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Convex searches for discrete-time Zames–Falb

multipliers
Joaquin Carrasco, Member, IEEE, William P. Heath, Member, IEEE, Jingfan Zhang, Student Member, IEEE Nur

Syazreen Ahmad, Member, IEEE, and Shuai Wang, Member, IEEE

Abstract—In this paper we develop and analyse convex
searches for Zames–Falb multipliers. We present two different
approaches: Infinite Impulse Response (IIR) and Finite Impulse
Response (FIR) multipliers. The set of FIR multipliers is complete
in that any IIR multipliers can be phase-substituted by an
arbitrarily large order FIR multiplier. We show that searches
in discrete-time for FIR multipliers are effective even for large
orders. As expected, the numerical results provide the best ℓ2-
stability results in the literature for slope-restricted nonlinearities.
In particular, we establish the equivalence between the state-of-
the-art Lyapunov results for slope-restricted nonlinearities and
a subset of the FIR multipliers. Finally, we demonstrate that
the discrete-time search can provide an effective method to find
suitable continuous-time multipliers.

Index Terms—Zames–Falb multipliers, absolute stability, Lur’e
problem.

I. INTRODUCTION

The stability of a feedback interconnection between a linear

time-invariant system G and any nonlinearity φ within the

class of nonlinearities Φ is referred to as the Lur’e problem

(see Section 1.3 in [1] for a history of this problem). As

the stability is obtained for the whole class of nonlinearities,

the adjective “absolute” or “robust” is added. In the classical

solution of this problem frequency-domain conditions on the

linear system are determined by the class of nonlinearites. The

inclusion of a multiplier reduces the conservativeness of the

approach. The stability problem is translated into the search

for a multiplier M which belongs to the class of multipliers

associated with the class of nonlinearities Φ, where G and M

satisfy some frequency conditions.

The class of Zames–Falb multipliers is defined both for

the continuous-time domain [2] and for the discrete-time

domain [3] (see [4] for a tutorial on Zames–Falb multipliers for

the continuous-time domain). Loosely speaking, a Zames–Falb

multiplier preserves the positivity of a monotone and bounded

nonlinearity. Hence if an LTI plant G is in negative feedback

with a monotone and bounded nonlinearity then stability is

guaranteed if there is a multiplier M such that

Re{MG}> 0, (1)

J. Carrasco, W. P. Heath, and J. Zhang are with the School of Electrical
and Electronic Engineering, University of Manchester, Sackville St. Build-
ing, Manchester M143 9PL, UK. e-mail: joaquin.carrasco@manchester.ac.uk,
william.heath@manchester.ac.uk, jingfan.zhang@postgrad.manchester.ac.uk

N. S. Ahmad is with the School Of Electrical & Electronic Engineering,
USM, Engineering Campus, Seberang Perai Selatan, Nibong Tebal, Penang,
14300, Malaysia. e-mail: syazreen@usm.my

S. Wang is a Senior Researcher with Robotics X in Tencent, High Tech-
nology Park, Nanshan District, Shenzhen, 518057, China. e-mail: shawnsh-
wang@tencent.com

with M and G evaluated over all frequencies (i.e. at jω ,

ω ∈R for continuous-time systems and at e jω , ω ∈ [0,2π] for

discrete-time systems). Similarly (and by loop tranformation)

if an LTI plant G is in negative feedback with an S[0,K] slope-

restricted nonlinearity, then stability is guaranteed if there is

a multiplier M such that

Re{M(1+KG)}> 0, (2)

with M and G evaluated over all frequencies. In addition a

wider class of multipliers is available if the nonlinearity is odd;

multipliers for quasi-odd multipliers can also be derived [5].

A. Overview of searches for Zames–Falb multipliers in the

continuous-time domain

To date, most of the literature on search methods for Zames–

Falb multipliers has been focused on continuous-time systems,

where three types of method have been developed:

a) Finite Impulse Response (FIR): Searches over sums

of Dirac delta functions are proposed and developed in [6], [7]

and [8]. The main advantage of this method is the simplicity

and versatility of using impulse responses for the multiplier.

However the searches require a sweep over all frequencies,

which can lead to unreliable results in some cases [9]. More-

over, the choice of times for the Dirac delta functions is

heuristic.

b) Basis functions: In [10] and [11] it is proposed to

parameterise the multiplier in terms of causal basis functions

e+i (t) = t ie−tu(t) where u(t) is the unit (or Heaviside) step

function, and anticausal basis functions e−i (t)= t ietu(−t), with

i= 1, . . . ,N for some N. As an advantage over the FIR method,

the positivity of M(1+ kG) can be tested through the KYP

lemma. Moreover the search provides a complete search over

the class of rational multipliers as N approaches infinity [12].

The method provides significant advantages, such as the

combination with other nonlinearities [13]. Nonetheless if N

is required to be large then the search becomes numerically

ill-conditioned. With small N there is conservatism for odd

nonlinearities, since the impulse of the multiplier is allowed

to change sign. In fact the results reported in [10] for SISO

examples are not significantly better for odd nonlinarities than

for non-odd.

c) Restricted structure rational multipliers: In [16] an

LMI method is proposed where the L1 norm of a low-

order causal multiplier is bounded in a convex manner (see

also [17]). Several extensions have been proposed: adding

a Popov multiplier [18], developing an anticausal counter-

part [9], and increasing the order of the multiplier [19]. The
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method is quasi-convex and effective but does not provide a

complete search. It has two further drawbacks: the bound of

the L1-norm may be conservative and it can only be applied

if the nonlinearity is odd.

In [21], [4], it has been shown that the searches’ relative per-

formances vary with different examples. It must be highlighted

that results using basis functions can be significantly improved

by manually selecting the parameters of the basis [14], [15].

Similarly, manual tuning of delta functions can be useful for

time-delay systems [22].

In addition, there are several other stability tests in the

literature, where either the Zames–Falb multipliers are not

explicitly invoked or extensions to the Zames–Falb multipliers

are proposed. These can all be viewed as searches over

subclasses of Zames–Falb multipliers [20], [21]. In particular,

the off-axis circle criterion is a powerful technique that uses

graphical tools to ensure the existence of a possibly high-order

multiplier by using graphical methods [23], hence avoiding the

use of an optimization tool. It can be used to establish a large

set of plants that satisfy the Kalman conjecture [24], [25].

B. Zames–Falb multipliers in the discrete-time domain

In [3], [26], the discrete-time counterparts of the Zames–

Falb multipliers [2] are given. The conditions are the natural

counterparts to the continuous-time case, where the L1-norm

is replaced by the ℓ1-norm and the frequency-domain inequal-

ity must be satisfied on the unit circle. In the continuous-

time case, the use of improper multipliers has generated

“extensions” of the original that have been analysed in [20],

[21]. In the discrete-time case, the conditions for the Zames–

Falb multipliers are necessary and sufficient to preserve the

positivity of the nonlinearity [26]; it follows that the class

of Zames–Falb multipliers is the widest class of multipliers

that can be used. The result has been extended to MIMO

systems [27], repeated nonlinearities in [28] and MIMO re-

peated nonlinearities in [29]. These works are focused on the

description of the available multipliers, but no explicit search

method is discussed.

Modern digital control implementation requires a complete

study in the discrete-time domain. In addition the possibility

of using the Zames–Falb multipliers for studying the stability

and robustness properties of input-constrained model predic-

tive control (MPC) [30] provides an inherent motivation for

discrete-time analysis, since MPC is naturally formulated in

discrete time. Recently, Zames–Falb multipliers in discrete-

time have been attracting attention in their use to ensure

convergence rates of optimization algorithms [31], [33].

