
kPij ] ≥ 1 − βǫ and P[Pij + ∆Pij(ξ) ≥ −k

P
ij ] ≥ 1 − βǫ. In

this form, the constraints can be reformulated analytically as

desribed in Section III-B3. β ∈ (0, 1) is a parameter, which

balances the trade-off between violations in the two constraints

(25) and (26) and ensures that the union of the constraints still

satisfies the desired confidence level, i.e., P[(25)∪(26)] ≥ 1−ǫ.
Note that without β, i.e., when enforcing (25) and (26) with

(1− ǫ), respectively, the union P[(25)∪ (26)] only holds with

(1− 2ǫ) [24].

The major benefit of using an approach combining LDRs

and analytical reformulations lies in its adaptability to a

wide range of uncertainty behavior. The authors in [6], [14]

thoroughly discuss how different assumptions on the statistical

behavior of the uncertainty can be incorporated into the ana-

lytical reformulation. To this end, (24) can be generalized by

replacing Φ−1(1−ǫ) with a more general function f−1
P

(1−ǫ),
whose value can be determined for any distribution if the

mean µ and variance Σ of the uncertainty are known. The

exact expressions of f−1
P

(1 − ǫ) for different distributions

are derived in [6]. Different values for f−1
P

(1 − ǫ) and thus,

different assumptions on the distribution are simply reflected

in the optimization through different values for the uncertainty

margins Ωi = f−1
P

(1− ǫ)
√

ΥiΣΥT
i .

5) Modeling Inaccuracies: The linearization of the uncer-

tainty impact and the approximation of both the quadratic

chance constraints and the angle constraint are sources of

inaccuracies and entail that the CC-SOC-OPF solution might

still lie outside the feasible space of the AC-OPF and the CR

(i.e., the chance-constrained AC-OPF) despite the constraint

tightenings as depicted in Fig. 2. This highlights the need for

appropriate back-mapping procedures to project the CC-SOC-

OPF solution back into the feasible space through either ex

ante relaxation tightenings or an ex post power flow analysis.

Tightenings improve the relaxation but can still not guarantee

AC feasibility of the solution. Therefore, we propose to use the

solution of the relaxed OPF as a warm start to an AC power

flow analysis. To ensure that the CC-SOC-OPF solution is not

only projected back into the AC feasible space but into the

CR, increased levels of conservatism are required in the CC-

SOC-OPF modeling, where β provides an additional degree

of freedom to tighten the relaxation along the dimension of

the corresponding quadratic chance constraint. Note that the

CC-SOC-OPF solution might still not be AC feasible due to

loose bounds along other dimensions, but can be made so

through the feasibility recovery. How to appropriately choose
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Cut 1

Fig. 2. Illustration of how modeling inaccuracies might affect the CC-SOC-
OPF and visualization of the AC feasibility recovery (back-mapping).

β has to our knowledge not been addressed in previous work.

Performing a rigorous investigation in our case studies, we

find that for P[(25) ∪ (26)] ≥ 1− ǫ to hold while keeping the

additional cost incurred by the uncertainty as low as possible,

β needs to be tuned for each quadratic chance constraint

individually. Alternatively, choosing a value for β of 0.5, as

done in [16], provides a convex inner approximation of the

quadratic chance constraint and thus, a robust approximation

of the constraint [24]. This is aligned with the classical

Bonferroni approximation, which uses the union bound to

approximate the violation probability ǫ of K jointly considered

chance constraints by K single chance constraints, each of

which is enforced by (1− ǫ
K
) [30].

