
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12976  | https://doi.org/10.1038/s41598-021-92451-1

www.nature.com/scientificreports

Convex restrictions in physical 
design
Guillermo Angeris*, Jelena Vučković & Stephen Boyd

In a physical design problem, the designer chooses values of some physical parameters, within limits, 
to optimize the resulting field. We focus on the specific case in which each physical design parameter 
is the ratio of two field variables. This form occurs for photonic design with real scalar fields, diffusion-
type systems, and others. We show that such problems can be reduced to a convex optimization 
problem, and therefore efficiently solved globally, given the sign of an optimal field at every 
point. This observation suggests a heuristic, in which the signs of the field are iteratively updated. 
This heuristic appears to have good practical performance on diffusion-type problems (including 
thermal design and resistive circuit design) and some control problems, while exhibiting moderate 
performance on photonic design problems. We also show in many practical cases there exist globally 
optimal designs whose design parameters are maximized or minimized at each point in the domain, 
i.e., that there is a discrete globally optimal structure.

Computer-aided physical design has become an important tool in many �elds including  photonics1,2, mechanical 
 design3, circuit  design4,5, and thermal  design6,7. In many cases, the design problem is formulated as a constrained 
nonconvex optimization problem which is then approximately minimized using local optimization methods such 
as  ADMM8, evolutionary  algorithms5, and the method of moving  asymptotes6, among many others.

More generally, a physical design problem can be phrased in the following way: we are allowed to choose 
some design parameters (e.g., the permittivity in photonic design or the conductances in di�usion design) at 
each point in a domain, within some limits, in order to minimize an objective function of the �eld (this can be, 
e.g., the electric �eld in photonic design, or a vector containing the potentials, �ows, and potential di�erences in 
di�usion design). �e constraints specify the physics of the problem, connecting the design variables to the �eld 
variables (e.g., Maxwell’s equations in photonics, or a di�usion equation such as the heat equation in di�usion 
design). We note that, in many cases, the physics constraints are linear equations in the �eld variables (when the 
design parameters are held constant), and linear equations in the design parameters (when the �elds are held 
constant), which has led to some heuristics with good  performance8.

�ere has been recent interest in understanding global properties of solutions for physical design problems: 
lower bounds for optimal design objectives in photonic design have been studied via the use of convex relaxa-
tions found by physical  arguments9,10, duality  theory11–13, among  others14. We instead analyze a convex restriction 
 (see15, Sect. 2.1) of the physical design problem, potentially providing another approach for analyzing properties 
of global solutions and for creating fast heuristics.

In this paper, we consider a simple (but very general) formulation of a class of physical design problems which 
includes problems in thermal design, photonic inverse design with scalar �elds and convex objectives, and some 
types of control problems. �is formulation o�ers some insights into the properties of global solutions for these 
problems. For example, in many practical cases, problems with linear objectives can be shown to have optimal 
extremal designs (in the case of physical design) or bang-bang controls (in the case of control). As another 
example, we observe that it su�ces to know only the sign of a subset of variables in order to globally solve the 
problem e�ciently, even though the original problem is NP-hard. �e formulation also suggests a heuristic which 
appears to have good performance for many kinds of physical design problems, and we give numerical examples 
of this heuristic applied to a few di�erent problems.

General problem formulation
We consider a problem of the form
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where f : R
n

× R
m

× R
m

→ R is a convex function over our variables x ∈ R
m and u, v ∈ R n , 

C ⊆ R
n × R

m × R
m is a convex constraint set, and θ ∈ R

n is our design variable whose limits are 
θ
min, θmax

∈ R n . While apparently simple, many physical design problems can be expressed as instances of 
problem (1); we show a few examples in the “Applications” section. We call (x, u, v) the �eld (corresponding to, 
e.g., the electric �eld in photonic design) and θ the design parameters (corresponding to, e.g., the permittivity in 
photonic design). We say that θ is extremal whenever θi ∈ {θmin

i
, θmax

i
} for each i = 1, . . . ,m . �e physics of the 

problem is encoded in the constraints (x, u, v) ∈ C and u = diag(θ)v.
In this problem, the convex set C can be any convex set specifying constraints on the variables (x, u, v), 

such as linear equality constraints. On the other hand, the design parameters θ enter in a very speci�c way: as a 
diagonal term relating u and v. Another way to say this is that each design parameter θi is the ratio of two �eld 
parameters, ui and vi.

