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Abstract

In this paper we develop convex relaxations of chance constrained optimization problems in order

to obtain lower bounds on the optimal value. Unlike existing statistical lower bounding techniques, our

approach is designed to provide deterministic lower bounds. We show that a version of the proposed

scheme leads to a tractable convex relaxation when the chance constraint function is affine with respect

to the underlying random vector and the random vector has independent components. We also propose

an iterative improvement scheme for refining the bounds.

1 Introduction

We consider chance constrained optimization problems of the form

min{f(x) : Pr[g(x, ξ) ≥ 0] ≥ 1− ǫ, x ∈ S}, (1)

where x ∈ R
n is a vector of decision variables, ξ is a random vector with (given) probability distribution

P and support Ξ ⊆ R
d, the function g : Rn × Ξ 7→ R defines a random constraint on x, Pr[A] denotes

the probability of the event A, the scalar ǫ ∈ (0, 1) is a pre-specified allowed probability of violation of the
random constraint defined by g, S ⊆ R

n is a nonempty set defined by some deterministic side constraints on
x, and f : Rn 7→ R is the objective function. We assume that the function f and the set S are convex, and
the function g is concave in x for all ξ ∈ Ξ. Of particular interest are chance constrained linear programs
where the function f is linear, the set S is defined by a finite number of linear inequalities, and the function
g is affine in x. The reader is referred to [8, 9] for extensive reviews on the theory and applications of chance
constrained optimization problems.

The two main difficulties in solving chance constrained optimization problems are: (i) checking feasibil-
ity of a given solution is, in general, impossible, and (ii) since the feasible region is typically non-convex,
optimization poses severe challenges. As such, an important line of research has been to develop an inner
approximation (restriction) of the chance constraint whose solutions are guaranteed (in some well defined
sense) to satisfy the chance constraint. An additional requirement is that the approximation should be rela-
tively easily solvable. One class of developments along this direction focuses on constructing a deterministic
convex programming restriction to the chance constraint that can be optimized efficiently using standard
methods [5, 7]. Another class of approaches solve deterministic optimization problems, built from samples
of the random vector, that are guaranteed to produce feasible solutions with high probability [2, 4]. Various
meta-heuristic methods have also been suggested for obtaining feasible solutions to chance constrained prob-
lems [1, 3]. All of these approaches are mainly designed to produce feasible solutions without any optimality
guarantees. A good lower bound on the true optimal value is needed to provide an optimality certificate for
the produced feasible solutions. There has been relatively less work in lower bounding chance constrained
optimization problems. A commonly used approach is to use order statistics of optimal values of sampled
approximations of the chance constrained problem to obtain a statistical lower bound estimate [4, 5, 6]. Such
approaches require the solution of a large number of (sampled) optimization problems in order to produce
a statistically valid lower bound with reasonable confidence. In this paper we propose a deterministic lower
bounding technique by constructing a convex relaxation of the chance constrained problem. The approach is
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similar to the construction used in [5, 7] to develop a convex restriction of the problem. Following [5, 7] we
show that a version of the proposed scheme leads to a tractable convex relaxation when the random vector
ξ has independent components and the constraint function g is affine in ξ.

Remark: The chance constrained optimization problem (1) has a single individual chance constraint. The de-
velopments in this paper extend immediately to multiple individual chance constraints of the form Pr[gi(x, ξ) ≥
0] ≥ 1 − ǫi for i = 1, . . . ,m. The case of joint chance constraints, i.e. constraints of the form Pr[gi(x, ξ) ≥
0 ∀ i = 1, . . . ,m] ≥ 1 − ǫ, is more involved. Of course such a constraint can be represented as a single
individual chance constraint Pr[h(x, ξ) := mini{gi(x, ξ)} ≥ 0] ≥ 1 − ǫ, however such a transformation may
not preserve desirable properties such as affine-ness of the constraint function. Since we are interested in
relaxations, we can relax the joint chance constraint into m individual chance constraints by noting that

Pr[gi(x, ξ) ≥ 0 ∀ i = 1, . . . ,m] ≤ min
i=1,...,m

Pr[gi(x, ξ) ≥ 0].

We can then apply the developments of this paper to each of the individual m chance constraints separately.