6) Critical Line Screening: In order to reduce both the

effort associated with the parameter tuning and the number

of new variables and constraints, which need to be introduced

to reformulate (23), we propose to perform a pre-screening

based on the forecasted operating point to identify the most

critical lines. Specifically, we evaluate the vertices κ of the

polyhedral outer approximation of the ellipsoidal uncertainty

set given by the multivariate Gaussian distribution [4], as

one of the vertices includes the worst-case realization of the

ellipsoidal uncertainty set. We then use a linearization based

on Power Transfer Distribution Factors (PTDF) to approximate

the change in active power line flows at each vertex, i.e.,

∆PFκ = PTDF×∆Pκ, where the change in active power

injection ∆Pκ is defined w.r.t. the forecasted operating point.

The final active power flows at each vertex show which lines

could be overloaded and thus, have a high risk of exceeding

the allowable violation probability. These lines are classified

as critical and their capacity constraints are included as chance

constraints. The branch flows on all other lines are constrained

by their usual limits and do not consider an uncertainty margin.

This procedure takes place iteratively after every solution of

a CC-SOC-OPF until no new critical lines are identified.

C. Solution Algorithm

The sensitivity factors Υ depend nonlinearly on the oper-

ating point and would render the problem nonconvex if they

were introduced as optimization variables. Therefore, we de-

fine Υ and the uncertainty margins Ω outside the optimization

problem and adopt the iterative solution algorithm from [13]

and apply it in the context of a SOC-OPF, which allows us

to maintain the convexity of the CC-SOC-OPF. We improve

on the work in [13] and [11] by avoiding nonconvexities in

the optimization and thus, provide convergence guarantees for

the iterative solution algorithm. The algorithm converges as

soon as the change in Ω between two consecutive iterations

is lower than a pre-defined tolerance value ρ and is defined as

follows:

1: Set iteration count: ν ← 0
2: while ||Ων −Ων−1||∞ > ρ do

3: if ν = 0 then

4: solve the SOC-OPF for the forecasted wind infeed

without considering uncertainty and obtain the oper-

ating point y0

5: evaluate Υ0 and Ω0 at y0

6: end if

7: perform critical line screening based on yν and κ and

append the critical line list

8: include Ων according to (24) for all variables y(ξ) and

(25)-(27) for all critical lines

9: solve CC-SOC-OPF to obtain yν+1

10: evaluate Υν+1 and Ων+1 at yν+1

11: ν ← ν + 1
12: end while.

This allows us to fully exploit the efficiency of solvers for

convex programming. Note that the iterative solution algorithm

for the chance constraints adds an additional outer iteration

loop to the iterative conic procedure for approximating the

angle constraint (5).

D. Robustness and Extensions of the Algorithm

In this Section, we discuss several aspects and possible

extensions of the algorithm which are not only limited to the

examples mentioned here. Other possible extensions include

the consideration of security requirements (e.g., N-1 and

stability criteria) and distributionally robust formulations (see

Section VI).

1) The Need for Robustness: The efficiency of the iterative

algorithm to handle large dimensions of the uncertainty has

been demonstrated in [11], where the full AC power flow

equations and the Polish test case of 2383 buses with 941

uncertain loads are used. The example also proves the good

performance of the iterative approach even for nonconvex

problems, if it converges. This is emphasized by the work in

[14], where the authors analyze the impact of perturbations of

the initial operating point on the final solution. Despite having

large differences in cost and uncertainty margins in the first

iteration, the results quickly converge to solutions, which share

the same cost and uncertainty margins. Nevertheless, several

instances were also identified in [14], where the iterative algo-

rithm failed to converge as a result of the nonconvexities. Some

cases encountered infeasibility of the OPF at intermediate

iterations and failed to recover subsequently. Others exhibited

a cycling behavior (e.g., the five bus case from [33]), where

the algorithm oscillated between two different local optima,

which had large differences in their corresponding uncertainty

margins and were located in two disjoint regions of the feasible

space.
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The recent work in [17] compares the performance of

several convex solvers with three nonlinear solvers by solving

nonprobabilistic AC-OPF relaxations based on SDP and stan-

dard AC-OPFs for 133 different test cases of up to 25’000

buses, respectively. Contrary to the SDP solvers, even the

most efficient nonlinear AC-OPF solver failed to converge

to a solution for 20 out of the 133 systems tested including

all test cases over 10’000 buses. All the examples mentioned

highlight the need for more robust solution approaches and the

ability of convex programming to provide them. The results

from [17] are proof that robustness is not only an issue

for more sophisticated AC-OPF algorithms, which include

functionalities beyond the usual ones from the standard AC-

OPF. Robustness is already a challenge for the standard AC-

OPF, whose convergence and success is fundamental to the

functioning of any other algorithm that builds on top of it.

