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Convexity and Characterization of Optimal Policies in
a Dynamic Routing Problem'

J. N. TSITSIKLIS2

Communicated by P. Varaiya

Abstract. An infinite horizon, expected average cost, dynamic routing
problem is formulated for a simple failure-prone queueing system,
modelled as a continuous tithe, continuous state controlled stochastic
process. We prove that the optimal average cost is independent of the
initial state and that the cost-to-go functions of dynamic programming
are convex. These results, together with a set of optimality conditions,
lead to the conclusion that optimal 'olicies are switching policies,
characterized by a set of switching curves (or regions), each curve
corresponding to a particular state of the nodes (servers).

Key Words. Stochastic control, unreliable queueing systems, average
cost, jump disturbances.

1. Introduction

Overview. The main body of queueing theory has been concerned
with the properties of queueing systems that are operated in a certain, fixed
fashion (Ref. 1). Considerable attention has also been given to optimal
static (stationary) routing strategies in queueing networks (Refs. 2-4), which
are often found from the solution of a nonlinear programming problem
(flow assignment problem).

Concerning dynamic control strategies, most of the literature (Refs. 5

and 6 are good surveys) deals with the control of the queueing discipline
(priority setting) or with the control of the arrival and/or service rate in an
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Fig. 1. Simple queueing system.

M/M/ I queue (Ref. 7) or MIGII queue (Ref. 8). Reference 9 considers
the problem of controlling the service rate in a two-stage tandem queue.

Results for queueing systems where customers have the choice of
selecting a server are fewer. Reference 10 considers multiserver queueing
models with lane selection and derives mean waiting times but does not
consider the optimization problem. Some problems with a high degree of
symmetry have been solved (Refs. 11-13), leading to intuitively appealing
strategies like, for example, "join the shortest queue." Results for systems
without any particular symmetry are rare. Reference 14 contains a qualitative
analysis of a dual-purpose system. In Ref. 15, a routing problem (very
similar to ours), where the servers are allowed to be failure prone, is solved
numerically. A simpler failure-prone system is studied in Ref. 16, and some
analytical results are derived. Finally, the dynamic control problem for a
class of flexible manufacturing systems, as defined in Ref. 17, has significant
qualitative similarities with our problem.

In this paper, we consider an unreliable, failure-prone system (Fig. 1)
with arrivals modelled as a continuous flow. Consequently, our model
concentrates on the effects of failures, rather than the effects of random
arrivals and service times. We prove convexity of the cost-to-go functions
of dynamic programming (and hence, optimality of switching policies). Our
method extends to more complex configurations.

Problem Description. We study a queueing control problem corres-
ponding to the unreliable queueing system depicted in Fig. 1. We let M0,
M,, M2 be failure-prone nodes (servers, machines, processors) and B,, B2

be buffers (queues) with finite storage capacity. Machine Mo receives exter-
nal input (assumed to be always available), which it processes and sends
to either of the buffers Bt, B2. Machines MI, M2 then process the material
in the buffers that precede them. We assume that each of the machines may
fail and get repaired in a random manner. The failure and repair processes
are modelled as memoryless stochastic processes (continuous-time Markov
chains). We also assume that the maximum processing rate of a machine
which is in working condition is finite.

With this system, there are two kinds of decisions to be made: (a) decide
on the actual processing rate of each machine, at any time when it is in
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working condition and input to it is available; (b) decide, at any time, on
how to route the output of machine Mo.

We consider a performance criterion which is linear in throughput and
convex in storage.

The above configuration arises in certain manufacturing systems
(Refs. 15, 18), from which our terminology is borrowed, and also in com-
munication networks where the nodes may be thought of as being computers
and the material being processed as messages (packets, Ref. 11). Note that
the Markovian assumption on the failure and repair process of the nodes
implies that a node may fail even at a time when it is not operating. This
is a realistic assumption, in unreliable communication networks and in
those manufacturing systems where failures may be ascribed to external
causes (Refs. 18, 19). On the other hand, in some manufacturing systems,
failure probabilities increase with the degree of utilization of the machines
(Ref. 20). Such systems are not captured by our model and require a
substantially different mathematical approach.

2. Dynamic Routing Problem

In this section, we formulate mathematically the dynamic routing
problem and define the set of admissible control laws and the performance
criterion to be minimized.