More generally, the absolute stability problem of discrete-

time Lur’e systems with slope–restricted nonlinearities con-

tinues to attract attention. Recent studies include [34], [35],

[36], [37] which all take a Lyapunov function approach; as an

advantage they generate easy-to-check linear matrix inequality

(LMI) conditions. However one might expect that improved

results could be obtained via a multiplier approach, since this

provides a more general condition. In fact some of these ap-

proaches can be interpreted as a search over a small subclass of

Zames–Falb multipliers; see [36] for further details. Although

this paper deals with SISO systems, it must be highlighted

that a tractable stability test using Zames–Falb multipliers

for MIMO nonlinearities has been proposed in [38], which

can be seen as a MIMO extension of the results in Section

IV.B. Results in [38] focus on the most suitable structure

for the MIMO multiplier, where a combination of Zames–

Falb multipliers and circle criterion must be used to exploit

possible differences between sector and slope condition; by

contrast results in this paper focus on the use of different

search algorithms in the discrete-time domain.

The differences between continuous-time and discrete-time

Lur’e systems are non-trivial. As an example, second-order

counterexamples to the discrete-time Kalman conjecture have

been found [39], [40]. For continuous-time systems the

Kalman conjecture holds for first, second, and third order

plants [41]. This is reflected by phase restrictions that can

be placed on discrete-time Zames–Falb multipliers that are

different in kind to their continuous-time counterparts [42].

In this paper we propose several searches for SISO LTI

discrete-time Zames–Falb multipliers. The search of multipli-

ers can be carried out with two different approaches:

a) Infinite impulse response (IIR) multiplier: The search

is the counterpart of the method proposed by Turner et al.

[16], [9], presented in [43] and included for the sake of

completeness. The multipliers are parametrised in terms of

their state-space representation, and classical multiobjective

techniques are used to produce an LMI search.

b) Finite impulse response (FIR) multiplier: This search

can be considered as combining the searches of both Sa-

fonov’s [6] and Chen and Wen’s methods [11] in continuous-

time. Initial results were presented in [44]. Here, two alterna-

tive versions are provided: firstly we propose a novel ad hoc

factorisation where we can exploit some additional flexibility;

secondly we use standard lifting techniques, e.g. [45].

We show the equivalence of state-of-the-art Lyapunov re-

sults in [37] with a particular subclass of FIR multipliers in

Section V. Numerical results and some computational consid-

eration are discussed in Section VI. In Section VII we consider

how the discrete-time FIR search may be used effectively

to find continuous-time multipliers. We show by numerical

examples that tailoring the method can match or beat searches

proposed in the literature for rational transfer functions.

We must highlight that discrete-time Zames–Falb multi-

pleirs have been defined as LTV operators [3]. However, we

reduce our attention to LTI Zames–Falb multiplier. In the spirit

of [20], it remains open whether the restriction to LTI Zames–

Falb multiplier can be made without loss of generality when G

is an LTI system. Moreover we have conjectured [42] about the

connection between the lack of a Zames-Falb multiplier and

the lack of absolute stability. In short, if there is no suitable

Zames–Falb multiplier for a plant G and gain k smaller than

its Nyquist gain (see Section II for a definition), then we

conjecture that there exists a slope-restricted nonlinearity in

[0,k] such that the feedback interconnection between G and

the nonlinearity is unstable [42]. However, further work is

required to prove or disprove this conjecture.
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II. NOTATION AND PRELIMINARY RESULTS

Let Z and Z+ be the set of integer numbers and positive

integer numbers including 0, respectively. Let ℓ be the space

of all real-valued sequences, h : Z+ → R. Let ℓ1(Z) be the

space of all absolute summable sequences, so given a sequence

h : Z→R such that h ∈ ℓ1, then its ℓ1-norm is

‖h‖1 =
∞

∑
k=−∞

|hk|, (3)

where hk means the kth element of h. In addition, let ℓ2 denote

the Hilbert space of all square-summable real sequences f :

Z+ →R with the inner product defined as

〈 f ,g〉=
∞

∑
k=0

fkgk, (4)

for f , g ∈ ℓ2, k ∈ Z+. Similarly, we can define the Hilbert

space ℓ2(Z) by considering real sequences f : Z → R. We

use 0i to denote a row vector with i entries, all equal to

zero. Similarly 0 denotes a matrix with zero entries where the

dimension is obvious from the context. We use Ii to denote

the i× i identity matrix.

The standard notation RL∞ is used for the space of all real

rational transfer functions with no poles on the unit circle.

If G ∈ RL∞, its norm is defined as ‖G‖∞ = sup|z|=1 |G(z)|.
Furthermore RH∞ is used for the space of all real rational

transfer functions with all poles strictly inside the unit circle.

Similarly, RH−
∞ is used for the space of all real rational transfer

functions with all poles strictly outside the unit circle. With

some reasonable abuse of the notation, given a rational transfer

function H(z) analytic on the unit circle, ‖H‖1 means the ℓ1-

norm of impulse response of H(z).
Let M̄ denote a linear time invariant operator mapping a

time domain input signal to a time domain output signal and

let M denote the corresponding transfer function. We consider

that the domain of convergence includes the unit circle, so

that the ℓ1-norm of the inverse z-transform of M is bounded if

M ∈RL∞. We say the multiplier M̄ is causal if M ∈RH∞, M̄ is

anticausal if M ∈RH−
∞ , and M̄ is noncausal otherwise. See [48]

for further discussion on causality and stability. Henceforth,

we will use M for both the operator and its transfer function.

A discrete LTI causal system G has the state space real-

ization of (A, B, C, D). That is to say, assuming the input

and output of G at sample k are uk and yk, respectively, and

the inner state is denoted as xk, the following relationship is

satisfied

G :

{
xk+1 = Axk +Buk,

yk =Cxk +Duk,
(5)

in short

G ∼

[
A B

C D

]
. (6)

Its transfer function is given by G(z) = C(zI − A)−1B + D,

where z is the z-transform of the forward (or left) shift

operator. In fact, this notation is not always adopted in the

literature since the definition of the z-transform is not uniform

in the use of z or z−1. See [48], [50].

The discrete-time version of the KYP lemma will be used

to transfer frequency domain inequalities into LMIs:

✲

✻

✲

❄
✛ ♠✛ fv

w

φ

G♠
−

g

Fig. 1. Lur’e problem

Lemma II.1. (Discrete KYP lemma, [51]) Given A, B, M, with

det(e jω I−A) 6= 0 for ω ∈R and the pair (A,B) controllable,

the following two statements are equivalent:

(i) For all ω ∈R

[
(e jω I −A)−1B

I

]∗
M

[
(e jω I −A)−1B

I

]
≤ 0. (7)

(ii) There is a matrix X ∈R
n×n such that X = X⊤ and

M+

[
A⊤XA−X A⊤XB

B⊤XA B⊤XB

]
≤ 0. (8)

The corresponding equivalence for strict inequalities holds

even if the pair (A,B) is not controllable.

Throughout this paper, the superscript ∗ stands for conjugate

transpose.

Remark II.2. State space representations such as (5) are

appropriate for causal systems, but not for anticausal and

noncausal systems. These can be represented in state space

as descriptor systems. The KYP lemma has been extended to

descriptor systems in [52] for continuous-time LTI systems. In

[53] an approach to the analysis of discrete singular systems

is presented; however it is restricted to causal systems. In this

work we exploit the structure of our multipliers to find causal

systems that have the same frequency response on the unit

circle. Hence the classical KYP lemma suffices.

The discrete-time Lur’e system is represented in Fig. 1. The

interconnection relationship is
{

vk = fk +(Gw)k,

wk =−φ(vk)+gk.
(9)

The system (9) is well-posed if the map (v,w) 7→ (g, f ) has

a causal inverse on ℓ× ℓ, and this feedback interconnection is

ℓ2-stable if for any f ,g ∈ ℓ2, both w,v ∈ ℓ2.

