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Consider the following resource allocation problem on a directed acyclic graph (the 

precedence graph). Each vertex has a known work load, and a fixed amount of total resource 

is available. The time required to process a vertex is inversely proportional to the amount of 

the resource allocated to it. The time to complete all of the work is the length of (time to 

complete) a longest chain in the graph. The problem of finding an allocation which minimizes 

the time required to complete all of the work subject to the limited resource availability can 

be formulated as a separable convex programming problem. 

We use results from Lagrangian duality for convex programs, the length-width inequality, 

and Dilworth's Theorem for directed acyclic graphs, to obtain a strong relationship between 

optimal solutions of this problem and its dual. This allows us to obtain closed-form solutions 

for certain special classes of graphs, and leads to a generalization of the LYM Property for 

partially ordered sets. The computational complexity of the general problem is an open 

question. However, the ellipsoid method yields a fully-polynomial approximation scheme, and 

some light can be shed on the associated decision problem. The results of this paper are 

shown to extend to resource allocation problems on perfect graphs. 

I. Introduction. Consider the following resource allocation problem. We are 

given a directed acyclic graph G = ( V, E) depicting the precedence relationship 

between the various jobs in a project, i.e., there is an edge from vertex i to vertex j if 

job i must be completed before job j can start. Each job i has a weight (workload) 

w; > 0. The time it takes to complete job i is equal to (w;/r;)'lk, where r; is the 

budget allocated to job i and k > 0 is a constant. A fixed amount of budget B > 0 is 

appropriated for the entire project. The resource allocation problem is how to 

optimally allocate the budget among the jobs in order to complete the project in the 

least amount of time. 

This model incorporates several important applications in resource allocation with 

precedence constraints and non-reusable resources. For k = l, the time to complete 

an individual job is inversely proportional to the money or manpower allocated. This 

corresponds to many actual government or industrial projects. For k = 2, the applica

tion arises from VLSI (Very Large Scale Integration) circuit design. For an individual 

job, the product of the silicon area (resource) and the square of the time spent (time 

square) equals a constant (the workload). This area-time square relationship arises 

very often in VLSI designs, see, e.g. [Ul]. 
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Now we formulate our resource allocation problem as a separable convex program

ming problem. In a directed acyclic graph, a chain is a set of vertices in a path, and 
an antichain is a set of vertices no two of which are in a directed path. Note that two 

vertices in a chain are precedence constrained, while two in a antichain are not. 

Denote by C and A the set of all chains and antichains in the graph. Our resource 
allocation problem is, formally, 

min t(r) = max I: ( w;/r;) 1/k 

CEC iEC 

s.t. 

l:r;.r;;B, 
iEV 

r; > 0 for all i E V. 

In (RB) we can retain the standard weak inequalities r ;;;. 0 by defining t(r) as + oo 

if any r; is zero. Thus t( ·) is an extended real-valued function. Similar comments 

apply to other problems stated below. In fact it is easy to obtain explicit positive lower 

bounds on the components of any optimal solution, and then the functions of concern 
will be finite and continuous (and usually differentiable) on their restricted domains. 

A related problem is to minimize the total amount of resource used subject to an 

imposed completion time T > 0, which can be expressed as 

min b(s) = Ls; 
iEV 

s.t. 

" l/k ,t.,., (w;/s;) ,;;;; T for all C EC, 
iEC 

s; > 0 for all i E V. 

It is clear that an optimal solution to (R 8 ) for any B > 0 can be obtained from one 

to (ST) for any T > 0 and vice versa; this relationship will be made precise in Lemma 
1. We will frequently be concerned with another equivalent problem, stated as (P) 

below, which avoids the nondifferentiable objective function of (RB) and the nonlin

ear constraints of (ST). Denote by x; the normalized time (wJs)11k r- 1 spent on 

vertex i. Then our problem is 

(P) min f(x) = I: w;x/k 
iEV 

s.t. 

I: X; ,;;;; 1 for all C E C, 
iEC 

x; ;;;. 0 for all i E V. 
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The relationship between these problems is given by: 

LEMMA I (Equivalence Lemma). Let T > 0 and B > 0. Then (Rs), (S7 ) and (P) 

all haue unique optimal solutions, say r*, s* and x*, and they are related by 

PROOF. Let us show that (P) has an optimal solution. Clearly, x given by 
X; = 1/\VI for each i E V is feasible, with f(x) = \Vlk L; E vW;. Since each compo
nent in f is nonnegative, any optimal solution must have each component no less 
than o = [(min; E v w)/f(X)]- 1/k > 0. Hence (P) can be restricted to those feasible x 
with o .,;; x; .,;; 1 for all i E V, giving a compact set on which f is finite, continuous 
and strictly convex. It follows that (P) has a unique optimal solution x*. 

Existence of optimal solutions to (R 8 ) and (S7 ) follows similarly, and it is easy to 
show that if x*, s* and r* are related as shown, then s* and r* are optimal in their 
respected problems, and vice versa. Since x* is unique, this establishes that r* and s* 
are unique also. 