2 The Relaxation Scheme

Let us denote the set of solutions to the chance constrained problem (1) as

X = {x ∈ S ⊆ R
n : Pr[g(x, ξ) ≥ 0] ≥ 1− ǫ}.

In this section we propose a scheme to construct a convex relaxation of X. We make the following key
assumption throughout:

(A0) For each ξ ∈ Ξ, there exists L(ξ) > 0 such that g(x, ξ) ≥ −L(ξ) for all x ∈ S.

We can now express X equivalently as

X = {x ∈ S : Pr[h(x, ξ) ≥ 1] ≥ 1− ǫ}, (2)

where
h(x, ξ) := g(x, ξ)/L(ξ) + 1.

Note that by (A0), h is nonnegative for all ξ ∈ Ξ and for all x of interest. We also make the necessary
technical assumptions for the random function h to be measurable. We will work with the description (2) of
X for the remainder of this paper.

Let Φ be a class of univariate functions φ : R 7→ R such that

(a) φ(t) ≥ 0 for all t ≥ 0,

(b) φ(t) is nondecreasing everywhere and strictly increasing on [0, 1], and

(c) φ(t) is concave.

Proposition 1 For any φ ∈ Φ, the set

Xφ := {x ∈ S : E[φ(h(x, ξ))] ≥ (1− ǫ)φ(1)} (3)

is a convex relaxation of X.

Proof: By property (b) and (c) of φ and the concavity of g, and hence h, the composite function φ(h(x, ξ))
is concave in x for all ξ ∈ Ξ. Thus E[φ(h(x, ξ))] is concave in x and so Xφ is a convex set. Consider any
feasible solution x ∈ X. By property (b), for any ξ ∈ Ξ, h(x, ξ) ≥ 1 if and only if φ(h(x, ξ)) ≥ φ(1).
Thus Pr[h(x, ξ) ≥ 1] = Pr[φ(h(x, ξ)) ≥ φ(1)] ≥ 1 − ǫ. Note that (a) and (b) imply φ(1) > 0. More-
over, φ(h(x, ξ)) ≥ 0 for all ξ. Thus we can apply Markov’s inequality on the nonnegative random variable
φ(h(x, ξ)) leading to E[φ(h(x, ξ))]/φ(1) ≥ Pr[φ(h(x, ξ)) ≥ φ(1)] ≥ 1− ǫ. Thus Xφ ⊇ X. ✷

Let us now address the choice of the function φ. Clearly the identity φ(t) = t works. In this case
Xφ = {x ∈ S : E[h(x, ξ)] ≥ (1− ǫ)}, however such a relaxation may be quite weak. For any φ1, φ2 ∈ Φ with
φ1(1) = φ2(1), if φ1(t) ≤ φ2(t) for all t ≥ 0 then Xφ1

⊆ Xφ2
. So we would like to use a function in Φ that

is, when normalized with respect to its value at 1, smallest over the non-negatives.
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Proposition 2 Given any φ ∈ Φ, let φ◦(t) := [φ(1) − φ(0)]min{1, t} + φ(0). Then φ◦ ∈ Φ, φ◦(1) = φ(1)
and φ◦(t) ≤ φ(t) ∀ t ≥ 0.

Proof: Note that by (a) and (b), 0 ≤ φ(0) < φ(1). So clearly φ◦ ∈ Φ. If t > 1 then φ◦(t) = φ(1)
and φ(t) ≥ φ(1), and so the claim holds. On the other hand, if t ∈ [0, 1], by concavity (c), φ(t) ≥
tφ(1) + (1− t)φ(0) = [φ(1)− φ(0)]t+ φ(0) = φ◦(t). ✷

Thus, up to translation and scaling, the function

φ∗(t) = min{1, t} (4)

is the smallest function over the non-negatives in Φ, and so Xφ∗ ⊆ Xφ for all φ ∈ Φ with φ(1) = 1.
Consider now the discrete distribution setting where the random vector ξ takes finitely many values

ξ1, . . . , ξk with Pr[ξ = ξi] = pi for all i = 1, . . . , k. Then the relaxation Xφ∗ corresponding to φ∗(t) is given
by vectors x ∈ S satisfying:

∑k

i=1 piyi ≥ (1− ǫ)
0 ≤ yi ≤ 1 ∀ i = 1, . . . , k
L(ξi)yi ≤ g(x, ξi) + L(ξi) ∀ i = 1, . . . , k,

(5)

where we have introduced the nonnegative variable yi to model min{1, g(x, ξi)/L(ξi)+1} for all i = 1, . . . , k.
Note that (5) is simply the continuous relaxation of the following standard mixed integer programming
formulation of the chance constraint (2) in the discrete distribution setting:

∑k

i=1 piyi ≥ (1− ǫ)
yi ∈ {0, 1} ∀ i = 1, . . . , k
L(ξi)yi ≤ g(x, ξi) + L(ξi) ∀ i = 1, . . . , k.

(6)

The construction above shows that, in the discrete distribution setting with a large number of mass points
k, the relaxation Xφ∗ is a large-scale optimization problem which may be time consuming to process. Even
in the simple setting when ξ has independent components and g is affine in ξ, due to the non-smooth nature
of φ∗, the relaxation Xφ∗ may not be easy to compute. In the following section we propose an alternative
function from the family Φ that leads to more tractable convex programming formulations in some settings.

3 Bernstein Relaxation

In this section we consider relaxations of the form (3) developed in Proposition 1 corresponding to the
function

φβ(t) = 1− exp(−t). (7)

Following [5] and [7], where the authors used a similar exponential function to construct efficiently com-
putable convex restrictions to chance constraints, we refer to the convex relaxations corresponding to φβ as
“Bernstein” relaxations in appreciation of the connections to the work of S. N. Bernstein in classical large
deviation theory.

We first note that it is easily verified that φβ satisfies conditions (a)-(c) and so φβ ∈ Φ. Thus Xφβ is a
valid convex relaxation, which, after simple algebraic manipulations, is given by

Xφβ = {x ∈ S : E[exp(−g(x, ξ)/L(ξ))] ≤ η(ǫ)}, (8)

where η(ǫ) := (1− ǫ) + exp(1)ǫ.
In the discrete distribution setting where the random vector ξ takes finitely many values ξ1, . . . , ξk with

Pr[ξ = ξi] = pi for all i = 1, . . . , k, the relaxation Xφβ is given by the single constraint

ψ(x) :=
k∑

i=1

pk exp(−g(x, ξ
i)/L(ξi)) ≤ η(ǫ). (9)

Note that ψ is finite-valued and convex. If g(x, ξi) is differentiable in x for all i, then ψ is also differentiable.
Optimizing over the single convex constraint (9) can be significantly faster than solving the non-smooth
relaxation given by (5), particularly when k is large. This is illustrated next.
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Numerical Illustration

We compare the bounds and computing times corresponding to Xφ∗ and Xφβ for the following chance
constrained linear program:

min{

n∑

j=1

xj : Pr[

n∑

j=1

ξjxj ≥ 1] ≥ 1− ǫ, xj ≥ ℓj j = 1, . . . , n}, (10)

where ξ is a non-negative random vector with a discrete distribution with k realizations ξ1, . . . , ξk and
Pr[ξ = ξi] = pi for all i = 1, . . . , k, and ℓj > 0 for all j = 1, . . . , n. Note that, here g(x, ξ) =

∑n

j=1 ξjxj − 1

and L(ξi) = 1 for all i = 1, . . . , k correspond to valid lower bounds since ξ and x are nonnegative. Thus
relaxation Xφ∗ of (10) constructed according to (5) is the linear program,

min
∑n

j=1 xj

s.t.
∑k

i=1 piyi ≥ (1− ǫ)
yi ≤

∑n

j=1 ξ
i
jxj ∀ i = 1, . . . , k,

0 ≤ yi ≤ 1 ∀ i = 1, . . . , k
xj ≥ ℓj ∀ j = 1, . . . , n,

(11)

and the Bernstien relaxation Xφβ given by (8) is the convex nonlinear program,

min
∑n

j=1 xj

s.t.
∑k

i=1 pi exp(−
∑

j ξ
i
jxj + 1) ≤ η(ǫ)

xj ≥ ℓj ∀ j = 1, . . . , n.