The memoryless nonlinearity φ : R 7→ R with φ(0) = 0 is

said to be bounded if there exists C such that |φ(x)|<C|x| for

all x ∈R, φ is said to be sector bounded in the interval [0,Ψ]
if for any real number x 6= 0 then

0 ≤
φ(x)

x
≤ Ψ, (10)

and φ is said to be monotone if for any two real numbers x1

and x2 then

0 ≤
φ(x1)−φ(x2)

x1 − x2
. (11)

Moreover, φ is slope-restricted in the interval S[0,K] if

0 ≤
φ(x1)−φ(x2)

x1 − x2
≤ K, (12)
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for all x1 6= x2. Finally, the nonlinearity φ is said to be odd if

φ(x) =−φ(−x) for all x ∈R.

Zames–Falb multipliers preserve the positivity of the class

of monotone nonlinearities [2], [3]. Then a loop transformation

allows us to obtain the following result for slope restricted

nonlinearities:

Theorem II.3 ([26], [3]). Consider the feedback system

in Fig. 1 with G ∈ RH∞, and φ is a slope-restricted in

S[0,K]. Suppose that there exists a multiplier M : ℓ2(Z) 7→
ℓ2(Z) whose impulse response is m : Z 7→ R and satisfies

∑
∞
k=−∞ |mk| ≤ 2m0,

Re{M(z)(1+KG(z))}> 0 ∀|z|= 1, (13)

and either mk ≤ 0 for all k 6= 0 or φ is also odd. Then the

feedback interconnection (9) is ℓ2-stable.

The above theorem leads to the definition of the class of

Zames–Falb multipliers:

Definition II.4. (DT LTI Zames–Falb multipliers [3]) The

class of discrete-time SISO LTI Zames–Falb multipliers con-

tains all LTI convolution operators M : ℓ2(Z) 7→ ℓ2(Z) whose

impulse response is m : Z 7→ R satisfies ∑
∞
k=−∞ |mk| < 2m0.

Without loss of generality, the value of m0 can be chosen to

be 1.

Remark II.5. An important subclass of Zames–Falb multipli-

ers is obtained by adding the limitation mk ≤ 0, which must

be used if we only have information about slope-restriction of

the nonlinearity.

Remark II.6. It is also standard to write Definition II.4 using

the ℓ1-norm by stating the condition as ‖M‖1 ≤ 2.

Definition II.7. (Nyquist value) Given G ∈ RH∞, the Nyquist

value kN is the supremum of all the positive real numbers K

such that τKG(z) satisfies the Nyquist Criterion for all τ ∈
[0,1]. It can also be expressed as:

kN = sup{K ∈R
+ : inf

ω
{|1+ τKG(e jω)|}> 0),∀τ ∈ [0,1]}.

(14)

In terms of its state space realization (5), kN is the supremum

of K such that all eigenvalues of (A−BKC) are located in the

open unit disk, with K in the interval [0,kN ].

Remark II.8. The Kalman conjecture is not valid for discrete-

time systems even for plants of order 2 [39], [40]. There is

no a priori guarantee (except for first order systems) that if K

is less than the Nyquist value for the plant then the negative

feedback interconnection of the plant and a nonlinearity slope-

restricted in S[0,K] is stable.

III. SEARCHES FOR IIR MULTIPLIERS

In III-A we present a search for discrete-time causal mul-

tipliers that is the counterpart to the search for continuous-

time causal multipliers presented in [16] (see also [17]). In

Section III-B we present the anticausal counterpart, similar

in spirit to the continuous-time anticausal search of [9]. The

results in this section were fully presented in [43], so proofs

are omitted.

When the multiplier is parameterised in terms of its state-

space representation as in [16], [17], we require the following

bound [54] for all the searches.

Lemma III.1 ([54]). Consider a dynamical system G rep-

resented by (5) and x0 = 0. Suppose that there exist µ > 0,

0 < λ < 1 and P = P⊤ such that
[

A⊤PA−λP A⊤PB

⋆ B⊤PB−µI

]
< 0, (15)

[
(λ −1)P+C⊤C C⊤D

⋆ (µ − γ2)I +D⊤D

]
< 0. (16)

Then ‖G‖1 < γ . Furthermore, A has all its eigenvalues in the

open unit disk.

The use of this result is a fundamental limitation of this

method as the parameterisation of the multipliers requires their

causality to be established before carrying out the search.

Another important feature of this method is that it requires

the nonlinearity to be odd as it is not possible to ensure the

positivity of the impulse response of the multiplier.

A. Causal multiplier search

In the spirit of [16], a search over the class of causal

discrete-time Zames–Falb multipliers is presented as follows:

Proposition III.2. Let

G(z)∼

[
Ag Bg

Cg Dg

]

where Ag ∈ R
n×n, Bg ∈ R

n×1, Cg ∈ R
1×n and Dg ∈ R

1×1. Let

φ be an odd nonlinearity slope-restricted in S[0,K]. Without

loss of generality, assume that the feedback interconnection of

G and a linear gain K is stable. Define Ap, Bp, Cp and Dp as

follows:

Ap = Ag; (17)

Bp = Bg; (18)

Cp = KCg; (19)

Dp = 1+KDg. (20)

Assume that there exist positive definite symmetric matrices

S11 > 0, P11 > 0, unstructured matrices Â, B̂ and Ĉ with the

same dimension as A, B, and C, respectively, and positive

constants 0 < µ < 1 and 0 < λ < 1 such that the LMIs (21),

(22), and (23) (given on the following page) are satisfied. Then

the feedback interconnection (1) is ℓ2-stable.

Remark III.3. Similar to the continuous case [16], [17], the

inequalities (21), (22), and (23) are not LMIs if λ is defined as

variable. Hence, the use of this result requires a linear search

of λ over the interval between 0 and 1.

Remark III.4. The change of variable is the same as in the

continuous case (see [16], [21], [36]). The multiplier defined

by

M(z)∼

[
Au Bu

Cu 1

]
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LMIs in Proposition III.2:




−S11 ⋆ ⋆ ⋆ ⋆

−S11 −P11 ⋆ ⋆ ⋆

−Cp − Ĉ −Cp −D⊤
p −Dp ⋆ ⋆

S11Ap S11Ap S11Bp −S11 ⋆

P11Ap + B̂Cp + Â P11Ap + B̂Cp P11Bp + B̂Dp −S11 −P11



< 0, (21)




λ (S11 −P11) ⋆ ⋆

0 −µI ⋆

−Â −B̂ S11 −P11


< 0, (22)



(λ −1)(P11 −S11) ⋆ ⋆

0 (µ −1)I ⋆

Ĉ 0 −I


< 0. (23)

where Au, Bu, and Cu can be recovered following [17] using

Au = −(P11 −S11)
−1Â, (24)

Bu = −(P11 −S11)
−1B̂, (25)

Cu = Ĉ. (26)

Remark III.5. Under further conditions, e.g. Dp = 0, it is

possible to extend this method with a first order anticausal

component in the multiplier, i.e. M(z) = (1+m−1z)+Mc(z),
under the constraint |m−1|< 1. The development of the result

is similar with the use of the state-space representation of

zG(z).

B. Anticausal multiplier search

The anticausal counterpart of the above search can be stated

as follows:

Proposition III.6. Let G ∈ RH∞ be represented in the state

space by Ag, Bg, Cg and Dg where Ag ∈ R
n×n, Bg ∈ R

n×1,

Cg ∈ R
1×n and Dg ∈ R

1×1. Let φ an odd nonlinearity slope-

restricted in S[0,K]. Without loss of generality, assume that

the feedback interconnection of G and a linear gain K is well-

posed and stable. Define Ap, Bp, Cp and Dp as follows:

Ap = Ag −Bg(KDg +1)−1KCg; (27)

Bp =−Bg(KDg +1)−1; (28)

Cp = (KDg +1)−1KCg; (29)

Dp = (KDg +1)−1. (30)

Assume that there exist positive definite symmetric matrices

S11 > 0, P11 > 0, unstructured matrices Â, B̂ and Ĉ, and

positive constants 0 < µ < 1 and 0 < λ < 1 such that the

LMIs (21), (22), and (23) are satisfied, then the feedback

interconnection (1) is ℓ2-stable.