2) Uncertainty Dimension: Besides maintaining convexity,

another benefit of combining the iterative approach, where Υ

is computed outside the OPF and the analytical reformulation

of the chance constraints is the independence from the size

of the uncertainty set |W|. |W| solely has an impact on the

dimensions of Υ, Σ and ξ. Operations on these matrices

are only conducted at steps 5 and 10 of each iteration,

which are decoupled from the optimization in steps 4 and

9. The computational complexity of the approach is mainly

determined by the size of the optimization problem, which

remains unchanged with an increasing number of uncertainty

sources. It only changes if more critical lines are detected

during the critical line screening, whose reformulated chance

constraints need to be added to the constraint set. However,

given that the number of active constraints is usually low, even

in large systems, this is not expected to be an obstacle [12].

3) Large Uncertainty Ranges: The linearization of the

uncertainty impact performs better close to the forecasted

operating point and might lead to inaccuracies, when consid-

ering large ranges of the uncertainty. Given that we operate

in a nonlinear space, some type of affine approximation is

necessary to keep the chance constraints tractable. However,

we do not expect that this poses a significant limitation for

this method. Our approach is expected to be used for power

system operations, which usually require short-term forecasts

(e.g. usually days/hours instead of months or years). The

forecast uncertainty range associated with such time intervals

is expected to be reasonable for our method.

4) Integer Variables: Given that the resulting optimization

problem solved at each iteration is formulated in almost

the same way as the deterministic SOC-OPF with the only

difference of having tighter variable limits to represent the

uncertainty impact, the problem can also be extended to

include integer variables accounting for e.g., shunt elements

or tap changers. Once the optimal integer decisions at one

iteration have been determined, the uncertainty margins can

still be derived as described above by a linearization around the

optimal integer solution. However, different integer solutions

throughout the iteration process could also result in constantly

changing values for Ω leading to convergence issues. Similar

to what has been proposed in [14], one possible solution

approach could be a branching algorithm, where the initial

uncertainty margins of each integer solution are used to obtain

a new integer solution (i.e., a new branch). At the same time,

the CC-SOC-OPF algorithm described above is applied to each

integer solution with the integer variables fixed to their optimal

values in order to obtain the final uncertainty margins of the

corresponding branch. The associated operating point is added

to the list of candidate solutions. The branching algorithm

would be considered to converge as soon as it does not identify

any new integer solutions, which have not been explored yet.

The most cost-efficient candidate solution would constitute the

final solution.

IV. CASE STUDY

We evaluate the performance of the proposed CC-SOC-

OPF on the IEEE 118 bus test system [34]. We assume

the MW line ratings given in [34] as MVA line ratings and

reduce them by 30% to obtain a more constrained system. We

add wind farms to node 5 and 64 with expected production

levels of 300 MW and 600 MW, respectively. We assume a

standard deviation of 10% and a power factor between 0.95

capacitive and 0.95 inductive for each wind farm. Minimum

and maximum voltage limits are set to 0.94 p.u. and 1.06 p.u..

Generator cost functions are assumed to be linear.

We first demonstrate how an SOC-OPF coupled with an

AC feasibility recovery is able to approach the solution of a

nonlinear solver for the exact AC-OPF problem. Afterwards,

we show how the convex CC-SOC-OPF coupled with the AC

feasibility recovery is able to identify even better solutions

in terms of operation cost than the CC-AC-OPF from [11].