The final claim is trivial; if it were false, we could scale up x*, retain feasibility, and 

reduce f. • 
We note that the number of constraints in (P) can grow exponentially fast as a 

function of the size of G. However, these constraints can be represented compactly, 
since for any particular x, we can test feasibility to (P) in polynomial time by solving a 
longest chain problem in the directed acyclic graph G with weight i; for each vertex 
i, and checking to see that the length of the longest chain does not exceed one. If x is 
infeasible for (P), this approach solves the "separation" problem by providing a chain 
C whose corresponding constraint is violated. 

In §2, we use results from Lagrangian duality for convex programming (see e.g. 
(Rol]), the length-width inequality [Le] and Dilworth's Theorem [Di] for directed 
acyclic graphs to obtain a strong relationship between (P) and its dual problem. This 

result can also be obtained using an equivalent pair of dual problems and results from 
convex network optimization; in the notation of Rockafellar [Ro2], these dual 
problems are, respectively, optimal differential and optimal distribution problems. 
These problems were suggested by reformulations due to the associate editor and one 
of the referees. However, while the new primal has only 0([£[) (dual network ft.ow) 
constraints and the new dual has only O([V[) (network ft.ow) constraints, we prefer 
the original problems for their application to specific graphs in §5, and their 
generalizations to cliques and anti-cliques in perfect graphs in §6. General duality is 
necessary in this last case. §2 also states results for an alternative symmetric duality 

for problem (Rs)· 
In practice, one would probably solve (R 8 ) by solving the convex network optimiza

tion problems. Here, however, we are more interested in their theoretical computa
tional complexity, which remains open. (See [GJ] for an excellent introduction to the 
field of computational complexity.) 

In §3, the ellipsoid method [BGT, G LS2] is used to obtain a fully-polynomial 
approximation scheme for (P). In §4, some insight is presented for the decision 
problem associated with (P); namely "Given an input value F and an instance of (P), 

does the optimal objective value of (P) exceed F?" 

In §5, we obtain closed-form solutions for certain special directed acyclic graphs 
such as serial-parallel graphs and some level graphs; this also leads to a generaliza
tion of the LYM Property for partially ordered sets. In §6, we show how to extend 
our results to resource allocation problems on perfect graphs. 
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2. Strong duality. In this section we prove a strong duality result between (P) 
and the problem 

(D) maxg(y) = L (k +I)( w~) Y;k/(k+I> - max LY; . { 
l/(k+l) . } 

y;;, O i E V k A EA i EA 

(Recall that A is the collection of all antichains.) While we will use general methods, 
it is also possible to use duality for convex network optimization as in [Ro2] to 
establish this result. Let us state the corresponding problems. 

Let 6 = (V, E) be obtained from G as follows. Its vertex set V consists of the 
copies, i' and i", of each vertex i of G, together with an initial vertex p and a 
terminal vertex q. Its edge set E is the union of Ev = {(i', i"): i E V}, EE= {(i", j'): 
(i, j) E £} U {(p, i'): i E V has indegree O} u {(j", q): j E V has outdegree O}, and 
(q, p). Thus vertex p represents the start of the process, i' the start and i" the end of 
the work at vertex i, and q the finishing of all the work. Let u; denote the time at 
which vertex { E V is reached. Then it is clear that ( P) is equivalent to 

(P') . '\' ( ) -k mm L.... W; U;" - Ur 

iEV 

This is an optimal differential problem, and it 1s dual to the optimal distribution 
problem: 

(D') ( 
W )l/<k+I) 

max" (k + 1) __!_ v~(<k+IJ - v 
L..., kk II CjfJ 

iE V 

ii: u;,t JEE 

v > 0. 

v-- -
hi L Vi[= 0 

/:({,f)E[~' 

for all r E V, 

We will see below that ( D') is equivalent to ( D ). 

THEOREM 2 (Strong Duality Theorem). For any x feasible for (P) and any y > 0, 
f(x) > g(y). Furthermore, there exist unique optimal solutions x* and y* to ( P) and (D ), 
respectively, which satisfy f(x*) = g(y*) and y;* = kw/x;* )-k- I for all i E V. 

PROOF. The Lagrangian dual of (P) is 

(L) rnaxlz(µ) = {min L (w;X;-k + (. L 1-lc)x;)- .L /Le}· 
µ;;,O x;,0 iE V C: iEC C'EC 

It is well known that f(x) ;;,, h(µ) for any x feasible in (P) and any µ > O; moreover, 
since ( P) has a unique optimal solution x* at which all functions in ( P) are 
differentiable, and (P) has linear constraints, (L) has an optimal solution µ* and 
f(x*) = lz(µ*) (see for example [Rol]). It therefore remains to relate (L) to (D) and 
prove the uniqueness of y* and its relationship to x*. 
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Now the minimand in h(µ) is convex and separable in x. By setting its partial 

derivative with respect to xi equal to zero we find 

(2.l) maxh(µ) 
µ 0 

max 
µ ;>, 0 

y ;>, 0 

Y,~ L~ µ,( 

( ': /I'-:: ( 

maxg(y). 
y;,,0 

L I-le} 
CEC 

{ ( 
W· )l/(k+ll k (k+ll } 

Mc L(k+l) k~ (y;)/ - LI-le 
iEV CEC 

The second equality follows since for any fixed value of µ, each summand can be 
maximized separately by setting Y; = Le: ; E cl-le- The final equality follows from a 
weighted version of Dilworth's Theorem [Di] which states that the minimum cover of 
weighted vertices hy chains equals the maximum-weight antichain. This proves that 
(Pl and (D) satisfy the strong duality relationship since (P) and (L) do. 