Remark III.7. Once the search has provided the matrices Â,

B̂ and Ĉ, the matrices Au, Bu, and Cu are computed as in

Remark III.4, then the multiplier is given by:

Mac(z) =Cu

(
z−1I −Au

)−1
Bu +1, (31)

which can be written as

Mac(z)∼

[
A−⊤

u A−⊤
u C⊤

u

B⊤
u A−⊤

u 1−B⊤
u A−⊤

u C⊤
u

]
, (32)

if Au is non-singular. If Au is singular, then the result is still

valid but the multiplier does not have a forward represen-

tation. Note that the region of convergence of this transfer

function does not include z = ∞ and the term m0 in the

inverse z-transform of Mac(z) corresponds with Mac(0), i.e.

(Z −1(Mac))(0) = Mac(0).

IV. SEARCHES FOR FIR MULTIPLIERS

In this section, we restrict our attention to FIR multipliers,

i.e.

M(z) =
nb

∑
i=−n f

miz
−i, (33)

where nb ≥ 0 and n f ≥ 0. Without loss of generality we set

m0 = 1. If the nonlinearity is not odd we consider only the

subclass of Zames–Falb multipliers with mi ≤ 0 for all i ∈
Z\{0}. The multiplier M is said to be causal if nb ≥ 0 and

n f = 0, it is said to be anticausal if nb = 0 and n f ≥ 0, and it

is said to be noncausal if nb > 0 and n f > 0.

Two different searches are included as they provide alter-

native insights to the design of the multiplier:

• firstly we provide a special factorisation for SISO Zames-

Falb multipliers where the design of the multiplier is more

flexible as n f and nb can be selected independently;

• secondly we present a basis factorisation for SISO mul-

tipliers, which can be seen as a counterpart of the

continuous-time domain, under the constraint n f = nb.

Although there are no significant numerical differences, there

is a very significant difference from a theoretical point of

view: the first search guarantees a positive definite matrix

when the KYP lemma is used. It must be highlighted that

there is no such search of noncausal Zames-Falb multipliers

in continuous-time. Further research is required to investigate a

possible transformation to the time-domain, where local prop-

erties can be analysed [46], [47]. To conclude the section, we

show that any Zames–Falb multiplier can be phase-substituted

by an appropriate FIR multiplier.

A. Special search of FIR Zames–Falb multipliers

In this section we develop an LMI search for FIR Zames–

Falb multipliers. In Lemma IV.1 we show that the ℓ1 condition
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can be expressed with linear constraints. In Lemma IV.3 we

show that although our multiplier is noncausal, the positivity

condition can be expressed in terms of a nonsingular state-

space representation, leading to an LMI formulation. Our main

stability result is stated in Theorem IV.4. It is possible to show

that the LMI requires a positive definite matrix.

We seek a Zames–Falb multiplier M(z) with structure

of (33) and m0 = 1 such that

Re{M(z)(1+KG(z))}> 0 ∀ |z|= 1. (34)

Lemma IV.1. If M(z) has the structure of (33) with m0 = 1,

then M(z) is a Zames–Falb multiplier provided

mi ≤ 0 for i =−n f , . . . ,−1 and i = 1, . . . ,nb, (35)

and
nb

∑
i=−n f

mi ≤ 2. (36)

If the nonlinearity is odd then we can write mi = m+
i −m−

i for

i = −n f , . . . ,nb (we define m+
0 = 1 and m−

0 = 0) and M(z) is

a Zames–Falb multiplier provided:

m+
i ≥ 0 and m−

i ≥ 0 for i =−n f , . . . ,nb, (37)

and
nb

∑
i=−n f

m+
i +

nb

∑
i=−n f

m−
i ≤ 2. (38)

Proof. This follows immediately from Theorem II.3. The

decomposition for odd nonlinearities is the Jordan measure

decomposition (e.g. [55]).

Remark IV.2. If the nonlinearity is not odd this leads to n f +
nb + 1 linear constraints while if the nonlinearity is odd this

leads to 2n f +2nb +1 linear constraints.

Given P(z) = 1+ kG(z), condition (34) can be written:

M(z)P(z)+ [M(z)P(z)]∗ > 0 for all |z|= 1. (39)

However, since M is noncausal and P ∈ RH∞, it follows

that MP does not have a nonsingular state-space description.

This is addressed in Lemma IV.3 below.

First we define some quantities. Let P(z) have state-space

description

P ∼

[
Ap Bp

Cp Dp

]
, (40)

where Ap ∈R
np×np . Let n = max(n f ,nb) and define

Ã =




Ap Bp 0

0 0 In−1

0 0 0


 and B̃ =




0

0

1


 , (41)

where Ã ∈R
(np+n)×(np+n). Also let

Cn =
[

Cp Dp 0n−1

]
, (42)

and

Cd,i =
[

0np+n−i 1 0i−1

]
for i = 1, . . . ,n f . (43)

Define Ci as

Ci =CnÃn−i +
−i

∑
j=1

(
CnÃn−i− j−1B̃

)
Cd, j for i =−n f , . . .−1,

(44)

C0 =CnÃn, (45)

Ci =CnÃn−i for i = 1, . . . ,nb, (46)

and Di as

Di =CnÃn−i−1B̃ for i =−n f , . . . ,−1, (47)

D0 =CnÃn−1B̃, (48)

Di = 0 for i = 1, . . . ,nb. (49)

Then we can say:

Lemma IV.3. Suppose P(z) is a causal and stable discrete-

time transfer function with state-space description (40) and

suppose M(z) is a noncausal FIR transfer function given by

(33) with m0 = 1. There exist Pi(z) for i = −n f , . . . ,nb with

nonsingular state-space representation such that

M(z)P(z)+ [M(z)P(z)]∗ =
nb

∑
i=−n f

mi (Pi(z)+Pi(z)
∗) , ∀|z|= 1.

(50)

Furthermore the statement

M(z)P(z)+ [M(z)P(z)]∗ > 0 ∀|z|= 1, (51)

is equivalent to the statement that there exists a matrix X ∈
R

(np+n)×(np+n) such that X = X⊤ and
[

Ã⊤XÃ−X Ã⊤XB̃

B̃⊤XÃ B̃⊤XB̃

]
−M⊤

f ΠM f < 0, (52)

with

Π =

[
Π11 Π12

Π21 Π22

]
=

[
0 m

m⊤ 0

]
, (53)

m⊤ =
[

m−n f
, . . . , m−1, 1, m1, . . . mnb

]
, (54)

and

M f =

[
M f ,11 M f ,12

M f ,21 M f ,22

]
=




C−n f
D−n f

...
...

Cnb
Dnb

0 1


 , (55)

with Ã, B̃, Ci and Di given by (41), (44-46) and (47-49),

respectively.

Proof. We can write

M(z)P(z) =
nb

∑
i=−n f

miz
−iP(z). (56)

Hence we must choose causal Pi(z) for i = −n f , . . . ,nb such

that

Pi(z)+ [Pi(z)]
∗ = z−iP(z)+

[
z−iP(z)

]∗
for all |z|= 1. (57)

It follows immediately that for i = 0, . . . ,nb we can choose

Pi(z) = z−iP(z). (58)
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When i is negative, z−iP(z) is not causal (beware: if i is

negative then z−i is anticausal). We can partition z−iP(z) into

causal and anticausal parts

z−iP(z) = PAC
i (z)+PC

i (z). (59)

The partition is standard since PAC
i is FIR (e.g. [48]). If we

write P as

P(z) =
∞

∑
k=0

pkz−k, (60)

then, for i =−n f , . . . ,−1, we have

PAC
i (z) =

−i−1

∑
k=0

pkz−i−k

= Dpz−i +
−i−1

∑
k=1

CpAk−1
p Bpz−i−k, (61)

and

PC
i (z) = z−iP(z)−PAC

i (z)

=CpA−i
p (zI −Ap)

−1Bp +CpA−i−1
p Bp. (62)

Then we can choose

Pi(z) = PC
i (z)+PAC

i (z−1). (63)

We parameterize each Pi(z) as follows. Let n = max(n f ,nb).
Define Ã and B̃ as (41) and Cn as (42). Then

z−nP(z) =Cn(zI − Ã)−1B̃. (64)

When i is positive we can write

Pi(z) = z−iP(z)

=CnÃn−i(zI − Ã)−1B̃

=Ci(zI − Ã)−1B̃+Di for i = 1, . . . ,nb, (65)

where Ci and Di are given by (46) and (49) respectively.