Consider the queueing system of Fig. 1, as described in Section 1. Let
x, be a continuous variable indicating the amount of material in buffer Bi,
i = 1, 2, and let Ni be the maximum allowed level in that buffer. We denote

(x,, x2) by x. Let

i=0, 1,2,

be independent, right-continuous Markov chains with transition rates ri

from 0 to 1 and p, from I to 0. We have

a• (t) = 0 or 1,

according to whether machine M, is down or up. Let fl denote the set of
sample paths &) of

a = (ao, a• 1, a2)

and s, s, the a-field generated by

{a((r)jr- t}, {a(T)1|7r 0),

respectively. Let 9(a(0)) be the measure on (fl, d) when the initial state
of the Markov chain is a(0).

~~) .'....-. .. . . ..

aC(t) E {0, I},
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We define the state space S of the system by

S- O0, N 1] X[O, N'] x{O, I13.

The state s(t) E S of the system at time t is defined as

s(t)= ((x,, x 2), (ao, a,, a ))() = (, a)(t).

......... : ...

...........

. . . . . . .'· · · ·i:. .- "i..". .

Let A*, g*, 4* be the maximum allowed flow rates through machines
Mo, M,, M 2, respectively; let A(t), A,(t), p.2 (t) be the actual flow rates, at
time t, through machines M0 , M,, M2 , respectively; finally, let A,(t), A,(t)

be the flow rates, at time t, from machine Mo to the buffers B,, B,, respec-
tively. No flow may go through a machine which is down:

ai,(t) = 0=ý-(t) = A,(t ) =  ( t) =  ,
Ii(t) = o,

........- . . . .. . . . . . . .
..... .. .

i= 0,
i= 1, 2.

Conservation of flow implies

A(t) = Ah(t) +A,(t), (4)

x,(t)= x,(0)+ (,(A,)- (-(r)) dr. (5)

An admissible control law u is a mapping which to any initial state

s(0) =(x(0), a(O))

assigns a right-continuous stochastic process

u(W, t)= (A;(w, t), A" (w, t), I"(,, t), A"(W, t)),

defined on the previously introduced probability space (, ,, '9(a(0))),
with the following properties.

Property (SI). Each of the random variables A"(t), i'Y(t) is 9,-
measurable.

Property (S2). The following relations hold:

i= 1, 2,

i= 1,2.

. .:: Property (S3). The state

xi (t)= x,(0) + (A t(r)-/Au(r)) dr

. . . . . . . . . . . .. . .... .

. 7".
S.:;::::.;:::: .:::.::'. l'.:.'...: ::::: :: ::::::: .. -".:: . :::.i . -:',:..: .:-.

0 :s A' (&, t),

A"((, t)+ A,_(w0, t)-. ao(w, t)A*,

o05 "(, t) a,(i(w, t)A*,
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satisfies

0o5x"(t)<-N,, i=1,2,

and x (o, t) is a measurable function of the initial state s(0), Vt e fl, Vr --0.
We let U be the set of all admissible control laws, and let UM C U be

the set of those control laws such that u(t) depends only on s(t).
. For u E U and f a bounded function of s, define

) E[f(s"(t))ls"(0)= s]-f(s)
(£~f)(s)= im

lo t

whenever the limit exists. It can be verified that, for continuous functions
f in the domain of Y",

f(x"(t), a) -f(x, a)
(~"f)(x, r) = im

,o t

(10)

where p,,. is the transition rate from a to a* and where x,(t) is the
value of x at time t if control law u is used and no jump of a occurs until
time t.

Performance Criterion. We are interested in minimizing the long-run
(infinite horizon) average cost resulting from the operation of the system.
Let k(s, A,, A2, A, AL2) be a function of the state and control variables
representing the instantaneous cost. For notational convenience, we define

k"(s"(w, t))= k(s"(w, t), A (w, t),r(, t), tIp2(w, t), .2,(W, t)). (II)

We introduce the following assumptions:

k"(s"(w, t)) =f(x"(w, t), a(w, t)) - ct"(wo, t)- c2Z2(ow, t), (12)

where ct, c 2> 0 and, for any a E (0, 1}1 , f(x, a) is (i) nondecreasing in x,
and x2 , (ii) convex, and (iii) Lipschitz continuous. Let f(x) be an alternative
notation for f(x, a).

The function to be minimized is

gu(s)= lim sup E ku(su(aw, t)) dtls"(0)= s .