(12)

We considered instances corresponding to various values of n and k. We generated ξij for j = 1, . . . , n and

i = 1, . . . , k from U(0.3,1.7), and set pi = 1/k for all i = 1, . . . , k, ǫ = 0.05, and ℓj = 10−4 for all j = 1, . . . , n.
The computations were carried out using GAMS with CONOPT 3 as the nonlinear programming solver and
CPLEX 12.2 as the linear programming solver. Table 1 presents the results. As expected, the bounds from
Xφβ are weaker but are typically cheaper to compute than those from Xφ∗ , especially when the cardinality
of the distribution, i.e. k, is high.

Xφ∗ Xφβ

n k Bound Time Bound Time
100 1000 0.943 1.38 0.909 2.12
100 2000 0.944 5.13 0.911 1.87
100 5000 0.947 47.41 0.914 4.79
200 1000 0.939 2.21 0.907 2.39
200 2000 0.943 12.02 0.910 3.78
200 5000 0.947 123.46 0.916 9.42
500 1000 0.940 3.99 0.908 5.18
500 2000 0.943 34.43 0.909 8.26
500 5000 0.946 299.31 0.913 29.28

Table 1: Comparison of bounds and time for discrete distribution

4 An Efficiently Computable Setting

We now describe a setting where the Bernstein relaxation (8) leads to an efficiently computable convex
program even when the distribution of ξ is continuous. The setting and the subsequent construction are
identical to those in [5] and [7]. We make the following assumptions.

(A1) The parameter L(ξ) assumed in (A0) is deterministic, i.e., L(ξ) = L > 0 for all ξ ∈ Ξ.
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(A2) The random vector ξ has independently distributed components ξ1, . . . , ξd. We denote the support of
ξj by Ξj , so that Ξ = Ξ1 × · · · × Ξd.

(A3) For j = 1, . . . , d, the moment generating function of ξj , denoted byMj(t) = E[exp(tξj)], is finite valued
for all t ∈ R and is efficiently computable. The logarithmic moment generating function of ξj is denoted
by Λj(t) := logMj(t).

(A4) The constraint function g(x, ξ) is affine in ξ, i.e.,

g(x, ξ) = g0(x) +

d∑

j=1

ξjgj(x),

where gj(x) is real valued and concave for all j = 0, 1, . . . , d, and for each j such that Ξj 6⊂ R+ the
function gj(x) is affine.

Proposition 3 Under assumptions (A1)-(A4), Xφβ is a convex set defined by an efficiently computable
constraint of the form

Xφβ = {x ∈ S : −g0(x)/L+

d∑

j=1

Λj(−gj(x)/L) ≤ log η(ǫ)}. (13)

Proof: Under assumptions (A1)-(A4),

E[exp(−g(x, ξ)/L(ξ))] = E[exp(−g0(x)/L)×
∏d

j=1 exp(−ξjgj(x)/L)]

= exp(−g0(x)/L)×
∏d

j=1Mj(−gj(x)/L).

Using the above expression for the right-hand-side of the inequality describing (8) and taking logs on both
sides we arrive at the representation (13). Since −gj(·) and Λj(·) are convex for all j = 0, 1, . . . , d and Λj

is monotone nondecreasing for all j with Ξj ⊂ R+, the left hand side of the inequality defining (13) is a
convex function of x, and hence Xφβ is a convex set. Moreover, the derived constraint function is efficiently
computable due to (A3). ✷

Numerical Illustration

We revisit the chance constrained linear program (10) where the constraint coefficient ξj for j = 1, . . . , n
are now assumed to be independent and uniformly distributed with nonnegative support. Let [aj , bj ], with
0 ≤ aj ≤ bj , be the support of ξj , then the moment generating function of ξj is

Mj(t) =

{
exp(tbj)−exp(taj)

t(bj−aj)
for t 6= 0

1 for t = 0.