We evaluate the constraint violation probabilities in all cases

empirically using Monte Carlo simulations of AC power

flow calculations based on 10’000 scenarios drawn from a

multivariate Gaussian distribution. All simulations related to

SOC-OPFs were carried out in Python using the Gurobi

Optimizer. The nonconvex CC-AC-OPF was implemented in

Matlab, where the OPF at each iteration was solved using

Matpower and its internal MIPS solver [35]. All AC power

flow analyses, i.e., the AC feasibility recovery and the Monte

Carlo simulations, were also carried out with Matpower.

A. Recovering the SOC-OPF Solution

We evaluate the SOC-OPF at the forecasted operating point

without considering wind power uncertainty and compare the

outcome to the standard AC-OPF solution. We assume a

convergence tolerance of 10−6 for the sequential conic pro-

cedure to approximate the angle constraint (5). The objective

function value of the relaxed problem is identical to the one

obtained with the exact problem (37’692.03e), providing a

seemingly tight relaxation with zero relaxation gap. However,

when evaluating the full AC power flow equations at the

operating point identified by the SOC-OPF, we observe a

mismatch of active and reactive power injections at nodes 37

and 38, which despite being fairly small (i.e., 0.06 MW and

0.98 Mvar) indicate that the operating point is not AC feasible.

The infeasibility is also reflected in the SOC constraint of line

50 connecting nodes 37 and 38, which is the only one that

fails to maintain the equality constraint (4) at the SOC-OPF
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TABLE I
RESULTS OF THE MONTE CARLO SIMULATIONS: COMPARISON OF

MAXIMUM VIOLATION PROBABILITIES BETWEEN AC-OPF, SOC-OPF*,
CC-SOC-OPF* AND CC-AC-OPF. THE RESULTS OF THE CC-SOC-OPF*

INCLUDE THE ONES OBTAINED WITHOUT β AND WITH THE FINAL

OPTIMAL VALUES FOR β .

AC-OPF SOC-OPF* CC-AC-OPF CC-SOC-OPF*
β = ∅ β 6= ∅

Generator active power limits
48.74% 48.74% 5.00% 4.96% 4.96%

Bus voltage limits
43.86% 56.89% 3.26% 1.30% 0.25%

Apparent power line flow limits
50.22% 50.12% 4.07% 7.72% 5.00%

Joint violation probability
100% 100% 14.85% 17.35% 15.60%

* The Monte Carlo simulations were carried out with the recovered SOC solution.

solution. This also highlights the inadequacy of defining the

relaxation gap of OPF relaxations solely based on differences

in objective function values. The OPF objective function only

considers costs on active power generation and thus, neglects

the fact that one P solution might be associated with numerous

{Q,V, θ} solutions, not all of which might be feasible.

Therefore, we propose to use the SOC-OPF solution as a

warm start to an AC power flow analysis in order to recover the

feasible AC power flow solution. However, given that power

flow calculations do not consider any variable limits, we need

to enforce generator reactive power limits, slack bus active

power limits (by e.g. changing the slack bus if necessary), and

check for voltage and branch flow limits. The final power flow

solution results in a dispatch with slightly lower generation

cost (37’691.97e).

The results of the Monte Carlo simulations are listed in

Table I showing the maximum violation probabilities for

generator active power, bus voltage, and apparent branch

flow limits. Table I also shows the joint violation probability,

which represents the probability of at least one constraint

being violated (i.e., the number of samples with at least one

constraint violation out of the 10’000 tested). A joint violation

probability of 100% for the standard AC-OPF and SOC-OPF

indicates that neither OPF algorithm results in an operating

point, which is able to maintain feasibility for any other wind

power realization if uncertainty in wind power infeed is not

explicitly accounted for. The maximum violation probability

of single constraints in that case lies around 50%.