We define the optimal average cost by

g*(s)= inf g"(s).uWe U

In Section 3, we show that g* is independent of s.

A__......

(13)

(14)
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3. Reduction of the Set of Admissible Control Laws

Suppose that, at some time, the lead machine is down and both
downstream machines are up. If this configuration does not change for a
large enough time interval, we expect that any reasonable control law would
eventually empty both buffers. Indeed, Theorem 3.1 shows that we may so
restrict the set of admissible control laws without worsening the optimal
performance of the system (i.e., without.increasing the optimal value of the
cost functional).

We then show that there exists a particular state which is recurrent
under any control law that satisfies the above introduced constraint
(Theorem 3.2). The existence of such a recurrent state permits a significant
simplification of the mathematical issues typically associated with average
cost problems.

We end this section by introducing the class of regenerative control
laws. This is the class of control-laws for which the stochastic process
regenerates (i.e., forgets the past history and starts afresh) each time the
particular recurrent state is reached. In that case, g" admits a simple and
useful representation and is independent of s (Theorem 3.3). We show that
we may restrict ourselves to regenerative control laws without any loss of
performance (Theorem 3.4).

Definition 3.1. Let UA be the set of control laws in U with the following
property. If, at some time to,

a (to) =(0, 1, 1),

and a(t) does not change for a further time interval of max{NI/ *T, Nz/ z.*}
time units, then

"(t = to +max{ N 1/*T, N2/A*}) = ((0, 0), (0, 1, 1)).

Remark 3.1. A sufficient (but not necessary) condition for a control
law u to belong in U, is that downstream machines operate at full capacity
whenever

a=(O, 1, 1).

However, we do not want to impose the latter condition, because in the
course of the proofs in Section 5 we will use control laws that violate it.

Theorem 3.1. For any u e U, s(0) e S, there exists some we UA such

Sk'(s"(k, 7)) d u- f k"(s"(w, 7)) dr,
a

(15)Vt-O0, Vo e n.
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Proof. Fix some initial state s(0) and a control law u e U. Let w E U

be a control law such that, with the same initial state, we have
;.-.:.,: . . ... " . .-.......

.:-::. .".....

·. ....... .....

S.:.:.- : ........

A,'(w, t)= A"(w, t), i= 1, 2, Vw, t,

IA*, if xi(w, t) # 0,

t 0, if x'"(w, t) = 0,
". (w, t), if x"(W, t) = x(wO, t),

10, if xN'(w, t) A xl (w, t),

where xi(w, t) is determined by

x,'(, t)= x, (0) + (A '(W, r)- '(, r)) ddr.

It is easy to see that wE UA and

Vo, t, i= 1,2.

From (19) and the monotonicity off,, we have

fE. -,(x"(, )) d7'- Joi.(x"(w, -r)) d-,

Using (16), (18), (19), we have

AJ,(w, 7) dr = xi(0) -x((w, t) + A(Wo, r) dr

~xi(O)-x, (w, t) + A u(w, 7) dr

= j g(w, -) -dr,

(16)

a =(0, 1, 1),

a =(0, 1, 1),
(17)

a#(0, 1, 1),

a # (0, 1, 1),

(18)

(19)

Vw, t.

Vo, t. (21)
-'"''`' ·-::~ s. :·· ·:·-··;;.:

-·:· :
·. ·r· : ·

Adding Ineqs. (20) and (21), for i= 1, 2, we obtain the desired result.

Corollary 3.1. We may restrict to control laws in UA without loss of
optimality. Namely,

0 5 X7('O, t) - XiU(W' t),

inf g"(s)= inf g"(s)= g*(s),
u UU usUe

Vs E S. (22)

We now proceed with the recurrence properties of control laws in U,.
For the rest of this paper, we let so denote the special state

(x, a) = ((0, 0), (0, 1, 1)).

Let u e UA. We define the stopping time T.", n a- 1, as the nth time, after
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time 0, that the state so is reached, given that control law u is used. We
also let

To = 0.

Let

s"(0) = (x"(0), a), s'(O) = (x'(), a)

be elements of S with the same value of a; let u, we UA. We define the
stopping time T"" by

T"" = inf{t > 0: s"(t)= s"(t)= so),

T "" = co, if the above set is empty.