Taking g(x, ξ) =
∑n

j=1 ξjxj − 1 with g0(x) = −1 and gj(x) = xj for j = 1, . . . , n; and L = 1, we note
that problem (10) now satisfies assumptions (A1)-(A4). Using Proposition 3, the Bernstein relaxation of the
chance constrained linear program (10) is the convex nonlinear program:

min
∑n

j=1 xj

s.t.
∑n

j=1 log
(

exp(−xjaj)−exp(−xjbj)
xj(bj−aj)

)
≤ log η(ǫ)− 1

xj ≥ ℓj ∀ j = 1, . . . , n.

(14)

We shall compare the deterministic bounds obtained from the above Bernstein relaxation to the following
statistical bounding technique prescribed in [5]. Choose positive integers L,M,N and let {ξ1i, ξ2i, . . . , ξNi}
for i = 1, . . . ,M , be M independent samples, each of size N , of the underlying random vector ξ. For each
i = 1, . . . ,M , solve the linear program:

min
∑n

j=1 xj
s.t.

∑n

j=1 ξ
ik
j xj − 1 ≥ 0 ∀ k = 1, . . . , N

xj ≥ ℓj ∀ j = 1, . . . , n,

(15)
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and let vi be the corresponding optimal value. Let v(1) ≤ v(2) ≤ · · · ≤ v(M) be the nondecreasingly sorted
values of the {vi}Mi=1. Then, if

L−1∑

r=0

(
M
r

)
(1− ǫ)Nr[1− (1− ǫ)N ]M−r ≤ α (16)

for some α ∈ (0, 1), then, with probability at least 1 − α, the quantity v(L) is a valid lower bound on
the optimal value of (10). Note that the approach requires solving M linear programs (15) each with N
constraints. For a given L and α, higher value of N means higher values of M . On the other hand, if N is
small, the obtained bounds are typically weak.

Table 2 compares the bounds and times for the Bernstein relaxation (14) and the statistical bounding
procedure of [5] described above for the chance constrained linear program (10) where ξj ∼ U(0.3, 1.7)
independently for all j = 1, . . . , n. That is, aj = 0.3 and bj = 1.7 for all j = 1, . . . , n in (14). Recall that
ℓj = 10−4 for all j = 1, . . . , n and ǫ = 0.05. We considered problems with n = 100, 200 and 500 variables.
The Bernstein bounds are nearly identical across the problem sizes due to the identical distribution of the
constraint coefficients. For the statistical bounding procedure, we assumed α = 0.001 and L = 1 and then
computed the required M for different values of N according to (16). Thus the statistical lower bounds in
columns 3, 5 and 7 (except those in the last row) of Table 2 correspond to a confidence level of at least
0.999. We observe that the quality of the statistical bounds is poor in comparison to the deterministic
Bernstein bound unless N is large and the problem size is small. We also observe that the statistical
bounding technique is significantly more expensive than the Bernstein bounding procedure, particularly for
large problems. Arguably, we did not make any attempt to warm-start the M linear programs (15) which
perhaps could cut down the computing time. However, for large N , even a single solve of the linear program
(15) is more expensive than that of the single-constrained convex nonlinear program (14).

n = 100 n = 200 n = 500
N M Bound Time Bound Time Bound Time
10 8 0.815 2.51 0.781 2.94 0.758 3.09
20 16 0.870 5.66 0.858 6.20 0.832 6.97
30 29 0.910 10.66 0.887 12.28 0.871 18.08
40 51 0.916 21.73 0.905 26.10 0.885 39.63
50 87 0.944 46.54 0.924 61.82 0.896 109.33
Xφβ 0.918 0.36 0.918 0.42 0.918 0.45

Table 2: Comparison of bounds and time for continuous distribution

5 An Improvement Procedure

The relaxation scheme outlined previously depends on the quality of the lower bound on g(x, ξ) assumed in
Assumptions (A0) and (A1). In this section we discuss how we can improve these bounds, and hence the
quality of the relaxation. We first consider the deterministic lower bound case, i.e. Assumption (A1).

Proposition 4 Suppose for all x ∈ S and ξ ∈ Ξ, we have that g(x, ξ) ≥ −L2 ≥ −L1 for some 0 < L2 ≤ L1.
For t = 1, 2, let hi(x, ξ) := g(x, ξ)/Li+1 and Xi

φ := {x ∈ R
n : E[φ(hi(x, ξ))] ≥ (1− ǫ)φ(1)} for some φ ∈ Φ.