Similarly

P0(z) = P(z)

=CnÃn(zI − Ã)−1B̃+CnÃn−1B̃

=C0(zI − Ã)−1B̃+D0, (66)

where C0 and D0 are given by (45) and (48) respectively.

When i is negative, we write

Pi(z) =CpA−i
p (zI −Ap)

−1Bp +CpA−i−1
p Bp

+Dpz−i +
−i−1

∑
k=1

CpAk−1
p Bpz−i−k. (67)

The state space realization of the delay operator z− j is formu-

lated as

z− j =Cd, j(zI − Ã)−1B̃, (68)

with Cd,i given by (43). So we can write this

Pi(z) =CnÃn−i(zI − Ã)−1B̃+CnÃn−i−1B̃

+CnÃn−1B̃z−i +
−i−1

∑
k=1

CnÃn+k−1B̃z−i−k

=Ci(zI − Ã)−1B̃+Di for i =−n f , . . . ,−1, (69)

where Ci and Di are given by (44) and (47) respectively.

Finally we can write

M(z)P(z)+ [M(z)P(z)]∗

=




P−n f
(z)

...

Pnb
(z)

1




∗

[
0 m

m⊤ 0

]



P−n f
(z)

...

Pnb
(z)

1




=

[
(zI − Ã)−1B̃

1

]∗
M⊤

f ΠM f

[
(zI − Ã)−1B̃

1

]
. (70)

The result then follows immediately from the KYP Lemma

for discrete-time systems (Lemma II.1).

We can now state our main result.

Theorem IV.4. Consider the feedback system in Fig.1 with

G ∈ RH∞, and φ is a nonlinearity slope-restricted in S[0,k].
Suppose we can find m and X such that the LMI (52) is sat-

isfied under the conditions of Lemma IV.3 with the additional

constraints either (35) and (36) or φ is also odd and (37) and

(38). Then the feedback interconnection (9) is ℓ2-stable.

Proof. This follows immediately from Lemma IV.1,

Lemma IV.3 and Theorem II.3.

Proposition IV.5. If there exists X = XT satisfying (52) in

Lemma IV.3, then X > 0.

Proof. It follows since the diagonal matrix block MT
f ΠM f

with the (n + np) first rows and columns, denoted by

(MT
f ΠM f )11, is zero, hence condition (52) requires

ÃT XÃ−X < 0

with all eigenvalues of Ã in the open unit disk, hence X > 0.

In detail, the eigenvalues of Ã are the the eigenvalues of A

and 0, so Ã is Hurwitz when A is Hurwitz.

Then, it follows

(MT
f ΠM f )11 = MT

f ,11Π11M f ,11 +MT
f ,11Π12M f ,21

+MT
f ,21Π21M f ,11 +MT

f ,21Π22M f ,21.

Since Π11 = 0(nb+n f +1)×(nb+n f +1), and M f ,21 = 01×(n+np), we

have (MT
f ΠM f )11 = 0(n+np)×(n+np).

Therefore, X > 0 holds.

B. FIR search using causal basis

In this section we provide a causal-factorisation ap-

proach which is widely discrete-time for general robust tech-

niques [45], but here we focus on Zames–Falb multipliers. One

can think of this technique as the discrete-time counterpart

of factorisation approach in [13] for general continuous-time

multipliers.

By the IQC theorem, we seek a Zames–Falb multiplier such

that
[
−G(z)

1

]∗ [
0 KM∗(z)

KM(z) −(M(z)+M∗(z))

][
−G(z)

I

]
< 0 ∀|z|= 1.
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Substituting the Zames–Falb multiplier M(z) by its FIR

form (33) with nb = n f = n, then the IQC multiplier can be

factorized via lifting as follows

[
0 KM∗(z)

KM(z) −(M(z)+M∗(z))

]
= Ψ(z)∗κ(K,m)Ψ(z),

where

Ψ(z) =




1 0

z−1 0

z−2 0
...

...

z−n 0

0 1

0 z−1

0 z−2

...
...

0 z−n




,

and κ(K,m) is given in (71) in next page.

Theorem IV.6. Consider the feedback system in Fig.1 with

P ∈ RH∞, and φ is a nonlinearity slope-restricted in S[0,K].
Let

Ψ(z)

[
−G(z)

1

]
∼

[
Â B̂

Ĉ D̂

]
,

and

m⊤ =
[
m−n, . . . , m−1, 1, m1, . . . mn

]
.

If there exist X = XT and m such that

[
Â⊤XÂ−X Â⊤XB̂

B̂⊤XÂ B̂⊤XB̂

]
+
[
Ĉ D̂

]T
κ(k,m)

[
Ĉ D̂

]
< 0, (72)

n

∑
i=−n

|mi| ≤ 2, (73)

and either mi ≤ 0 for all i 6= 0 or φ is odd, then the feedback

interconnection (9) is ℓ2-stable.

Proof. The proof follows by the application of the KYP

lemma, as (72) is equivalent to (13); hence the conditions of

Theorem II.3 hold, and stability is then guaranteed.

Remark IV.7. Conditions for quasi-odd, quasi-monotone non-

linearities [5] can be straightforwardly implemented.

Remark IV.8. In this factorisation, it is not possible to ensure

X > 0. The introduction of the condition X > 0 would reduce

the class of available multipliers.

Remark IV.9. This approach ensures the extension to MIMO

system as shown in [38]. It must be highlighted that the

structure of the multiplier then depends on the structure of the

nonlinearity as shown in [28], [29]. However the extension of

the result in Section IV.A requires further research.

C. Phase-Equivalence

In the spirit of [20], [21], we can state the phase-equivalence

between the full class of LTI Zames–Falb multipliers and FIR

Zames–Falb multipliers as follows:

Lemma IV.10. Given P ∈ RH∞, if there exists a Zames–Falb

multiplier M such that

Re{M(z)P(z)}> 0 ∀|z|= 1, (74)

then there exists an FIR Zames–Falb multiplier MFIR such that

Re{MFIR(z)P(z)}> 0 ∀|z|= 1. (75)

Proof. Given an LTI Zames–Falb multiplier

M(z) =
∞

∑
i=−∞

miz
−i, and

∞

∑
i=−∞

|mi| ≤ 2m0, (76)

for any ε > 0, there exists N such that

−N−1

∑
i=−∞

|mi|+
∞

∑
i=N+1

|mi|< ε. (77)

We can write

M(z) =
N

∑
i=−N

miz
−i +Mt(z) = MFIR(z)+Mt(z), (78)

with ‖Mt‖∞ ≤ ‖Mt‖1 < ε .

Meanwhile, as P(z) and M(z) are continuous functions in

the unit circle, by the extreme value theorem [49], there exists

δ1 > 0 such that

Re{M(z)P(z)} ≥ δ1 for all |z|= 1. (79)

Let us choose N such that (77) is satisfied with ε = δ1
2‖P‖∞

.