To prove the final claim, we need to use the length-width inequality [Le] for 
directed acyclic graphs. Let x be a positive feasible solution to (P), and let y be a 
feasible solution to ( D ). Then 

( 2.2) max LY;:;;, (max L xi)(max LY;)> L X;Y;· 
..tEAiEA CECiEC AEAiEA iEV 

To bound the right-hand side, we consider the (generalized) arithmetic-geometric 
mean inequality, which states that, if a and (3 are positive with a + f3 = 1, and c and 
dare nonnegative, then ac + (3d:;;, c"d/3, with equality if and only if c =d. Applying 
this result with a= k/(k + 1), f3 = l/(k + 1), c = c; = X;Y;/k and d = d; = w;x,:-k, 
we find that 

( 2.3) 

Thus, from (2.2) and (2.3) we find that 

( 2.4) f(x) > g(y), 

which gives an alternative proof of weak duality; moreover, equality holds in (2.4) 
only if equality holds in (2.3) for all i, which implies that c; = d;, and hence, 
Y, = kw;xjk~J for all i E V. • 

This result can also be obtained from the monotropic network duality of Rockafellar 
[Ro2]. Clearly, (P) and (P') are equivalent (with X; corresponding to the "potential 
difference" u/ - uj). Next, (P') and (D') are dual-here both problems have re
versed objective functions, and the flow v is the negative of the flow that results from 
network duality. Finally, if we decompose the flow v into weighted chains from p to q 
(togethi:;_r with flow on the return edge (q, p)), we get a problem on the enlarged 
graph G that is equivalent to the problem in (2.1) on the original graph G. As we 
have seen above, this is equivalent to (D).Note that Y; corresponds to Lc:iECMc and 
hence to v;,6 then .the Network Equilibrium Theorem of Chapter 8 of [Ro2] 
establishes the relationship between x* and y*. 
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To conclude this section, we state an alternative symmetric duality for the problem 
(Ra): 

Consider the problem 

min t(r) = max L ( w;/r;) 'I\ 
CECiEC 

Er;<:;;B, 
iEV 

r ~ 0. 

( I/k 
min u(z) = max L zf+'/w;) , 

AEA iEA 

LZ; ~B, 
iEV 

z ~ 0. 

THEOREM 3 (Symmetric Duality). (a) Weak Duality: Let f and z be feasible 

solutions to (R 8 ) and (DR 8 ), respectively, then t(i') · u(z) ;;;.o B. 

(b) Strong Duality: Both (R 8 ) and (DR 8 ) have unique optimal solutions r and z, 
respectil'ely, with r = z. Furthermore, t(i) · u(z) = B. 

A proof can be found in [MSTW]. 

3. Fully polynomial approximation scheme. In this section we show how the 

ellipsoid method (see e.g., [BGT] and [GLS2]) provides a fully-polynomial approxima

tion scheme for (P); more precisely, we can obtain a feasible solution with objective 

function value within any E > 0 of the optimal value, in time polynomial in the length 

of the input and logCl/E) for fixed k. (Similar arguments apply to (R 8 ) if k = 1.) We 

assume that each W; is a positive integer. The results of this section also follow from 

general arguments in [GLS2]. 

Let IVI = n, and let e be the vector with e; = 1 for all i E V. Let S' denote the 

feasible region of (P). Note that e/n ES' with objective function f(e/n) = wnk, 

where w = L; E vW;. Thus, we can confine ourselves to points with f(x) ~ f(e/n), 

which implies that X; ~ (w;/w) 11k/n for all i E V. Let!;= min{(w;/w)'lk /n, 1/3n}, 

and let S = {x E S': X; ~ !; for all i E V}. 

Then S contains the optimal solution, and since {x: (l/3n)e ~ x ~ Cl/n)e} ~ S ~ 

{x: 0 ~ x ~ e}, 

(3.1) B((2/3n)e, 1/3n) ~ S ~ B(e/2, Ill /2), 

where B(x, r) denotes the Euclidean ball around x of radius r. 

Our problem is to minimize f(x) for x E S. The ellipsoid method generates a 

sequence {£) of ellipsoids with centers xi, such that if fj = rnin{f(x 111 ): 0 ~ m < j, 
x"' E S} (this minimum has value ao if there is no such x"'), then 

(3.2) Ei ;:;2 {x ES: f(x) ,.;;/J 

By setting x0 = e/2 and Eo = B(e/2, rn /2), we see that (3.2) holds for j = 0. 