B. Critical Line Screening

The critical line screening shows that line 100, which is

already congested at y0, violates its branch flow limits in both

directions of the line. Furthermore, the limits of line 37, which

is not congested at y0, are also estimated to be violated in the

positive flow direction (i.e., from node 8 to node 30). Thus,

we include three quadratic chance constraints: two for line 100

defining both flow directions and one for line 37 defining only

the positive flow direction. The weighting factors are denoted

with β↔
100 and β→

37 with the arrows indicating the direction of

the constrained flow.

C. Chance-constrained SOC-OPF

We first determine the optimal parameters β for the CC-

SOC-OPF and then compare it to the CC-AC-OPF algorithm

proposed in [11]. We assume an acceptable violation prob-

ability ǫ of 5% for all chance constraints. The convergence

tolerance ρ of the uncertainty margins for the iterative CC-

SOC-OPF and CC-AC-OPF is set to 10−5. Both algorithms

converge after 4 iterations demonstrating the suitability of

the iterative solution algorithm for both OPFs. However, the

algorithm is more robust in case of the SOC-OPF due to the

convexity of the problem solved at each iteration step, which

provides convergence guarantees [36].

1) Quadratic chance constraints without weighting factors

β = ∅: First, we analyze the solution without considering the

weighting factors β↔
100 and β→

37 , i.e., we enforce the two sep-

arate absolute value constraints (25) – (26) for each quadratic

chance constraint with the usual confidence level (1− ǫ). The

results are listed in Table I. It can be observed that the chance

constraints for active power generation and voltage magnitudes

are satisfied. However, the maximum violation probability

of the apparent branch flow limits exceeds the allowable

threshold of 5% and indicate that the recovered solution is not

located within the CR. Specifically, this violation is caused by

the flow in the positive flow direction on line 37 and confirms

that the union of the two separate constraints (25) and (26)

only holds with 1− 2ǫ as described in Section III-B4. In case

of line 100, the level of conservatism for enforcing the two

separate constraints is already sufficient, such that the violation

probabilities are reduced to 4.47% and 4.17% in the positive

and negative flow directions, respectively.

2) Quadratic chance constraints with weighting factors

β = {β→
37 , β

↔
100}: In order to evaluate the impact of different

values of the weighting factors on the CC-SOC-OPF, we

perform a sensitivity analysis varying β↔
100 uniformly in both

flow directions from 0.1 to 0.9 in 0.1 increments and add

0.01 and 0.99 as the approximate endpoints of the interval

β ∈ (0, 1) (i.e., in total 11 samples). As line 37 has proven

to be more critical, we use a finer sampling of β→
37 between

0.02 and 0.98 in 0.02 increments (i.e., 49 samples). Hence, we

perform the sensitivity analysis based on 539 simulations of

the CC-SOC-OPF with a subsequent AC feasibility recovery.

The performance of the resulting 539 operating points when

subjected to wind infeed variations is evaluated through Monte

Carlo simulations based on 2’000 samples drawn from a

Gaussian distribution. The results are visualized in Fig. 3.

The top plot shows the maximum violation probability of the

apparent branch flow constraints, which in all 539 cases is

due to the flow on line 37. It can be seen that lower values of

β→
37 and β↔

100 increase the level of conservatism and reduce the

violation probability. β→
37 needs to be lower than approximately

0.6 to keep the violation probability within acceptable levels

(i.e. < 5%). We can also observe that for β→
37 > 0.4, variations

in β↔
100 do not significantly influence the maximum violation

probability. The middle and bottom plots depict the changes

in generation cost of the CC-SOC-OPF zCC−SOC and the

recovered solution zrCC−SOC , respectively. The behavior of

the cost development in both cases is similar and leads to
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Fig. 3. Maximum violation probability of apparent branch flows ǫmax

S
,

generation cost of the CC-SOC-OPF (zCC-SOC) and the recovered CC-SOC-
OPF solution (zrCC-SOC) as functions of β→