Then for all z satisfying |z|= 1 we find

Re{M(z)P(z)}= Re{MFIR(z)P(z)}+Re{Mt(z)P(z)}

≤ Re{MFIR(z)P(z)}+ |Mt(z)P(z)|

≤ Re{MFIR(z)P(z)}+ |Mt(z)||P(z)|

≤ Re{MFIR(z)P(z)}+‖Mt‖∞‖P‖∞

≤ Re{MFIR(z)P(z)}+
δ1

2
, (80)

Finally, rearranging using (80) and using (74), it follows that

Re{MFIR(z)P(z)} ≥ Re{M(z)P(z)}−
δ1

2

≥
δ1

2
> 0 for all |z|= 1. (81)

V. RELATIONS TO LYAPUNOV RESULTS

In [36], a time domain stability criterion based on a Lya-

punov function is shown be equivalent to a frequency domain

stability theorem with a first order noncausal FIR Zames-Falb

multiplier. Recently, a state-of-the-art Lyapunov criterion has

been presented in [37]. In this section, a similar analysis is

conducted to show the relations between the stability crite-

rion in [37] and a second order noncausal FIR Zames-Falb

multiplier.
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κ(K,m) =




0 0 0 · · · 0 Km0 Km−1 Km−2 · · · Km−n

0 0 0 · · · 0 Km1 0 0 · · · 0

0 0 0 · · · 0 Km2 0 0 · · · 0
...

...
... · · ·

...
...

...
... · · ·

...

0 0 0 · · · 0 Kmn 0 0 · · · 0

Km0 Km1 Km2 · · · Kmn −2m0 −m1 −m−1 −m2 −m−2 · · · −mn −m−n

Km−1 0 0 · · · 0 −m1 −m−1 0 0 · · · 0

Km−2 0 0 · · · 0 −m2 −m−2 0 0 · · · 0
...

...
... · · ·

...
...

...
... · · ·

...

Km−n 0 0 · · · 0 −mn −m−n 0 0 · · · 0




(71)

A. Stability criterion in Lyapunov approach

The Theorem 1 in [37] can be rewritten as follows.

Theorem V.1. ([37]) For the discrete time Lur’e system

G ∼

[
A B

C 0

]
with the nonlinearity φ ∈ [0,Ψ]∩ S[0,K], the

closed-loop system is absolutely stable if there exist a symmet-

ric matrix X ∈ R
(2n+2m)×(2n+2m), positive diagonal matrices

Mi ∈ R
m×m (i = 1,2), Ni ∈ R

m×m (i = 1, · · · ,4), Πk ∈ R
m×m,

Λk ∈R
m×m (k = 1,2,3), and any matrices Θ1, Θ2 ∈R

n×n, Θ3,

Θ4, Θ5 ∈ R
m×n, such that

X̂ ≡ X +Ξ > 0, Ω ≡ Ω1 +Ω2 +Ω3 +Ω4 < 0, (82)

where Ξ is defined below. In addition, Ω1, Ω2, Ω3, Ω4 are on

the next page, where some terms are added and subtracted at

the same time respectively on the basis of Ω in [37].

Ξ11 =CT (M2K +N2Ψ)C, Ξ21 =−CM2KCT ,

Ξ22 =CT (M2K +N4Ψ)C, Ξ31 =−(M2 +N2)C,

Ξ32 = M2C, Ξ33 = (M1 +M2 +N1 +N2)K
−1,

Ξ41 = M2C, Ξ42 =−(M2 +N4)C,

Ξ43 =−(M1 +M2)K
−1, Ξ44 = (M1 +M2 +N3 +N4)K

−1.

B. Frequency domain interpretation for SISO systems

In the spirit of the development in [36], the second inequal-

ity can be translated into a frequency domain condition for the

case Ψ = K and m = 1.

Theorem V.2. Let G be a SISO system. If the condition in

Theorem V.1 are satisfied for some K = Ψ, then there exists

a FIR Zames-Falb multiplier M(z) =−m2z−2 −m1z−1 +m0 −
m−1z−m−2z2 such that

Re{M(z)(1+KG(z))}> 0 ∀|z|= 1. (86)

Proof. The term Ω1 +Ω2 in (82) can be written

Ω1 +Ω2 =

[
ÂT X̂ Â− X̂ ÂT X̂ B̂

B̂T X̂ Â B̂T X̂ B̂

]
,

where the state-space matrices

Â =




0 1 0 0

0 A 0 −B

0 0 0 1

0 0 0 0


 , B̂ =




0

0

0

1




correspond to the augmented state

x̂k = [xT
k xT

k+1 φ(yk)
T φ(yk+1)

T ]T .

Then by the KYP Lemma, the condition (82) can be

rewritten in frequency domain
[
(zI − Â)−1B̂

I

]∗ (
Ω3 +Ω4

)[(zI − Â)−1B̂

I

]
< 0, ∀|z|= 1.

(87)

In addition, the identity

He
{

ζ T
k Θ[−xk+1 +Axk −Bφ(yk)]

}
= 0,

with

ζk = [xT
k xT

k+1 φ(yk)
T φ(yk+1)

T φ(yk+2)
T ]T ,

and

Θ = [ΘT
1 ΘT

2 ΘT
3 ΘT

4 ΘT
5 ]

T ,

implies
[
(zI − Â)−1B̂

I

]∗
Ω3

[
(zI − Â)−1B̂

I

]
= 0, ∀|z|= 1.

Hence condition (87) is equivalent
[
(zI − Â)−1B̂

I

]∗
Ω4

[
(zI − Â)−1B̂

I

]
< 0, ∀|z|= 1. (88)

Noting than

zG(z) =CA(zI −A)−1B+CB

and

Re{(M1 +M2)z}= Re
{
(M1 +M2)z

−1
}
= Re

{
M1z−1 +M2z

}
,

with MT
1 = M1, MT

2 = M2 for all |z| = 1, then condition (88)

can be written

He
{

Λs(G(z)+Ψ−1)+M(z)(G(z)+K−1)
}
> 0, ∀|z|= 1,

(89)

where Λs = Λ1 +Λ2 +Λ3, M(z) = −m2z−2 −m1z−1 +m0 −
m−1z−m−2z2, and

m0 = 2(M1 +M2)+N1 +N2 +N3 +N4 +2(Π1 +Π2 +Π3)> 0,

m1 = M1 +M2 +N1 +N3 +Π1 +Π3 > 0,

m−1 = M1 +M2 +N2 +N4 +Π1 +Π3 > 0,

m2 = Π2 > 0, m−2 = Π2 > 0.

It is clear that m0 =m2+m1+m−1+m−2, so M(z) is an FIR

multipliers with structure given by (33) with nb = n f = 2.
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Ω1 =




0 ⋆ ⋆ ⋆ ⋆

0

ATCT (M2K +N4Ψ)CA

+CT (M2K +N2Ψ)C
−He{ATCT M2KC}+X11

AT X22A+He{X21A}

⋆ ⋆ ⋆

0 0 0 ⋆ ⋆

0

−BTCT (M2K +N4Ψ)CA

+BTCT M2KC+M2CA

−(M2 +N2)C−BT X22A

+X32A−BT X21 +X31

0

BTCT (M2K +N4Ψ)CB

−He{BTCT M2 +BT X32}
+BT X22B+X33

+(M1 +M2 +N1 +N2)K
−1

⋆

0
−(M2 +N4)CA

+M2C+X42A+X41
0

(M2 +N4)CB−X42B

+X43 − (M1 +M2)K
−1

(M1 +M2 +N3 +N4)K
−1

+X44




, (83)

Ω2 =




−X −Ξ

⋆

⋆

⋆

⋆

0 0 0 0 0


 , Ω3 =




Θ1A+AT ΘT
1 ⋆ ⋆ ⋆ ⋆

Θ2A−ΘT
1 −Θ2 −ΘT

2 ⋆ ⋆ ⋆

Θ3A−BT ΘT
1 −Θ3 −BT Θ2 −Θ3B−BT ΘT

3 ⋆ ⋆

Θ4A −Θ4 −Θ4B 0 ⋆

Θ5A −Θ5 −Θ5B 0 0


, (84)

Ω4 =




0 ⋆ ⋆ ⋆ ⋆

0 0 ⋆ ⋆ ⋆(
Π1 +Π2

+Λ1

)
C

−(N2 +Π1)C
−Π2CA

−2Λ1Ψ−1

−2(Π1 +Π2)K
−1 ⋆ ⋆

−(N1 +Π1)C




M1 +M2

+N1 +N2

+Π1 +Π3

+Λ2


C

−

(
M1 +M2

+N4 +Π3

)
CA

(
N1 +N2

+2Π1

)
K−1

+BTCT Π2

He

{(
M1 +M2

+N4 +Π3

)
CB

}

−2Λ2Ψ−1

−2




M1 +M2

+N1 +N2

+Π1 +Π3


K−1

⋆

−Π2C

−

(
M1 +M2

+N3 +Π3

)
C




M1 +M2

+N3 +N4

+Π2 +Π3

+Λ3


CA

2Π2K−1

−




M1 +M2

+N3 +N4

+Π2 +Π3

+Λ3


CB

+




2M1 +2M2

+N3 +N4

+2Π3


K−1

−2Λ3Ψ−1

−2




M1 +M2

+N3 +N4

+Π2 +Π3


K−1




.