We note that the problem (1) is convex in (x, u, v) whenever θ is �xed, and convex in (x, u, θ) whenever v is 
�xed. In practice, there has been great success in applying heuristics for approximately minimizing instances 
of (1) using this  observation16.

Absolute upper bound formulation. Problem (1) is equivalent to

where the absolute value is taken elementwise. �e variables of problem (2) are x ∈ R
m and u, v,w ∈ R n , while 

θ̄ = (θmax + θmin)/2 and ρ = (θmax
− θmin)/2 are constants. Note that θ̄ is the middle value of the physical 

parameter interval, and ρ is the radius, i.e., half the range or width of the interval.
�e equivalence between problems (1) and (2) can be seen by noting that, for every feasible (x, u, v, w) for 

problem (2) we can set,

for i = 1, . . . ,m . �en, (x, u, v, θ) is feasible for (1), with the same objective value. Note that, if vi = 0 , any choice 
of θi ∈ [θmin

i
, θmax

i
] would su�ce.

Similarly, for any (x, u, v, θ) that is feasible for (1), we can set

and then (x, u, v, w) is feasible for problem (2) with the same objective value.
We will refer to problem (2) as the absolute-upper-bound formulation of problem (1). �is problem, like 

problem (1), is nonconvex due to the inequality |w| ≤ |v| , and is hard to solve exactly.

NP-hardness. We can reduce any mixed-integer convex program (MICP) to an instance of (2), implying 
that this problem is hard, as any instance of an NP-complete problem is easily reducible to instances of the MICP 
 problem17.

�e reduction follows since we can force v to be binary in problem (2). First, choose θ̄ = 0 , ρ = 1 (and 
therefore u = w ), and add u = 1 to the constraint set. �is immediately implies that 1 ≤ |v| . Adding the convex 
constraint |v| ≤ 1 to the constraint set C , yields v ∈ {±1}n , as required. Since C and f can be otherwise freely 
chosen, the result follows.

Known signs. If the signs of an optimal v⋆ are known for problem (2), then the problem becomes convex. 
We can see this as follows. If s = sign(v⋆) ∈ {±1}m is known, then we can solve the following convex  problem18, 
Sect. 4:

where s ◦ v is the elementwise product of s and v. Note that v⋆ (and its associated values of x⋆ , u⋆ , and w⋆ ) are 
feasible for this instance of (4) since |v⋆| = s ◦ v

⋆ , which implies that a solution of this instance of (4) must be 
globally optimal for (2).

Global solution. Note that problem (4) generates a family of optimization problems over the set of pos-
sible signs, s ∈ {±1}m . �is suggests a simple, if ine�cient, way to globally solve problem  (2) and therefore 

(1)

minimize f (x, u, v)
subject to (x, u, v) ∈ C

u = diag(θ)v
θmin

≤ θ ≤ θmax,

(2)

minimize f (x, u, v)
subject to (x, u, v) ∈ C

u = diag(θ̄)v + diag(ρ)w
|w| ≤ |v|,

(3)θi =

{

θ̄i + ρiwi/vi vi �= 0,

θ̄i otherwise,

wi =

(

θi − θ̄i

ρi

)

vi , i = 1, . . . ,m,

(4)

minimize f (x, u, v)
subject to (x, u, v) ∈ C

u = diag(θ̄)v + diag(ρ)w
|w| ≤ s ◦ v,
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problem (1): solve problem (4) for the 2m possible signs, s ∈ {±1}m , to obtain optimal values p⋆(s) for each set of 
signs s. A solution (x⋆, u⋆, v⋆,w⋆) for any optimal set of signs, s⋆ ∈ argmins∈{±1}mp

⋆(s) , is then a solution to (2) 
and therefore to (1).