::(:::.i::::, .: . ..:..
:::::·~-

ii
( ;:.iii;,"-oLC-.i.-· :.i^·;-XL·i-C·i.· If we are given a third element of S,

sV(O) = (x(0), a),

with the same value of ct, and a third control law v e U, we may define T"""

in a similar way, as the first time that

s"(t) = SW(t) = SU(t) = So.

Theorem 3.2. Let u, v, we UV, and let s"(0), s"(0), s"(0) be three
initial states with the same value of a. Assume that

Po # 0, r, 0, i = 0, 1, 2.

Then,

(a) E[T"., - T"]_S B,

E[T""]s B,

........ .. ..

where B is a constant independent of u, v, w and the initial states s"(0),
s'(0), sw(0).

Proof. Let Q, be the nth time that the continuous-time Markov chain
a (t) reaches the state

a =(0, 1, 1).

Since po, r, are nonzero, there exists a constant A such that

E[Q.]: nA,

for all initial states a(O), and

E[Q, - Qm]- (n - m)A.

6;: ··i'.;... .........·
. .... . . . .. ..

(b) E[T""]- B

S -. . :.:: . :: . :. : :: -- . : :. .
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a(t) = (0, 1, 1)

and if no jumps of a occur for a further time interval of

T - max{N,/~t*, N 2 /z*}

time units, which is the case with probability equal to or larger than

q - exp(- (ro +p +P2) T),

the state becomes

s"(t + T) = So,

for any u e UA and regardless of the initial state. It follows that

E[ T"., - T"]<_s (kA+T)q(l-q)k- = B.
k=I

Similar inequalities hold for E[T""], E[T""u].

It will be assumed throughout this paper that

Po . 0, ri ; 0, i = 0, 1, 2.

If we allowed

..........
. . .. . . . .

............. .

all subsequent results would be still valid, but the recurrent state so should
be differently chosen.

Theorem 3.2 allows us to break down the infinite horizon into a sequence
of almost surely finite and disjoint time intervals [T", T",l). If, in addition,
the stochastic process s"(t) regenerates at the times T", the infinite horizon
average cost admits a simple and useful representation.

We define the set UR of regenerative control laws to consist of those
elements of UA which forget the past each time that the state is equal to so
and start afresh. To make these requirements formal, we first define a
regeneration time to mean an almost surely finite stopping time T, such that

s"(T) = so,

with probability 1. Our first condition on regenerative control laws is that
the past is forgotten at regeneration times. See the property below.

Property (S4). The stochastic process

{(s"(T + t), u(T + t)), t Ž_0}

is independent of Ir, for any regeneration time T.

... .... .· .: . . .

........

:-:~.~ .:- r::~.·~,· ~~: -.i,~: i:,~:·, '·
..i..'.:.: ':::..":'.. ::~:~~~.~i·~::~ :~:.:;::~ ':"`:' ': .-.'- ·-:·1~.: ii::

- · ..... ·: .·. ·. ·:
·.:: ·.-;·::·..... ·. ·r-··`'~~r::
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The second requirement is that the stochastic process in (S4) be the
same for all regeneration times T. See the property below.

Property (S5). For any two regeneration times S, T, the stochastic
processes

{(sU( T +t), u( T + t)), t >-- and {(s"(S + t), u(S + t)), t a-0}

are identically distributed.
Markovian control laws in UA certainly belong to UR. However, the

proofs of the results of Section 5 require us to consider non-Markovian
control laws as well. It turns out that UR is a suitable framework.

Theorem 3.3. Let u e UR. Then,

g" = lim E k"(s"(r)) dr"
C-10 [if

E [f k"(su(

E[ TZ 1 Tfl
n = 1, 2,....

Note that the first equality implies that the limit exists and is independent
of the initial state.

Proof. Define

W,. m T"ý,- T-,,

UrnJ k"(s"

m=1,2,...,

(r)) dr, m= 1,2,....

The random vectors (W,, U,,), m = 1,2,..., are independent (by S4),
identically distributed (by S5). Then, an ergodic theorem (Ref. 22, Vol. 2)
implies that

ZUk

lim k

k=t

a.s. (29)

(27)

(28)

:::: ::.:- J;'.;-, --·---·~: Y
: · · ·

:: : ::..... ·:`:`
~ .-t..·-·.:..-



JOTA: VOL. 44, NO. 1, SEPTEMBER 1984

::4 :

,, ,': " . . . , " - .. ..
...... ...... ..