(85)

This shows that the Lyapunov result [37] for SISO can

be obtained with a low order FIR Zames–Falb multiplier. It

remains open whether similar equivalences can be found for

Lyapunov results for MIMO systems.

VI. NUMERICAL RESULTS

A. Comparison with other results

Table I presents the numerical examples that we analyse.

Six plants are taken from previous papers [36], [40] and a

new plant is used (Example 7). Results are shown in Table II.

We have run results in Theorem IV.4 for values of n = nb = n f

between 1 and 100, and optimal results are presented in

Table II indicating n∗ the optimal value of n. There are small

numerical differences between results with both factorisations.

In general, there is a slightly better performance of the

factorisation presented in Section IV.A.

The FIR search is significantly better than all competitive

results in the literature, it beats classical searched as the

Tsypkin Criterion [56], [57] as well as the most recent result in

the Lyapunov literature [36], [37]. It is worth highlighting that

these Lyapunov methods correspond with particular cases of

FIR Zames–Falb multipliers, besides small numerical discrep-

ancies. Results [36] corresponds with the case nb = n f = 1,

whereas results in [37] correspond with the case nb = n f = 2,

besides small numerical discrepancies. Results have been

obtained by using CVX [58], [59] with the SDPT solver [60].

Roughly speaking, the higher the order of the multiplier,

the better the results. However, there is a small deterioration

due to numerical issues as n = nb = n f increases. We show

that the maximum slope suffers also a small deterioration as

n increases by including the values of the maximum slope

with n = 100. Figure 2 shows that the search improves as

n increases until n = 10 but it is able to keep a significant

consistency until n = 100. Figure 3 shows some signs of

deterioration as n increase, but the behaviour of the search

is completely different to the search in continuous-time when

the search collapses to zero high-order multipliers (see Figure

7in [13] where a discussion on the selection of the basis is

provided). We associate this deterioration to the numerical

error associated with an increment in the size of the matrices

in the LMIs.

Although for several examples the improvements are limited

for n > 3, the new example has been provided to show that

improvements can be found with larger values of n.

As expected, results for odd nonlinearities are always better

than results for non-odd nonlinearities. Although this is natural
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Fig. 2. Maximum slope for Example 1 for odd nonlinearities as n = n f = nb

increases. The search is not affected by the significant numerical problems of
the continuous-time counterpart (see [4], [13] for further details).
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Fig. 3. Detail of Figure 2 showing a small deterioration in the performance
of the search for large values of n.

as the set of available multipliers increases and their phase

restrictions are reduced, this contrasts with the SISO results

reported in [10] for the continuous case. In Examples 1 to 4

the FIR results beat all others in the literature. In Example 5

both the FIR results and others in the literature achieve the

Nyquist value. Example 6 is used in [40] to show that stability

is deteriorated by the lack of symmetry. From [40], we expect a

maximum slope above 1 for odd nonlinearities and below 1 for

non-odd nonlinearities. Finally, Example 7 has been developed

to show an staggered improvement in the maximum slope,

showing a significant improvement with respect to [37].
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Fig. 4. Maximum slope for Example 7 for odd and non-odd nonlinearities.

TABLE I
EXAMPLES

Ex. Plant

1 [36] G1(z) =
0.1z

z2−1.8z+0.81

2 [36] G2(z) =
z3−1.95z2+0.9z+0.05

z4−2.8z3+3.5z2−2.412z+0.7209

3 [36] G3(z) =− z3−1.95z2+0.9z+0.05
z4−2.8z3+3.5z2−2.412z+0.7209

4 [36] G4(z) =
z4−1.5z3+0.5z2−0.5z+0.5

4.4z5−8.957z4+9.893z3−5.671z2+2.207z−0.5

5 [36] G5(z) =
−0.5z+0.1

z3−0.9z2+0.79z+0.089

6 [40] G6(z) =
2z+0.92
z2−0.5z

7 (new) G7(z) =
1.341z4−1.221z3+0.6285z2−0.5618z+0.1993

z5−0.935z4+0.7697z3−1.118z2+0.6917z−0.1352

B. CVX implementation

False positives are possible under some conditions when

CVX [58], [59] is used. As suggested in [61], a possible

solution is to add a positive variable in the left-hand side

of (52) multiplied with by an identity matrix, and maximize

this variable.

C. Computational time

It is interesting to analyse the performance of the search as

n increases. As expected, the computational time increases in

a polynomial fashion. However, it is worth highlighting that

the use of the Jordan measure decomposition in (38) increases

slightly the computational time as the number of variables in

the multiplier is doubled. The code is run in HP EliteDesk

800G2 with Intel Core i7-6700 processor at 3.40 GHz.
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20
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80

T
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 (

s
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Nonodd 

Fig. 5. Computational time require to find the maximum slope in Example 1
with a precision of 10−5 in the bisection algorithm. The bisection method is
started with kmin = 0 and kmax = kN . The case mi ≤ 0 in red (slope-restricted
nonlinearities), and the in blue the most general class of multipliers (slope-
restricted and odd nonlinearities).

VII. APPLICATION TO SAFONOV’S METHOD

Safonov proposed the first numerical method to search for

Zames–Falb multipliers [6]. Various modifications have been

proposed [7], [8] to produce numerical optimization of the

multiplier. In this section, we provide a different approach,

which require manual tuning from the user, but may be used to

test the conservatism of fully-autonomous numerical searches.

Note that other manual tunings of rational multipliers have

been suggested in the literature [13], [15], which also lead to

improvements over fully-autonomous searches.
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TABLE II
SLOPE-RESTRICTED RESULTS BY USING DIFFERENT STABILITY CRITERIA.

Criterion Odd φ? Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7

Circle Criterion [56] N 0.7934 0.1984 0.1379 1.5312 1.0273 0.6510 0.1069

Tsypkin Criterion [57] N 3.8000 0.2427 0.1379 1.6911 1.0273 0.6510 0.1069

Ahmad et. al. (2015), Thm 1 [36] N 12.4309 0.7261 0.3027 2.5904 2.4475 0.9067 0.1695

Park et al. (2019)[37] N 12.9960 0.7397 0.3054 2.5904 2.4475 0.9108 0.1695

Causal DT Zames-Falb (Prop. III.2.) Y 12.4355 0.7687 0.2341 3.3606 2.3328 0.9222 0.1966

Anticausal DT Zames-Falb (Prop. III.6.) Y 1.4994 0.4816 0.3058 3.2365 2.4474 1.0869 0.2365

FIR Zames-Falb (n f = 1, nb = 1) N 12.9960 0.7397 0.3054 2.5904 2.4475 0.9108 0.1695

FIR Zames-Falb (n f = 2, nb = 2) N 12.9959 0.7397 0.3054 2.5904 2.4475 0.9115 0.1695

FIR Zames-Falb (n f = 3, nb = 3) N 12.9960 0.7397 0.3054 3.2254 2.4475 0.9115 0.4347

FIR Zames-Falb (n f = 100, nb = 100) N 12.9766 0.7984 0.3100 3.8227 2.4475 0.9115 0.4921

FIR Zames-Falb (n f = nb = n∗) N 13.0283 (7) 0.8027 (15) 0.3120 (14) 3.8240 (5) 2.4475 (1) 0.9115 (2) 0.4922 (25)