Assuming that (3.2) holds for some j ~ 0, we show how to find Ei+ 1 so that (3.2) also 
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holds for j + I, and so that volume (EJ+ 1) < exp( -1/4n) volume (E).We represent 

each ellipsoid by its center xi, and a symmetric, positive-definite matrix Ai' so that 

E; = {x: (x - xi)1A 1 
1(x - xi) < I}. 

·To determine E)+ 1, we first check whether x1 E S. If xf < :x;; for some i E V, we 

set a; = -1 and a11 = 0 for all h i:- i, and note that 

(3.3) 

If xi ;;:;. !, we find a longest chain C in G with the weight x{ on each vertex i E V. If 

the length of C is greater than 1, set a;= 1 if i EC, and set a; = 0 otherwise; then 

(3.3) again holds. 

Now suppose xi ES. We then set a= V/(xi), so that a;= -kw;(x/)-k- 1 for all 

i E V. Note that, since !i < xJ < 1, we can bound the components of a by 

( 3.4) kw. & lal & kwnk+ 1 max{3k + 1 ( w/w )<k + ll/k} 
I-....:::::. I~ l ' l ' 

for all i E V. If /(x) < f(xi), we have a1 x < a1 xi. 

Using this observation if x 1 is feasible, or using (3.3) if it is not, together with (3.2), 

we find that 

(3.5) 

Hence, (3.2) will hold for j + 1 as long as Ei+ 1 contains the semiellipsoid on the left 

side of (3.5). The minimum volume sue~ ellipsoid J0+ 1 is given by its center xi+ 1 and 

the symmetric positive definite matrix A;+ 1 defined by 

· J · ( T ) 1/2 
x'+ = x1 - TA,a/ a Aja , 

where r = 1/(n + I), u = 2/(n + 1), and 8 = n 2 /(n 2 - 1) (see, e.g., [BGT]). Then 

volume (Ei + 1) < exp( - I /2(n + I)) · volume( E). Grotschel, Lovasz and ~hrijver 

[GLSl] show that, if 8 is instead chosen as 2n 2 /(2n 2 - 3), then x1 + 1 and Ai+ 1 can 

be rounded to x1+1 and A J + 1 using a number of digits after the decimal point that is 

polynomial in j and n, and the resulting ellipsoid Ei+ 1 will still satisfy (3.2) for j + I, 
and volume (E1+ 1) < exp(-1/4n) volume(£;). 

We want to find a point x ES with 

f(x) < min{f(x): x ES} + E 

in time polynomial in n, log w and log(l/E). It suffices to show that some x1 satisfies 

this inequality for a polynomially-bounded j. Let x* be the optimal solution to (P). 

Let y = min{(3n)-k(E/w), l}. Note that /(x*) ~ w and that f(x) < (3n)kw for all 

x E 8 1 = B((2/3n)e, l/3n). Consider BY= {yx + (1 - y)x*: x E B 1} ~ S. By con

vexity, for any z = yx + (1 - y)x* EBY where x E B1, we have /(z) ~ yf(x) + (1 -

y)/(x*) <j(x*) + yf(x) <f(x*) +E. Hence, any point in BY solves our problem. 

Now B has volume y"(2/(3nVn))" times that of £ 0 • Thus, in 4n 20og(l/y) + 
log(3ntz" /2)) steps, £1 will have volume smaller than that of BY. By (3.2), this implies 

that some x"', 0 ~ m < j, is feasible and has f(x"') < f(x*) + E. We have therefore 

shown that the ellipsoid method gives a fully-polynomial approximation scheme for 

(P). The case for (R 8 ) is similar, noting that a subgradient of t(r) is available by 
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finding a longest chain with weights (w;/r;)11k, and then using the gradient of this 
term in t(r). (We need k = 1 so that ! is rational.) 

4. The associated decision problem. The computational complexity of problem 
(P) and its associated decision problem remain open questions. We conjecture that 

these problems are solvable in polynomial time. In this section, we present an 
approach which might eventually verify this conjecture. 

Let A be an integral m x n matrix and let b be an integer m-vector. Consider the 
following convex programming problem (P*): 

(P*) . . . ~ 1 
mm1m1ze f-.. -

X· 
i=I 1 

subject to A x = b, 

x > 0. 

It is not difficult to see, using Lagrangian theory, that the unique optimal solution x* 
to (P*) consists of algebraic numbers. In fact, it is the first part of the unique positive 
solution (x*,y*) to the following system of algebraic equations(£*) in variables (x,y): 

Ax= b, 

(E*) 1 
1 = (yAL 1 ::;;;; i::;;;; n. 
Xj 

This relates as follows to our problem (P), restricting ourselves to the case wi = 1 for 

all i, and k = 1. It is clear that the optimal solution to the convex programming 

problem ( P) satisfies at least one chain constraint at equality and has all positive 
components. Hence it is also a solution to a problem of the form (P*), where Ax= b 

includes all tight chain constraints. 