Of course, this algorithm may not be useful in practice for anything but the smallest values of m, but it implies 
that solving problem (1) requires solving only a �nite number of convex problems.

Extremality principle. �e rewriting given in  (4) also yields an interesting insight. If problem  (4) is a 
feasible linear program and C is an a�ne set with {u | (x, u, v) ∈ C } = R m , i.e., for each u ∈ R

m there exists 
a v ∈ R

m and an x ∈ R
n such that (x, u, v) ∈ C , then there exists a solution of (4) such that all entries of the 

inequality |w| ≤ s ◦ v hold at equality (see, e.g.,19, Sect.  2.6). �is rewriting then implies that there exists an 
optimal design for which θ is extremal, by (3). A numerical example of this principle is found in the “�ermal 
design” section.

Sign flip descent
Since problem (4) generates a family of optimization problems parametrized by the sign vector s ∈ {±1}m , we 
can view the original physical design problem (1) as a problem of choosing an optimal Boolean vector. A simple 
way of approximately optimizing (2) is: at each iteration i, start with some sign vector si ∈ {±1}m and solve (4) 
to obtain an optimal value pi . We then consider a rule for proposing a new sign vector, say s̃i ∈ {±1}m , for which 
we again solve (4) and then obtain a new optimal value p̃i . If p̃i < pi , we then keep this new sign vector, i.e., we 
set si+1 = s̃

i , and repeat the procedure; otherwise, we discard s̃i by setting si+1
= s

i , and repeat the procedure, 
proposing a new sign vector in the next iteration. �is is outlined in algorithm 1.

By construction, any algorithm of the form of algorithm 1 is a descent algorithm since each iteration is feasible 
and the objective value is decreasing on each iteration. We outline two possible rules for proposing new sets of 
signs at each iteration.

Greedy sign rule. A simple rule for choosing signs is to begin at iteration k with some set of signs sk . We 
then de�ne a new set of signs ̃sk with ̃sk = s

k except at the kth entry where we have ̃sk
k

= −s
k

k
 (or, if k > m then we 

pick the entry at index 1 + (k − 1 mod m) , i.e., such that the entries are changed, one-by-one, in a round-robin 
fashion). We stop whenever �ipping any one entry of sk does not yield a lower objective value.

�e greedy sign rule has two useful properties. First, the rule guarantees local optimality in the following 
sense: if algorithm 1 returns s⋆ , then changing any one sign of s⋆ will not decrease the objective value. Second, 
the rule terminates in �nite time, since the corresponding algorithm is a descent algorithm and there are a �nite 
number of possible sign vectors. On the other hand, the algorithm is o�en slow for anything but the smallest 
designs: to reach the terminating condition, we have to solve at least m convex optimization problems.

Field-based rule. Another simple rule that appears to work very well in practice is based on the observation 
that, for many choices of sign vectors sk , the inequality |w| ≤ s

k ◦ v has many entries of v that are zero. If vi is zero 
for some index i = 1, . . . ,m , this suggests that the sign sk

i
 might have been originally set incorrectly: in this case, 

we propose a new vector s̃k which is equal sk at all entries i = 1, . . . ,m for which vi is nonzero and has opposite 
sign at all entries i for which vi is zero.

Note that this new proposed vector will always have an optimal value p̃k which is at least as small as the 
optimal value for sk , i.e., p̃k ≤ pk . �is observation, coupled with the proposed rule, suggests that we should 
stop whenever there are no signs le� to �ip, or whenever the iterations stop decreasing as quickly as desired, i.e., 
whenever pk − pk+1

< ε.
While this rule does not necessarily guarantee local optimality, it always terminates in �nite time with the 

given stopping conditions and appears to work well in practice (requiring, in comparison to the greedy sign rule, 
much fewer than m iterations to terminate) as shown in the “Numerical examples” section.
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Applications
We describe a few interesting design problems that reduce to problems of the form of (1).