37
and β↔

100
. The pink box indicates

the region of operating points, which are located inside the CR and are cheaper
than the benchmark CC-AC-OPF solution. All operating points left of the
boundary are located within the CR.

an increase in cost with lower weights. Somewhat counter-

intuitive though, the cost of the recovered AC feasible solu-

tion zrCC−SOC is lower than the cost of the CC-SOC-OPF

zCC−SOC . This is a consequence of the approximation of

the chance constraints in order to make them tractable. As

shown in the illustration of “cut 2” in Fig. 2, the linear cuts

lead to some parts of the AC feasible space being cut off and

not represented in the CC-SOC-OPF. Our feasibility recovery

procedure however, not constrained by those linear cuts, is able

to determine solutions inside the confidence region, which can

have lower costs.

We use a finer sampling of β→
37 between 0.5 and 0.6 and

evaluate the resulting operating points with 10’000 Monte

Carlo simulations to determine its optimal value, which com-

plies with the maximum violation probability but does not lead

to unnecessarily high levels of conservatism and cost. We do

not assume any weights for the chance constraints associated

with line 100, as they are already met when enforced with the

usual confidence level. Fig. 4 depicts the change in violation

probabilities and cost for the finer sampling. A value of 0.555

for β→
37 has proven to just meet the maximum allowable 5%

violation probability while still leading to lower operation cost

at its recovered solution than the CC-AC-OPF. Note that the

sensitivity analysis has only been performed for the CC-SOC-

OPF, as the quadratic chance constraints can only be applied to

convex quadratic constraints and are not used within the CC-

AC-OPF, where the apparent power flow limits are nonconvex.

In the CC-AC-OPF linear sensitivities of the apparent branch

flows are used to compute uncertainty margins for the apparent

branch flow limits. Their derivation can be found in [37].

3) Comparison with CC-AC-OPF: The CC-SOC-OPF cou-

pled with the AC feasibility recovery results in an operating

point with lower cost as shown in Table II and is thus,

less conservative. This is also reflected in less conservative

violation probabilities shown in Table I. The weights β on the
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Fig. 4. Operation cost and maximum violation probability of apparent branch
flow ǫmax

S
and active power generation ǫmax

P
limits for different values of

β→

37
along line 37 and a constant confidence level (1 − ǫ) for the quadratic

chance constraints associated with line 100.
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Fig. 5. Joint violation probability for different values of β→

37
and β↔

100
.

quadratic chance constraints provide a significant additional

degree of freedom in the CC-SOC-OPF, which can be used

to, e.g., reduce the joint violation probability of the original

OPF and increase its robustness without the need to explicitly

account for joint chance constraints and use computationally

demanding sample-based scenario approaches to reformulate

them. In this case study, joint violation probabilities of less

than 10% can be achieved as depicted in Fig. 5.

The pink box in Fig. 3 highlights the recovered solutions

of the CC-SOC-OPF, which are located within the CR and

have lower generation cost zrCC−SOC than the CC-AC-OPF

zCC−AC . Apart from the operating points depicted in the

pink box, 10 other points identified during the finer sampling

of β→
37 (i.e., 0.5 ≤ β→

37 ≤ 0.6) also fulfill the original

chance constraints and outperform the CC-AC-OPF in terms

TABLE II
COMPARISON OF CC-AC-OPF AND CC-SOC-OPF*.

CC-AC-OPF CC-SOC-OPF*

Cost 38’318.35 e 38’311.12 e
Iterations 4 4
Time 4.42 s 10.60 s

* Refers to the recovered SOC solution.
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of operation cost. Thus, apart from the least-cost solution

listed in Table I and II, we find 18 other operating points,

which are AC feasible, fulfill the original chance constraints

and are still cheaper than the CC-AC-OPF solution of the

nonlinear solver. This highlights (i) the potential of convex

relaxations to determine the boundaries of the CR and the

true optimal of nonconvex problems, and (ii) the importance of

appropriate back-mapping procedures to translate the solution

of the convex approximation back to the original domain.