It would now be very helpful if we could find a polynomial upper bound on the 
degree and in the size of the height (i.e., the log of the maximum absolute value of 

the coefficients) of the minimal polynomials of the xt. Then, with the fully polyno

mial approximation scheme of Section 4, we can apply the following theorem of 
Lovasz [Lo3, p. 38, Theorem 1.4.7]: 

Git•en a rational number q, an integer h, and the information that there exists a real 

algebraic number a whose minimal polynomial has degree and height-size at most h and 

with lq - al < 2- 411'', we can compute the minimal polynomial of a in time polynomially 

bounded by hand (q), where (q) is the number of bits necessary to specify q. 

Denote by a the optimal objective function value for (P), denoted by p(x) the 

minimal polynomial of a, and let h be an integer at least the degree and height-size 
of p(x ). 

The decision problem is: "Given a rational q, is q ::;;;; a?". One line of attacking this 

question is as follows. First apply the fully-polynomial approximation scheme of §4 to 

obtain an interval (q 1, q2 ) which contains a with q 1 and q 2 rational, and lq2 - q 1I < 
2- 41,.'. If q::;;;; q 1 or q ~ q2 then we are done. If not, use Lovasz' Theorem stated 

above to compute the minimum polynomial p(x) of a. Since a is the only zero of 
p(x) in (q 1, q2 ) checking the sign of p(q) will tell us whether q::;;;; a or not. 

This approach would require polynomial time if we could find a polynomial upper 
bound on the degree and height-size of the coefficients of the unique positive 

solutions of(£*). We leave this as an open problem. 

5. Closed-form solution for special graphs. In this section, we present closed

form solutions to our resource allocation problems on two special classes of directed 
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acyclic graphs: series-parallel graphs and certain level graphs. We solve the former by 
the equivalen! load method, and the latter by coalescing certain vertices. Our analysis 

also leads to a generalization of the LYM Property for partially ordered sets. 

5.1. Series-parallel graphs. Let G 1 and G 2 be two directed acyclic graphs. The 

series connection of G 1 and G2 , denoted by G 1 ~ G2, is obtained by taking the union 
of G 1 and G 2 and adding an edge from each vertex of G 1 with outdegree zero to 

every vertex in G 2 with indegree zero. The parallel connection of G 1 and G 2 , denoted 

by G iflG 2, is the union of 0 1 and 0 2 • A series-parallel graph is defined recursively as 
a directed acyclic graph with a single vertex, or one which can be constructed by the 

series connection or the parallel connection of two series-parallel graphs. 

A closed-form solution for the resource allocation problem on a series-parallel 

graph can be obtained by the method of "equivalent load." Given an instance of 

(RB), the equivalent load of the graph is defined to be the product of the total budget 

and the kth power of the minimum total completion time. This product is a constant, 
as follows easily from the Equivalence Lemma. 

THEOREM 4. Let w 1 and w 2 be the equivalent loads of two series-parallel graphs G 1 

and 0 2 . The equirnlent load of the parallel connection G = G 1llG2 is w1 + w2 ; the 
equivalent load of the series connection G = G 1 ~ G 2 is (w11<k+l> + w1f<k+l))k+ 1. 

PROOF. Let BJ be the total budget allocated to the vertices of G1 for j = 1, 2, 
where B1 + B2 = B is the budget for G. Let w1 be the equivalent work loads for G1 

for j = I, 2. The minimum completion time is ~ = ( wJ/ B/1 k for j = 1, 2. Let T be 

the minimum completion time for G. In the parallel connection, we have 

{( w )'lk (w )I/k} w + w 1;k 
T= min max{T1,T2}= min -Jf , B2 =( 1 B 2 ) 

B1+8"=8 B1+82=8 I 2 

Therefore, the equivalent load is w 1 + w2• In the series connection 

_ B-1/k( 1/<k+I> + 1;<k+ll)(k+1i;k - w1 Wz • 

Therefore, the equivalent load is (w1/(k+I> + w1f<k+l>)k+1. • 

Note that the optimum budget partition for the parallel connection yields 

w. 
BJ = ; B for j = 1, 2, and T1 = T2 • 

W1 Wz 

The optimum budget partition for the series connection yields 

B.= 
1 

w.ll<k+ll 
1 

11<k+I> l/<k+l>B' and 
w1 + Wz 

w.'l<k+ll 
1 

~ = w'l<k+ I>+ wll<k+ I> T, 
I 2 

for j=l,2. 

The minimum completion time of a series-parallel graph G is T = (wc;/B) 11k, 

where we can be obtained by recursive application of the above theorem. The 

optimum budget assignment can be obtained easily from Lemma 1. 

5.2. Level graphs. Closed-form solutions can be obtained for a class of graphs 

whose vertices can be partitioned into antichains satisfying certain conditions. Roughly 

speaking, we treat such a graph as if it were a series-parallel graph with the vertices 
in each antichain being in parallel, and with the antichains being in series. We 
coalesce the vertices in each antichain in the partition into a single vertex. The 
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resulting graph consists of a single chain, which is solved by the series-parallel 

method of §5. l. The dual of §2 is used to verify the solution. The conditions under 

which this method yields the correct solution are presented in this section. These 

conditions turn out to be an interesting generalization of the LYM property of 

partially ordered sets. 