Diagonal physical design. As in, e.g.,11, many physical design problems can be written in the following 
way:

where A ∈ R
n×n describes the physics of the problem, while b ∈ R

n describes the excitation, and θ ∈ R
n are 

the design parameters of the system, chosen to minimize some convex objective function f : R
n

→ R of the 
�eld z ∈ R

n . Our variables in this problem are the �eld z and the design parameters θ.
We can write a problem of the form of (5) as a problem of the form (1) by introducing a new variable u with 

constraint u = diag(θ)z and rewriting the equality constraint of (5) with this new variable, Az + u = b . As the 
set of (z, u) satisfying Az + u = b forms a convex (in fact, a�ne) set, the resulting problem,

is of the form of (1) which can be easily rewritten into the form of (2).

Static diffusion design. Consider a �ow problem on a graph G = (V ,E) where we choose the conduct-
ance gk ∈ R across each edge k ∈ E , constrained to satisfy gmin

k ≤ gk ≤ gmax

k  , to minimize some function 
f : R

|V | → R of the potentials e ∈ R
|V | , given some sources s ∈ R

|V |.
To compactly write the conditions this system must satisfy, let the matrix A ∈ R

|V |×|E| be the incidence 
matrix for the graph G de�ned to be  (see20, Sect. 7.3):

We can then write the steady-state di�usion equation as

where Adiag(g)AT can be recognized as the graph Laplacian of G with edge weights g. �is equation can also be 
seen as the discrete form of the heat equation on a graph G21.

�e corresponding optimization problem is then an instance of (1):

where we have introduced two new variables w, v ∈ R |E| , in addition to the potential e ∈ R
|V | and the conduct-

ances g ∈ R
|E| . As before, A ∈ R

|V |×|E| is the incidence matrix, s ∈ R
|V | are the sources at each node, while 

c ∈ R
n is a vector such that cTe is the average temperature over the desired region.

Dynamic diffusion control. Similarly to the “Static di�usion design” section, we can consider the time-
varying generalization of (6) given by

at each time t = 1, . . . ,T , with step size h > 0 . Here, c ∈ R
|V |
++ is the heat capacity of each node and C = diag(c) , 

while ut ∈ R
n are the inputs given to the system, B ∈ R

|V |×n is a matrix mapping these inputs to the power 
added or removed from each node, gt ∈ R

|V | are the conductances at each node, and et ∈ R
|V | is the tempera-

ture at each node.
In this case, we can minimize any convex function of the temperatures and inputs by appropriately choosing 

the conductances and inputs:

where, as before, we have introduced the variables vt ,wt ∈ R |E| , for each t ∈ [T] and [T] = {1, . . . ,T}.

(5)

minimize f (z)
subject to (A + diag(θ))z = b

θmin
≤ θ ≤ θmax,

minimize f (z)
subject to Az + u = b

u = diag(θ)z
θmin

≤ θ ≤ θmax,

Aij =

{

+1 edge j points to node i
−1 edge j points from node i
0 otherwise.

(6)Adiag(g)AT e = s,

(7)

minimize f (e)
subject to v = ATe

Aw = s
w = diag(g)v
gmin

≤ g ≤ gmax,

Cet+1 = Cet − hAdiag(gt)A
Tet + hBut ,

(8)

minimize f (e, u)
subject to Cet+1 = Cet − hAwt + hBut , t ∈ [T]

vt = ATet , t ∈ [T]

wt = diag(gt)vt , t ∈ [T]

gmin ≤ gt ≤ gmax, t ∈ [T],



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12976  | https://doi.org/10.1038/s41598-021-92451-1

www.nature.com/scientificreports/

We can see problem (8) as a nontraditional control problem. A particular example is: we have a set of rooms 
with temperatures et at time t which we wish to keep within some comfortable temperature range. We are allowed 
to open and close vents (equivalently, change the conductances gt at each time t) and turn on and o� heat pumps 
(via the control variable ut ), while paying a cost for the latter. A simple question could be: what is an optimal set 
of actions such that the input cost is minimized while keeping the temperatures et within some speci�ed bounds? 
We show a simple example of this in the “Temperature control” section.