Despite the required tuning, β provides the flexibility to vary

the shape of the convex approximation and direct the solution

from a true lower bound back into the original feasible space

and the CR.

The need for computationally more efficient convex re-

laxations of (chance-constrained) AC-OPFs was identified in

[4], where we developed a SDP relaxation of the chance-

constrained AC-OPF based on rectangular and Gaussian un-

certainty sets. Comparable instances to our case study may

take up to 10 minutes to solve with the SDP relaxation

(although the computational improvements proposed in [38]

can reduce this time) whereas our proposed algorithm con-

verges within 10.60 s. The solution time of the CC-SOC-

OPF is mainly determined by the inner iteration loop for

approximating the angle constraint (5), which accounts for

84% of the total solution time. More efficient approximations

of the angle constraint, which can be implemented in an one-

shot optimization, could significantly improve the performance

of the proposed method. The CC-AC-OPF converges even

faster after only 4.42 s, which again demonstrates its efficiency,

when it converges. However, the discussion in Section III-D

highlighted the need for more robust solution techniques not

only for the CC-AC-OPF but also for the standard AC-OPF

[17], which needs to be considered when comparing the two

solution approaches. Another example is the work in [18],

where the authors compared the performance of different

solution techniques for the nonlinear AC-OPF. They demon-

strated how the convergence behavior and solution quality in

terms of costs for both small and large networks was highly

sensitive to (i) the initialization of the various tested solvers

(i.e., warm start) and (ii) the OPF problem formulation (i.e.,

rectangular, polar etc.). As a consequence, the authors strongly

recommended not to rely on one solution technique only, but

to employ a multistart strategy in real-life networks, where

several solution techniques with different solver intializations

are run in parallel to increase the robustness of the AC-

OPF solution. In view of this, a multistart strategy could

also be employed in case of the chance-constrained AC-OPF,

where various instances of both the CC-SOC-OPF and the

CC-AC-OPF are run in parallel to ensure robustness for the

convergence and the lowest system cost.

Still, the combination of the iterative algorithm and convex

programming makes the method computationally very effi-

cient, robust, and suitable for large-scale systems as demon-

strated in our case study. Most current industrial tools integrate

OPF calculations in iterative frameworks along with other

functionalities (e.g., security assessments) [1]. Consequently,

the iterative solution algorithm with the decoupled uncer-

tainty assessment is well aligned with this framework and

has significant potential for application in already existing

calculation procedures [11]. However, it must be noted that in

case of infeasibility, our approach relies on the availability of

a robust AC power flow tool to ensure a reliable AC feasibility

recovery. AC power flow algorithms are usually based on an

iterative numerical technique for solving a set of nonlinear

equations and their convergence depends on an appropriate

initialization. Nevertheless, we expect the solution of the CC-

SOC-OPF to be a good initial guess, while the AC power flow

algorithms are at a mature development stage. As a result,

convergence issues, if any, are expected to be rare.

V. CONCLUSION

This paper deals with the impact of linear approximations

for the unknown nonconvex confidence region of chance-

constrained AC-OPF problems.

In that, we introduce the first formulation of a chance-

constrained second-order cone OPF. Our approach is superior

to existing approaches, as it defines a convex problem and thus,

provides convergence guarantees, while it is computationally

more efficient than other convex relaxation approaches. Cou-

pled with an AC feasibility recovery, we show that it can

determine better solutions than chance-constrained nonconvex

AC-OPF formulations and is guaranteed to provide a solution

even in cases, where nonlinear solvers already fail for the

standard deterministic AC-OPF [17].