In a directed acyclic graph G, a vertex i is a predecessor of a vertex j if there is a 

directed path from i to j; a vertex i is an immediate predecessor of j if there is no 

other vertex k on any directed path from i to j. We say that i and j are comparable if 

there is a chain containing both i and j. A level function is a mapping l from the 

vertices of G to the integers, such that l(i) = 0 for every vertex i with indegree zero, 

and l(j) = l(i) + 1 whenever vertex i is an immediate predecessor of vertex j. A 

graph with such a function on its vertices is called a lecel graph. The vertices mapped 

to any integer r form an antichain L,., called the rth level. 

Under certain conditions, the vertices on each level can be coalesced into a single 

vertex whose work load is the sum of the loads for all of the vertices in that level. The 

resulting graph consists of vertices in series, and a closed-form solution can be 

obtained using the method of §6.1. 

For any X i; V, denote by II X 11 the sum L:; "° x w;. If the coalescing method applies, 

then the equivalent load of the entire graph is w0 = (L:,.llL,.11'1<k+Il/+ 1. Given a total 

budget B, the total completion time is T = (wc;/B)'lk. The budget allocated to level 

L, is B,. = (llL,.11/wc)'l<k+ 118, and the budget allocated to each vertex i on level L,. 

is b1 = w111 L,.ll- 1B,.. All jobs on the same level take the same amount of time. On level 

L,., each job takes time T,. = (llL,.11/wc)'i<k+l)y. We can verify that w; = b1 T/ when 

i E L,.. 

Whether the coalescing method gives the correct solution depends upon whether 

the graph satisfies the LYM property. The LYM property, due independently to 

Lubell, Yamamoto, and Meschalkin, is defined for partially ordered sets with rank 

functions which are equivalent to level graphs; see Greene and Kleitman [GK] for an 

excellent exposition. It is concerned with the weight of maximum antichains, "regular'' 

chain coverings, and certain normalized matching conditions. Graphs satisfying the 

LYM property include the planar grid, the hypercube, certain bounded integer 

lattices, and many others. On these graphs, the coalescing method can be used to 

obtain closed-form solutions for the convex programming problem. The LYM prop

erty is usually described in terms of three equivalent conditions. Our convex program

ming perspective adds a fourth equivalent condition to the collection. Let G be a 

level graph with all weights equal to one. A regular chain covering is a collection of 

chains (with multiplicities allowed), such that every chain intersects every level L,. 

and the number of chains passing through a vertex depends only on the level. For 

X i; V, we let f( X) denote the set of vertices comparable to some vertex in X. By 

convention, X i; r(X). 

THEOREM 5 (The LYM Property). Let G be a lecel graph with s leuels and weights 

W; = 1. Let y denote the vector defined by Y; = 1 /llL,.11, where i E L,.. Let We; = 

(L:,.llL,.11' 1<k+I))k+ 1. Then the following four conditions are equiualent: 

1. (kw() y is an optimal solution uector to the dual convex programming problem (D). 

2. L; E A Y; < 1 for all antichains A E' A. 
3. Each L,. is a maximal anticliain and there exists a regular chain cocering. 

4. L;"' l'(x)nl.," 1Y; P L;<=xY; for any X i; L,. and any L,., 1 < r < s. 

The LYM property can be further generalized to graphs that can be partitioned 

into antichains. We provide a proof below for this more general case. 

Let G be a directed acyclic graph with node weights w, and let L 1, L 2 , ... , L 1 be a 

partition of the vertices of G into s antichains. Since there may be nonuniform vertex 
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weights, we refine the definition of regular chain covering as follows. A weighted 

regular chain cocering is a collection of chains (with perhaps nonintegral multiplicities) 

such that every chain intersects every L,., and the ratio of the total multiplicities of 

the chains passing through any two vertices in the same L; equals the ratio of their 

weights. In other words, there are constants a: 1, a 2 , •.• , a_, such that the total 

multiplicities of chains passing through any vertex i E L,. equals a,.w;. 

THEOREM 6 (The Generalized LYM Property). Let G be a directed acyclic graph 

with node weights w, and let L 1, L 2 , ••• , L_, be a partition of the vertices of G into s 

antic/wins. Let Y; = w;/llL,.11, when i EL,.. Let w0 = 0::,.llL,.ll 11<k+l>)k+l. The following 

four conditions are equi mlent: 

1. (kw()y is an optimal solution uector to the dual conl'ex programming problem (D). 