Numerical examples
Julia22 code for all examples in this section is available in the following Github repository: angeris/pd-
heuristic. We use the JuMP modeling  language23 to interface with  Mosek24. All times reported are on a 2015 
2.9 GHz dual-core MacBook Pro.

Photonic design. In this example, we wish to choose the speed of a wave satisfying Helmholtz’s equation at 
each point in some domain � ⊆ R

2 in order to minimize a convex function of the �eld.

Helmholtz’s equation. More speci�cally, the speed of the wave c : � → R ++ is chosen such that the �eld 
ψ : � → R at a speci�c frequency ω ∈ R + with excitation φ : � → R satis�es Helmholtz’s equation,

at each point (x, y) ∈ � . Additionally, we require that the chosen speeds are bounded such that 
0 < cmin(x, y) ≤ c(x, y) ≤ cmax(x, y) at each point (x, y) ∈ � , and we assume Dirichlet boundary conditions 
such that ψ(x, y) = 0 for (x, y) ∈ ∂� , i.e., we require the �eld to be zero at every point on the boundary of the 
domain. In electromagnetics, this condition corresponds to having a perfect conductor at the boundary.

In this case (as  in11, Sect. 5.1), we will work with a discretized form of (9) where z ∈ R
n is the discretized �eld 

( ψ ), b ∈ R
n is the discretized excitation ( φ ), θ ∈ R

n is the discretized speed of the wave (c), and A ∈ R
n×n is 

the discretized version of the Laplacian operator ( ∇2 ), such that

approximates (9) at each point (xi , yi) ∈ � for i = 1, . . . , n . We assume that the discretization is such that � is 
a 1 × 1 box.

Problem data. In this case, the problem data are given by ω = 4π , with n = 101 × 101 = 10201 , while the 
convex objective function f : R

n
→ R is given by

where B ⊆ {1, . . . , n} is the box indicated in Fig. 1, and the excitation b is de�ned as

for each i = 1, . . . , n , where S ⊆ {1, . . . , n} is the box indicated in Fig. 1. Here, θmin
= 1 and θmax

= 2 . We set the 
tolerance parameter of the algorithm to ε = 10

−4 . We initialize the algorithm by �nding a solution to Eq. (10) 
with θ = (θmax

+ θmin)/2 and use the signs of this solution as the initial sign vector.

(9)∇
2ψ(x, y) +

(

ω

c(x, y)

)2

ψ(x, y) = φ(x, y),

(10)Az + diag(θ)z = b,

f (z) =

∑

i∈B

z2i ,

bi =

{

1 i ∈ S

0 otherwise,

Figure 1.  Approximately optimal photonic design. �e le�most �gure speci�es S ⊆ {1, . . . , n} in purple, the 
center speci�es B ⊆ {1, . . . , n} , while the rightmost �gure gives the design, θ.
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Numerical results. With the given problem data, the algorithm terminates at 102 iterations with a total time 
of about 4 minutes, roughly around 2 seconds per iteration. �is time could be very much shortened since the 
current implementation does not warm-start any of the current iterations, essentially solving the problem from 
scratch at each iteration. �e �nal design is shown in Fig. 1 and its �nal �eld is shown in Fig. 2.

Thermal design. In this design problem, as in the “Static di�usion design” section, we seek to set the con-
ductances on a graph in order to minimize the average temperature of a subset of points in the center of a 2D 
grid of size m × m , given a heat source and a heat sink at opposite corners of the 2D grid. �is is an instance of 
the di�usion problem where A ∈ R

|E|×|V | is the incidence matrix of the grid and s ∈ R
|V | are the heat sources 

and sinks. �is problem can be written as an instance of (7) where the potentials e ∈ R
|V | are the temperatures 

at each point in the grid.

Problem data. Our convex objective function f : R
|V | → R is given by

where c ∈ R
|V | is a vector such that ci = 1 if vertex i lies in the center square of size ⌊(m − 1)/4⌋ × ⌊(m − 1)/4⌋ 

while ci = 0 otherwise. �ere is a heat source set at the bottom le� corner of the grid and a heat sink set at the top 
right corner of the grid. We set the minimal and maximal conductances as gmin

= 1 and gmax
= 10 at each edge.