" .' . ':':'..:. . :... . :. .- .. .

Now,

_ Uk kU(s"(r)) dr
S k=1 T"

lim - lim
M-00 ý m-o T-ý - T-

I Wk
k=1

= lirma k"(s"(r)) dr]

+l-O[ T-, - T' o J

We claim that the second and third terms are almost surely equal to
zero. Let M be a bound on ik"I. Then,.

(30)

S ) I k"(su(T)) dr - MT" T "

Tr,- T", TFm- m T(Tu-, - T")

Now,

Tu < co, a.s.,

lim T", = co,
m -o

(31)

a.s.

Also,

T - r k"(su(r)) a
MTu

Tm- T1

(32)

for the same reasons. We now take expectations in (30) and invoke (29) to
obtain

[,11 f] T 1 EU.E limt k(s"(r)) d E - . (33)

T"(t)= inf{Tr t: 3n such that r= T"},

and observe that the sequence

(1/ Tm) k"(s"(r)) dr

:~ '.'..'.. . `.; : · ··~ . ·.:·..·. ' · '· :
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and the function

. . . . .. ... '. ..- . . / t) t)
k"(s"(r)) dr

. . ... .

. . . . . . . . .i..7..
i::......·.·.'... ....· ··

take the same values in the same order; therefore, they have the same limit
and may be interchanged in (33). We then use the dominated convergence
theorem to interchange the limit and the expectation on the left-hand side
to obtain

lim E[ ' J ) k-(s"(r)) dr - E[U.]
ST"(t) o (E[W,]

Finally,

lim E k"(s"(m1 )) JO( E) k"(s"())) dT

slim E[T Jt ku(s(rT)) dr

[E T" (t)

1-W _t T;_(_0 Io
(35)

The two summands on the right-hand side of (35) converge to zero, because
they are bounded above by E[T"(t)- t]M/t, which is bounded by BM/t

(Theorem 3.2). Equations (34), (35) complete the proof of (26). O

Remark 3.2. If s(0) = so, then (26) is obviously true for n = 0 as well.
The last result of this section shows that we may restrict ourselves to

control laws in UR without increasing the optimal value of the cost func-
tional.

Theorem 3.4. The following result holds:

inf g" = inf g"(s)= g*(s),
u eUR u UA

Vs e S.

::.;i.:". " :I :· .? i . " .i

• ,: ."" :" : , ": ,:.. : 5 .' : - .: :' ':° " .' '' " : , .• ..". ."-: , "

Proof. Outline. View our control problem as follows. Each time T,
the state so is reached, a policy u,, UA to be followed in [T,, T,,+) is chosen.
We then have a single-state semi-Markov renewal programming problem
with an infinite action space and bounded costs per stage; regenerative
control laws correspond to stationary policies of the semi-Markov problem.
Moreover, T, - T, , is uniformly bounded, in expected value, for all policies
of the semi-Markov problem. It follows that stationary policies exist that

. . . ..- .. .
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come arbitrarily close to being optimal. By translating this statement to the
original problem, we obtain (36). O

4. Value Function of Dynamic Programming

Using the recurrence properties of control laws in UR, we may now
define value (cost-to-go) functions of dynamic programming. This is done
by using the recurrent state so as a reference state. Moreover, we exploit
Theorem 3.3 to convert the average cost problem to a total cost problem.

Following Ref. 21, we define the value function V": S-, R, correspond-
ing to u e UR, by

V"(s)= E [H (ku(s"(ur))-g") drIs (O)= s].

In view of Theorem 3.3, we have

V"(so) = 0, for all u E UR.

We also define an auxiliary value function V"(s) by

"(s)= E [o (k"(s"()) - g) dr s(O)= s

~_..::~ - .:

.-. . . . -: -" '

: .:; .•:-.",- .-" .- .... . . . .:. :.- ' ., . . :. . . .."... : .' ' ..' ..':. :. .''." :- ; -- --. - :. . . - :.

and the optimal value function V*(s) by

V*(s) = inf V"(s).
u eU

R

(38)

(39)

The above defined functions are all bounded by 2BM, where M is a constant
bounding Ik"(s)i and B is the constant of Theorem 3.2.