FIR Zames-Falb (n f = 1, nb = 1) Y 12.9959 0.7782 0.3076 3.1350 2.4475 1.0870 0.2366

FIR Zames-Falb (n f = 2, nb = 2) Y 12.9959 1.1056 0.3104 3.8240 2.4475 1.0870 0.2940

FIR Zames-Falb (n f = 3, nb = 3) Y 13.4822 1.1056 0.3121 3.8240 2.4475 1.0870 0.4759

FIR Zames-Falb (n f = 100, nb = 100) Y 13.5101 1.1056 0.3121 3.8240 2.4475 1.0870 0.5278

FIR Zames-Falb (n f = nb = n∗) Y 13.5113 (17) 1.1056 (2) 0.3121 (3) 3.8240 (2) 2.4475 (1) 1.0870 (1) 0.5280 (19)

Nyquist Value N/A 36.1000 2.7455 0.3126 7.9070 2.4475 1.0870 1.1766

A. Procedure

The idea is straightforward. Given a continuous plant G(s)
we find the maximum slope as follows:

1) Choose a sampling time Ts and find the discrete-time

counterpart Gd(z).
2) Choose n f and nb. By using algorithm in Section IV.A,

search for the discrete-time Zames–Falb multiplier

Md(z) =
nb

∑
i=−n f

miz
−i,

corresponding to the maximum Kd such that

Re{Md(z)(1+KdGd(z))}> 0 ∀|z|= 1.

3) (Optional) Choose ε > 0. For −n f ≤ i ≤ nb, if |mi|< ε ,

set mi = 0 for tractability.

4) Define

M(s) =
nb

∑
i=−n f

mie
−iTss.

It follows immediately that M(s) belongs to the appro-

priate class of Zames–Falb multipliers.

5) Find the maximum K such that

Re{M(s)(1+KG(s))}> 0 for all Re{s}= 0.

B. Numerical results

We compare the performance of the Procedure with the

numerical results given in [9]. The results are summarised in

Table III. Here we just provide details of the suitable multi-

plier obtained by the above method. We have used standard

command in MATLAB c2d to perform the discretisation. We

use ε = 10−3 in Step 3. A summary of the results is given

in Table IV, but we provide detailed information for each

example.
Example 1: Choose Ts = 0.05, n f = 1, nb = 1. The

discrete search leads then to the continuous-time multiplier

given by

M(s) =−0.5436e0.05s +1−0.4561e−0.05s.

The multiplier reaches the Nyquist value in this example

(K=4.5984) which matches the best results reported in [9].

Ex. G(s)

1 G1(s) =
s2−0.2s−0.1
s3+2s2+s+1

2 G2(s) =−G1(s)

3 G3(s) =
s2

s4+0.2s3+6s2+0.1s+1
4 G4(s) =−G3(s)

5 G5(s) =
s2

s4+0.0003s3+10s2+0.0021s+9
6 G6(s) =−G5(s)

7 G7(s) =
s2

s3+2s2+2s+1

8 G8(s) =
9.432(s2+15.6s+147.8)(s2+2.356s+56.21)(s2−0.332s+26.15)

(s2+2.588s+90.9)(s2+11.79s+113.7)(s2+14.84s+84.05)(s+8.83)

9 G9(s) =
s2

s4+5.001s3+7.005s2+5.006s+6

TABLE III
CONTINUOUS-TIME EXAMPLES FROM [21]

Example 2: Choose Ts = 0.05, n f = 0, nb = 1. The

discrete search leads then to the continuous-time multiplier

given by

M(s) = 1−0.9551e−0.05s.

The multiplier reaches the Nyquist value in this example

(K=1.0894) which matches the best results reported in [9].

Example 3: Choose Ts = 0.1, n f = 20, nb = 0. The

discrete search leads then to the continuous-time multiplier

given by

M(s) = 1−0.6507e1.9s −0.3493e2s.

The multiplier reaches K = 1.945, a 21% improvement over

the best results reported in [9].

Example 4: Choose Ts = 0.02, n f = 1, nb = 80. The

discrete search leads then to the continuous-time multiplier

given by

M(s) =−0.9186e0.02s +1−0.0809e−1.6s.

The multiplier reaches K = 1.29, a 2% improvement over the

best results reported in [9].

Example 5: Choose Ts = 0.02, n f = 0, nb = 50. The

discrete search leads then to the continuous-time multiplier

given by

M(s) = 1−0.8902e−0.02s +0.1087e−s.
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Ex.1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 Ex. 8 Ex. 9

Best results in [9] 4.5849 1.0894 1.6122 1.2652 0.00333 0.00333 10,000+ 87.3854 91.0858

Procedure in Section VII 4.5849 1.0894 1.945 1.29 0.0055 0.0039 Unreliable Unreliable 360

Nyquist value 4.5894 1.0894 ∞ 3.5000 ∞ 1.7142 ∞ 87.3854 ∞

TABLE IV
COMPARISON BETWEEN BEST RESULTS REPORTED IN [9] AND CONTINUOUS TIME METHOD IN SECTION VI.

The multiplier reaches K = 0.0055, a 65% improvement over

the best results reported in [9].

Example 6: Choose Ts = 0.02, n f = 50, nb = 0. The

discrete search leads then to the continuous-time multiplier

given by

M(s) = 1−0.7909e0.02s +0.2090es.

The multiplier reaches K = 0.0039, a 20% improvement over

the best results reported in [9].

Example 7: For this example the method is poor. We

must sample at Ts < 0.0002 to achieve a Nyquist value of over

10,000. But with Ts so small, we require N f and Nb intractably

large to obtain good multipliers. For example, choosing Ts =
0.0001, and n f = nb = 50 gives a maximum K = 28.6. By

contrast, setting Ts = 0.001 gives a maximum K = 768. Setting

Ts = 0.01 sets it back to K = 147.

Example 8: Again for this example the method is poor.

Extreme care must be taken when discretising the model.

Setting Ts = 0.001 and nb = n f = 40 yields a maximum K = 64.

Other methods yield the Nyquist value, which is circa 87.

Example 9: Choose Ts = 0.01, n f = 70, nb = 1. The

discrete search leads then to the continuous-time multiplier

given by

M(s) = 1−0.976e−0.01s −0.0013e0.48s −0.0227e0.7s. (90)

The multiplier reaches K = 360, a 395% improvement over

the best results reported in [9]. Figure 6 shows that the phase

of M(s)(1+360G9(s)) is in the interval (−90,90).
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Fig. 6. Phase of M(s)(1+360G9(s)) where M(s) is given by (90).

C. Discussion

Loosely speaking the smaller the sampling time with respect

to the bandwidth of G(s), the larger the required dimension

of M(z) (i.e. the values of n f and/or nb). Since the search

behaves well, these values could be kept circa 100. If the

required dimension of M(z) is too large then an efficient

solution becomes intractable. But if G(s) is in some sense stiff,

a smaller sampling time must be chosen to ensure sufficiently

large Nyquist gain of the discretized system (note that while

the Nyquist gain of G(s) may be infinity, the Nyquist gain of

the discretized plant must be finite). Thus although the method

is seen to be highly effective for some simple benchmark

examples, it may be less useful for higher order plants. Such

considerations remain open to further investigation.

VIII. CONCLUSIONS

The results in this paper provide the best results in the

literature for absolute stability of discrete-time LTI systems in

feedback interconnection with slope-restricted nonlinearities.

We have developed two search methodologies for discrete-

time Zames–Falb multiplier: IIR and FIR. In contrast with

continuous-time domain, one of the available searches is

better for all examples. We show the superiority of these

searches with respect to the recent method based on Lyapunov

functions, whose results can be shown to be a subset of the FIR

search with nb = n f = 2. Finally, we have extended the results

to be used as a tunable search of continuous time Zames–Falb

multipliers. The results shows the conservativeness of current

state-of-the-art of fully-autonomous searches over the class of

Zames–Falb multipliers.
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