We approximately optimize the conductances in this problem by using the �eld-based heuristic described 
in the “Sign �ip descent” section. �e directions are initialized by solving the problem with uniform conductances.

Numerical results. A small example is given in Fig. 3 with m = 11 (which shows the chosen directions of �ow), 
while a relatively large design is given in Fig. 4 with m = 51 . In both �gures, thick edges indicate that conduct-
ance is maximized at that edge while thin edges indicate that conductance is minimized (see the extremality 
principle in the “General problem formulation” section for more details). �e color of each node indicates the 
potential value, with red values indicating a higher potential and blue values indicating a lower one. We note that 
our heuristic recovers similar tendril-like patterns to those found in, e.g.7, Sect. 4 .

With the provided data, the heuristic terminates a�er 7 iterations, taking a total time of around .4 seconds in 
the case with m = 11 , with an objective value of about .115. �e case with m = 51 terminates a�er 14 iterations, 
taking a total time of around 20.5 seconds with an objective value of approximately .239.

Temperature control. In this example, we wish to keep the temperature of two rooms in a range of desired 
temperatures by appropriately closing and opening vents to the outside and between rooms and turning heat 
pumps on and o� at speci�ed times, while minimizing the total power consumption. We will also require that 
the controls and the temperatures be periodic.

Problem data. We can write this as an instance of problem (8) with

and A is the incidence matrix of the graph shown in Fig. 5, while

f (e) = cTe,

B = .2I , C = diag((.3, .1)), gmin
= 1, gmax

= 10,

Figure 2.  Field for approximately optimal design.
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Figure 3.  Approximately optimal design for m = 11 . Arrows indicate the direction of �ow used for this design, 
colors indicate the temperature at each node, while edge thickness indicates the conductance at each edge. �e 
grey box indicates the center square.

Figure 4.  Approximately optimal design for m = 51.

(et)3 (et)1
(gt)1

(et)2
(gt)2 (gt)3

(et)3

Figure 5.  Graph set up for the temperature control problem. Here, (et)3 is the ambient temperature at time 
t, while (et)1 and (et)2 are the temperatures of rooms 1 and 2, respectively. �e gt are the conductances of the 
indicated edges.
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where T = 300 . Since we will require that the room temperatures be periodic, we then have

Finally, we will require that the temperatures remain in some a range,

(et)3 = 70 + 20 sin

(

4π t

T

)

, t = 1, . . . ,T ,

(e1)1 = (eT )1, (e1)2 = (eT )2.

Figure 6.  Approximately optimal control.
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while minimizing

where h = 1/T  and η = 10
−4 is a small regularization parameter that ensures the resulting trajectories are 

smooth.
We initialize the problem with the signs given by assuming that gt = (gmin

+ gmax)/2 for all t = 1, . . . ,T − 1 
and using the heat pumps ut to ensure the temperature in the rooms remains above 65 and below 75.

Numerical results. We approximately optimize this instance using the �eld-based heuristic outlined in “Sign 
�ip descent”, with the result shown in Fig. 6. With the provided data, the heuristic terminates in 3 iterations, with 
a total time of around 1.56 s. �e �nal approximately optimized problem has an objective value of around 836.

Conclusion
�is paper presented a new problem formulation and an associated heuristic which may be of practical use for a 
general class of physical design problems, which appears to have good practical performance on many di�erent 
kinds of physical design problems. Additionally, this problem formulation implies a few interesting facts, most 
notably that the class of problems can be e�ciently solved even when only the signs of an optimal solution are 
known and that, in a few important cases, there exist globally optimal extremal designs.

Future work. �ere are several notable exceptions to the class of problems which are included in the for-
mulation given in (1), with the most important being designs whose parameters are constrained to be equal. 
�is means that, at the moment, a direct application to photonic design in three dimensions, the usual photonic 
design problem with complex �elds, circuit design with complex impedances, or multi-scenario physical design, 
is not possible with the current problem formulation. We suspect a suitable generalization of (1) might yield 
similarly interesting insights and, potentially, new heuristics for physical design.
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