To the best of our knowledge, this is the first paper that per-

forms a rigorous analysis of the AC feasibility recovery for ro-

bust SOC-OPF formulations. Due to the SOC relaxation, a CC-

SOC-OPF might determine AC infeasible operating points,

while the linear reformulations of the chance constraints result

in solutions, which either lie outside the confidence region

or are too conservative. Inaccurate approximations of the

confidence region is an issue for all chance-constrained AC-

OPF formulations. In this paper, we introduce an approxima-

tion of the quadratic apparent power flow chance constraints

with linear chance constraints using results proposed in [24].

Through that, we introduce new parameters able to reshape

the approximation of the confidence region, offering a high

degree of flexibility.

VI. FUTURE WORK

Our paper shows that further work on better and com-

putationally more efficient approximations for the chance-

constrained AC-OPF problem is necessary.

The major challenge of the CC-SOC-OPF lies in the op-

timal selection of β for approximating the quadratic chance

constraints. While we have proposed an ex ante screening

to reduce the effort associated with the parameter tuning,

more systematic procedures are necessary to ensure an optimal

setting for realistic systems. One potential solution approach

could be derived from the recent work in [39], which defines

a framework for optimizing the Bonferroni approximation,

where the violation probabilities, which are aligned with β in

our setting, are optimization variables and not known a priori.

Other possible directions for extensions include distribu-

tionally robust formulations for the CC-SOC-OPF and the
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consideration of integer variables and large uncertainty ranges

in the proposed framework.

Furthermore, we are planning to use a combination of

data-driven methods from our work in [40], [41], convex

relaxations, and the iterative solution framework to develop

a scalable approach to an integrated security- and chance-

constrained OPF. In [40], [41] we propose a novel approach

which efficiently incorporates N-1 and stability considerations

in an optimization framework and is suitable for integration

in the proposed CC-SOC-OPF framework.

APPENDIX

A. Derivation of the Linear Sensitivities

The linear sensitivity factors are calculated at each iteration

of the CC-SOC-OPF based on a linearization around the itera-

tion’s current optimal operating point y∗. The changes in nodal

active and reactive power injections can be expressed in terms

of the wind deviation ξ, the generator participation factors γ,

the unknown nonlinear changes in active and reactive power

(i.e., ∆PU and ∆Q) and the ratio λ between the reactive and

active power injection of wind farms. Thus, the left-hand side

of (21) can also be expressed as follows:





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(28)

where Z, 1 and I denote (|N |×|W|) or (|L|×|W|) zero, all-

ones and identity matrices, respectively. 0 is a vector of zeros.

The system of equations (21) can finally be reformulated to:








∆PU

∆Q

0

0









+
[

Ψ
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ξ =
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∣

∣
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∆θ









. (29)

∆PU refers to the unknown changes in nonlinear active

power losses, which are not accounted for by the generator

participation factors. Following the assumptions outlined in

Section III-B2, the nonzero elements of ∆PU and ∆Q are

summarized in ∆g := [∆PU
ref ∆Qref (∆QPV)

T

]T. Simi-

larly, ∆ŷ denotes the nonzero changes in the right-hand side

of (29) (i.e., ∆ŷ := [∆uT
PQ ∆cT ∆sT ∆θTPV ∆θTPQ]T).

Rearranging (29) by grouping the nonzero and zero elements

separately, i.e.,
[

∆g

0

]

=

[

JSOC,I
x JSOC,II

x

JSOC,III
x JSOC,IV

x

] [

0

∆ŷ

]

−

[

ΨI
x

ΨII
x

]

ξ, (30)

allows us to derive linear relationships between the changes

in the variables of interest and the wind deviation ξ,

∆ŷ =
(

JSOC,IV
x

)−1

ΨII
x ξ = Υŷξ, (31)

∆g =
(

JSOC,II
x (JSOC,IV

x )−1ΨII
x −ΨI

x

)

ξ = Υgξ. (32)

Subscript x in JSOC
x and Ψx denotes that the columns and/or

rows of the original matrices have been rearranged according

to the grouping of zero and nonzero elements. The linear

sensitivity factors Υ are then used to calculate the uncertainty

margins Ω.
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