Then
X ⊆ X2

φ ⊆ X1
φ.

Proof: Since L1 and L2 correspond to valid lower bounds, it follows from Proposition 1 that X ⊆ Xi
φ for

i = 1, 2. Let α := L2/L1 and note that α ∈ (0, 1]. Then h1(x, ξ) = αh2(x, ξ) + (1− α) for any x and ξ. By
concavity of φ we have

φ(h1(x, ξ)) ≥ αφ(h2(x, ξ)) + (1− α)φ(1)

6



for any x and ξ. Taking expectations on both sides of the inequality, we have for any x,

E[φ(h1(x, ξ))] ≥ αE[φ(h2(x, ξ))] + (1− α)φ(1).

Consider x̂ ∈ X2
φ. Then E[φ(h2(x̂, ξ))] ≥ (1− ǫ)φ(1). Thus

E[φ(h1(x̂, ξ))] ≥ α(1− ǫ)φ(1) + (1− α)φ(1) = (1− αǫ)φ(1) ≥ (1− ǫ)φ(1),

where the last inequality follows from the fact that α ∈ (0, 1]. Thus x̂ ∈ X1
φ. ✷

Thus we get tighter valid relaxations with better lower bounds on g(x, ξ). The above result suggests the
following iterative improvement scheme.

Corollary 1 Assume (A1). Let L0 = L > 0, and set

Li+1 = −min
ξ∈Ξ

min
x∈Xi

φ

{g(x, ξ)} for i = 0, 1, 2, . . . , (17)

as long as Li+1 > 0, where Xi
φ := {x ∈ S : E[φ(hi(x, ξ))] ≥ (1− ǫ)φ(1)} and hi(x, ξ) := g(x, ξ)/Li+1. Then

X ⊆ . . . Xi+1
φ ⊆ Xi

φ ⊆ . . . X0
φ.

Proof: It is sufficient to show that for all i = 0, 1, 2, . . . , such that Li > 0, we have g(x, ξ) ≥ −Li+1 ≥ −Li,
since the result then follows from Proposition 4. We proceed by induction on i. Note that

−L1 = min
ξ∈Ξ

min
x∈X0

φ

{g(x, ξ)} ≥ −L0

by the fact that X0
φ ⊆ S and g(x, ξ) ≥ −L = −L0 for all x ∈ S and ξ ∈ Ξ. Suppose now that −Lτ ≥

−Lτ−1 ≥ · · · ≥ −L0. Then

−Lτ = min
ξ∈Ξ

min
x∈X

τ−1

φ

{g(x, ξ)} ≤ min
ξ∈Ξ

min
x∈Xτ

φ

{g(x, ξ)} = −Lτ+1,

where the inequality follows from Xτ
φ ⊆ Xτ−1

φ due to Proposition 4. ✷

The scheme outlined above requires solving an optimization problem of the form (17) in every iteration. In
general such a problem may be difficult. At the end of this section, we consider a class of chance consider
linear programs for which the optimization problem (17) is a tractable convex program.

We now consider the case of stochastic lower bounds on g(x, ξ), i.e. assumption (A0). Similar to the case
of (A1), we can now consider improving lower bounds L(ξ) correspond to each ξ ∈ Ξ. This is particularly
relevant in the case when Ξ has finite support.

Proposition 5 Suppose for all x ∈ S and ξ ∈ Ξ, we have that g(x, ξ) ≥ −L2(ξ) ≥ −L1(ξ) where 0 < L2(ξ) ≤
L1(ξ) for all ξ ∈ Ξ. For i = 1, 2, let hi(x, ξ) := g(x, ξ)/Li(ξ) + 1 and Xi

φ := {x ∈ R
n : E[φ(hi(x, ξ))] ≥

(1− ǫ)φ(1)} for some φ ∈ Φ. Suppose also that φ ∈ Φ satisfies φ(t) = φ(1) for all t ≥ 1. Then

X ⊆ X2
φ ⊆ X1

φ.

Proof: Since L1(ξ) and L2(ξ) correspond to valid lower bounds on g(x, ξ), it follows from Proposition 1 that
X ⊆ Xt

φ for t = 1, 2. Consider x̂ ∈ X2
φ, and let Ξ+ = {ξ ∈ Ξ : g(x̂, ξ) ≥ 0} and Ξ− = {ξ ∈ Ξ : g(x̂, ξ) < 0}.