2. L; E A Y; ~ l for all antichains A E A. 

3. Each L,. is a maximal antichain and there exists a weighted regular chain cocering. 

4. L; E ivon 1.,Y;;;;, [ 1E x Y1 for any X r:;; L,. and any L,. and L; .. 

PROOF. (1) => (2): Assume that (kw0 )y is an optimal solution vector to (D), 

and let x be an optimal solution vector to (P). Hence, maxc "'c L; E c x1 = 1. By 

Theorem 2, 

Furthermore, the length-width equality holds for x and (kwc)Y, in which 

_,, ,\ 

" (. kw .)xy. = " " kw"/<k+ 1lwllL 11-k/<k+ll = "kw~l<k+ IlllL 11 1/<k+ 1> = kw. 
i....J (, 1 l i...J i...J CJ 1 r £,,..; (, r (, • 

iEV r= I iE/~, r= 1 

Hence, maxA EA L; EA Y; = l. 
(2) => 0 ): Assume that rnaxA "'A [ 1"' AY; = 1. (Note that equality holds in (2) for 

A= L,., for any r.) Let x be defined by X; = (wc; 1w1y,- 1) 1/<k+J) = (w(; 1llL,.ll) 1/<k+Il 

for i EL,.. Hence maxcEC L; 0 cX; ~ 1. The length-width inequality for x and y gives 

L;EvX;Y; ~ (maxCEC L;Ecx) (maxAEA [ 1EAY) = maxcEc L;"'cX;. As in the pre

vious paragraph, we have [ 1 E vX; Y; = 1. Hence, the length-width equality holds for x 

and (kw()y and by the proof of Theorem 2 they are optimal solutions. 

( 2) => (3 ): Assume that max A EA L; E A Y; = 1. Then every L, is maximal. By 

Dilworth's Theorem, 

s.t. 

µ,c ;;;, 0, each C E C, 

[ f.Lc ;;;, Y;, for i E V. 
C:iEC 

max [ Y; = 1. 
AEA iEA 

Also, we have I = L; c= 1 Y; < L; ,c / Le· , H µ,c = Len 1 +c1µ,c < L1"= cf.Lc = I, 
'1· 'r . ·,- , -

where (µc) is an optimal solution to the problem above. 

Therefore, every chain C with f.Lc =I= 0 intersects every L,., and Y; = Le:; CoC f.Lc for 

every i E V. The collection of chains C with multiplicities f.lc forms a weighted 

regular chain covering. 
(3) => (4): Assume that each L,. is maximal, and there exists a weighted regular 

chain covering if! with multiplicities {,uc}, scaled so that Le E .µµ,c = 1. Then it is easy 
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to see from the definitions that Y; = Ee,; E c/Lc so that 

L Y; = L L /Le = L !Le ~ L J-lc = L Y; 
iEX iEX C: iEC C: CnX;e0 C: Cnl'(X)nL,+ 0 iE!'(X)nL, 

for any X c;;; Lr. The inequality comes from the fact that C n X =!= 0 implies C n 
f(X) n L~ =!= 0. 

(4) => (2): Assume (4); we prove (2) by induction on the maximum number of levels 
met by an antichain A. The ground case is trivial, since A c;;; Lr implies E; EA Y; ~ 
E; E 1 Y; = l. Assume (2) holds whenever A meets less than t levels and assume 
with~'ut loss of generality that A intersects only L 1, L 2 , ••. , L 1 • Let A' be the 
(disjoint) union of An L 1, A n L 2 , ••• , A n L,_ 1, and f(A n L) n L,_ 1. Then A' 
is an antichain and L; E A'Y; ~ 1 by induction hypothesis. But 

I: Y; > I: Y; and hence I: Y; ~ 1 as desired. • 
iEAnL, iEA 

There is a further generalization of Theorem 6 to perfect graphs without requiring 
an anticlique (i.e., antichain) partition; see the accompanying paper by [We]. There, 
simultaneous "regular" coverings by cliques and anticliques are considered. 

Theorems 5 and 6 can be used to obtain closed-form solutions when the conditions 
are satisfied. For example, the planar grid graphs, which consists of integer lattice 
points in the rectangle [O,a] X [O,b] with (i,j)---? (i + I,j) and (i,j)---? (i,j + 1) 

(when within the specified range) satisfy the LYM property. So do the hypercubes 
and many other classes of graphs. (See [GK].) 

6. Extension to perfect graphs. In this section, we show how the results of this 
paper can be extended to resource allocation problems on perfect graphs. We first 
need some definitions. 

Consider an undirected graph G = ( V, E ). A clique is a subset of vertices every 
pair of which is joined by an edge. An anticlique is a subset of vertices every pair of 
which is not joined by an edge. For any W c;;; V, the subgraph G w of G induced by W 

has vertex set W, with an edge between two vertices in Gw exactly when there is one 
in G. We let w(G) and a(G) be the maximum number of vertices in a clique and 
anticlique, respectively of G. We let y(G) and 8(G) be the minimum number of 
anticliques and cliques, respectively, required to cover all vertices of G. 

A graph G = ( V, E) is called perfect if it satisfies the following equivalent condi-
tions: 

[i] w(Gw) = y(Gw) for all W c;;; V, 

[ii] a(Gw) = e(Gw) for all W c;;; V, 

[iii] w(Gw)a(Gw) > IWI for all W i;;;; V. 

The equivalence of these conditions is known as the Perfect Graph Theorem 
[Lo 1, Lo2]. (See [BC, Go] for more details on perfect graphs.) 