Then h2(x̂, ξ) ≥ h1(x̂, ξ) ≥ 1 for all ξ ∈ Ξ+ and h2(x̂, ξ) ≤ h1(x̂, ξ) < 1 for all ξ ∈ Ξ−. Thus φ(h2(x̂, ξ)) =
φ(h1(x̂, ξ)) for all ξ ∈ Ξ+ and φ(h2(x̂, ξ)) ≤ φ(h1(x̂, ξ)) for all ξ ∈ Ξ−. It then follows that

E[φ(h1(x̂, ξ))] ≥ E[φ(h2(x̂, ξ))] ≥ (1− ǫ)φ(1),

and so x̂ ∈ X1
φ. ✷
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Realization Probability g(x̂, ξ) L1(ξ) L2(ξ) h1(x̂, ξ) h2(x̂, ξ)
ξa 0.9996 -0.5 1.0 -0.5 0.5 0.0
ξb 0.0004 1.0 0.002 0.0005 501.0 2001.0

Table 3: Counter example to improving stochastic lower bounds

Following is a counter example showing that the result of Proposition 5 is not guaranteed to hold in the
absence of the requirement φ(t) = φ(1) for all t ≥ 1. Suppose φ(t) = t. Table 3 presents the data
for the counter example. In this example, ξ has two possible realizations and x̂ is some fixed vector.
Suppose (1 − ǫ) = 0.8. Then E[φ(h2(x, ξ))] = E[h2(x, ξ)] = 0.8 ≥ (1 − ǫ)φ(1). Thus x̂ ∈ X2

φ. However

E[φ(h1(x, ξ))] = E[h1(x, ξ)] = 0.7001 < (1− ǫ)φ(1). Thus x̂ 6∈ X1
φ.

Corollary 2 Assume (A0) and φ(t) = φ(1) for all t ≥ 1. Let L0(ξ) = L(ξ) > 0 for all ξ ∈ Ξ, and, for all
ξ ∈ Ξ, set

Li+1(ξ) = − min
x∈Xi

φ

{g(x, ξ)} for i = 0, 1, 2, . . . , (18)

as long as Li+1(ξ) > 0, where Xi
φ := {x ∈ S : E[φ(hi(x, ξ))] ≥ (1− ǫ)φ(1)} and hi(x, ξ) := g(x, ξ)/Li(ξ)+1.

Then
X ⊆ . . . Xi+1

φ ⊆ Xi
φ ⊆ . . . X0

φ.

Proof: Analogous to the proof of Corollary 1 ✷

The above iterative improvement scheme for the case of stochastic bounds requires solving an optimization
problem (18) for each realization of ξ in every iteration, and can be computationally prohibitive.

Numerical Illustration

We revisit the chance constrained linear program (10) with independent coefficients ξj ∼ U(aj , bj) for
j = 1, . . . , n, considered in Section 4. Note that in this case, for any x ∈ S,

min
ξ∈Ξ

{g(x, ξ)} = min
ξ∈Ξ

{

n∑

j=1

ξjxj − 1} =

n∑

j=1

ajxj − 1.

Thus we can apply the iterative improvement scheme outlined in Corollary 1 to improve the Bernstein
relaxation by solving the convex optimization problem

Li+1 = −min{
n∑

j=1

ajxj − 1 : x ∈ Xi
φβ

} for i = 0, 1, . . .

We can stop either when Li does not change significantly or when it gets sufficiently close to zero. Table 4
shows the effect and time consumed by the improvement procedure for problems of size n = 100, 200 and
500. In each case we started with L0 = 1. We observe that the improvement scheme was able to improve
the bounds by over 3%.
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n = 100 n = 200 n = 500
Initial L 1.0000 1.0000 1.0000

Initial bound 0.9182 0.9179 0.9177
Iterations 3 3 3
Final L 0.7174 0.7176 0.7177

Final bound 0.9419 0.9414 0.9410
Total time 2.24 3.18 3.92

Table 4: Effect of improvement scheme
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