We claim that, by Jetting C and A be the set of all cliques and anticliques, 
respectively, all results of this paper remain valid for a perfect graph G. First, we note 
that the transitive closure of a directed acyclic graph gives a comparability graph 
which is perfect with chains corresponding to cliques, and antichains corresponding to 
anticliques (see [Go, Chapter 5]). So we have clearly generalized the problem 
statement. 

The Equivalence Lemma of § 1 did not use any properties of the sets C and A. The 
Strong Duality Theorem used Lagrangian duality for convex programs and the 
length-width inequality and Dilworth's Theorem for directed acyclic graphs. Fulkerson 
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[Fu] proved the following equivalent characterizations of perfect graphs which gener
alize the length-width inequality and Dilworth's Theorem: 

(i) (maxCEC L;Eca;)(maxA EA L;E Ab;) ~ L;E va;b; for all a, b ~ 0, 

(ii) maxAEAI:iEAai = min{I:cEcµ.clLc: iECµc;;;.. a;, for all i E V, µ,c ~ 0 for 
all C E C} for all a ~ 0. 

Hence, the Strong Duality Theorem holds for perfect graphs. 
The algorithmic results of §3 and 4 rely on the solution of the separation problem 

for (P) in polynomial time. This is done for perfect graphs in [GLSl]. Therefore, the 

results of these sections carry over as well. 
The Generalized LYM Property of §5 also holds for perfect graphs where "cliques" 

and "anticliques" replace "chains" and "antichains". 
We note that "cliques" and "anticliques" play a symmetric role in our entire 

development. Since the complement of a perfect graph is itself perfect, we could 
switch the notions of "cliques" and "anticliques" to obtain a completely parallel 
development. For example, the Generalized LYM Property of §6 holds true for 
clique partitions and regular anticlique covers. 

Acknowledgements. We are very grateful to the associate editor and the referees 
for their comments and suggestions; in particular, the network reformulations (P') 

and (D') in §2 are due to them. 

[BC] 

[BGT] 

[Di] 

[Fu] 

[GJ] 

[Go] 

[GK] 

[GLSI] 

[GLS2] 

[Le] 

[Loi] 

[Lo2] 

[Lo3] 

[MSTW] 

[Rot] 

[Ro2] 

[Ul] 

[We] 

References 

Berge, C. and Chvatal, V. (Editors) (1984). Topics on Perfect Graphs. Ann. Discrete Math. 21. 

Bland, R. G., Goldfarb, D. and Todd, M. J. (1981). The Ellipsoid Method: A Survey. Oper. Res. 

29 1039-1091. 

Dilworth, R. P. (1950). A Decomposition Theorem for Partially Ordered Sets. Ann. of' Math. 51 
161-166. 

Fulkerson, D. R. ( 1974). Blocking and Anti-Blocking Pairs of Polyhedra. Math. Progrumming l 

168-194. 

Garey. M. R. and Johnson. D. S. ( 1979). Computers and lntractahility: A Guide to the Theory of 

NP-Completeness. W. H. Freeman, San Francisco. 

Golumbic, M. C. (1980). Algorithmic Graph Theo1y and Perfect Graphs. Academic Press, New 

York. 

Greene, C. and Kleitman, D. J. (1978). Proof Techniques in the Theory of Finite Sets. in G.-C. 

Rota (Ed.), Studies in Combinatorics, MAA Studies in Math. 17 22-79. 

Grijtschel, M., Lovasz, L. and Schrijver, A. (1984). Polynomial Algorithms for Perfect Graphs. in 

C. Berge and V. Chvatal (Eds.), Topics and Perfect Graphs, Ann. Discrete Math. 21 325-356. 

____ and __ (1986). The Ellipsoid Method and the Combinatorial Optimization. 

Springer-Verlag, New York. 

Lehman, A. (1964). A Solution of the Shannon Switching Game. J. SIAM, 12 687-725. 

Lovasz, L. (l 972). Normal Hypergraphs and the Perfect Graph Conjecture. Discrete Math. 2 

253-267. 

__ (1972). A Characterization of Perfect Graphs. J. Combin. Theo!)' Ser. B l3 95-98. 

__ ( 1986). An Algorithmic Theory of Numbers, Graphs and Com·exity. SIAM, Philadelphia. 

Monma, C. L., Schrijver, A., Todd, M. J. and Wei, V. K. (1987). A Class of Convex Programs for 

Resource Allocation Parallel on Directed Acyclic Graphs. Unpublished manuscript. 

Rockafellar, R. T. (1970). Co11l'ex Analysis. Princeton University Press, Princeton, NJ. 

__ (1984). Network Flows and Monotropic Optimization. John Wiley and Sons, New York. 

Ullman, J. D. (1984). Computational Aspects of VLSI, Computer Science Press. 

Wei, V. K. (1988). A Connection between a Convex Programming Problem and the LYM 

Property on Perfect Graphs. Journal of' Graph Theory 12 571-587. 

MONMA & WEI: BELLCORE, SOUTH STREET, MORRISTOWN, NEW JERSEY 07960 

SCHRIJVER: TILBURG UNIVERSITY, TILBURG, THE NETHERLANDS 

TODD: CORNELL UNIVERSITY, ITHACA. NEW YORK 14853 