Lemma 4.1. The above value functions satisfy the relations:

0o V"(s) - V"(s)s(g" -g*)B, VsE S;

V"(So)= (gu -g*)E[T"rls"(O) = so];

g "= *, iff VU(so) =0:
V"(so)>-O, V*(so) =0.

Proof. It follows directly from the definitions and the inequality
E[T"']- B. F

We will say that a control law u e UR is everywhere optimal if

"(s) = V*(s), Vs G S;

-·-"·~'.~~·:·:.· · :

:-: :··~·--··-· ·- · ··;::· ·· · z :·.·r·: ;-: ::·-··---I
i

i
s

:··· · · ·. ·- · : ·.
.- ::·:· : : :·~:·: :. ·.': · ·:: · .: ·: : ·. ·:

· ·· ·.:;
'. i

'..
.i ... : ·:

· · .::....,.......... ''':

:I
..

:i
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it is optimal if

g" = g*

Lemma 4.1 implies that an everywhere optimal control law is optimal.
We conclude this section with a few properties of VU, V" that will be

needed in the next section.

Lemma 4.2. (a) For any positive integers m and n such that n - m
and any u c Up,

E [ (k"(su"())-g") dr =0. (40)

(b) For any positive integer n and any u e UR,

V"(s) = E [f (k"(s"(r)) - g") drls"(0) =s .

Proof. Both parts follow immediately from Theorem 3.3

The following result is essentially a version of Eq. (41).

Lemma 4.3. Let u, v, we UR. Let s"(0), s'(0), s"(0) be three states
with the same value of a. Let T"'" be as defined in Section 3. Then,

V'(s) = E I[Jf (k'(s'(r)) - g') drIs"(0) =]s

i.;·. . ..·~~, -

.... .... :.....i
...... :. ....

(42)

Proof. Let

T= min { T: T"n T""'},

and let X, be the characteristic (indicator) function of the set of those w E f
such that

T> T".

We then have

E (k(s"(r)) -g") di

= E [f (k(s"(r)) - g") dr]

+ E LX : (k"(s"(r)) - g") dr .
I= f T-"I

.· .- . .-

(43)

;` "~"''
·· ··-·-----~i

:f:·.::. ···:.·: : ::::-· -. .-..--- ·- ·:-' ::`: :~`
:" "·;

I

.- ..: .:..~.
: '...~···
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The random variable X,, is s~1T-measurable. Therefore,

..). .......· :........-
.·-~.--.* :.-- :"- . *. *

~...........

:..- . :" -- :. 1
.,•€• ':,.••,, ,.•='=c: -: • :.•--• " ,o , : "-' " .' -". : Y" : ":" · ·"·,':'

I [ rn.,

= E =o.E (k(s(r)) gU) dTSd]] =0.
The second equality in (44) follows from Lemma 4.2(a) and the assumption
that u regenerates at time T". For the same reasons, we obtain

E [ (k(s"(r))-g " ) dr =E [ (k"(s"(r))-g ") d r = 0.
T--w T

Combining (43), (44), (45), and using the definition of V", we obtain

E [jo" (k"(s"(r)) -g") d,] = E [I (k"(s"(r))-g") dr]

= V"(s"(0)).

The last lemma is an elementary consequence of our definitions.

Lemma 4.4. Given some s e S and e > 0, 3u E UR, such that

1"ý(s) - V*(s)+E and g"ug*+e.

p..:

,-.'..

Proof. Outline. Assume s # so. Then, V" depends on the choice of
the control variables up to time T" and g" depends on the choice after that
time. The control variables before and after T" may be independently chosen
so-as to satisfy both inequalities. If s = so, choose u such that

g" s g* +rmin{e, E/B}.

Then,

U"(So) V*(so) + E. O

5. Convexity and Other Properties of V*

In this section, we exploit the structure of our system to obtain certain
basic properties of V*. These properties, together with the optimality
conditions, to be derived in Section 6, lead directly to the characterization
of optimal control laws. For the rest of-the paper, let V*(x) denote V*(x, a).

E X.f (k"(s"(r))-g") dr
T%
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. ..... ..... . . . . . .. . ... . .

. .... ... ..

. .. .... .
-- -- - , --. --

Theorem 5.1. V*(x, a) is convex, Va.

Proof. Let

s"(0)=(x", a) and s"(0)=(x", a)

be two states in S with the same value of a. Let

ce(0,1) and s"(0)=(cx"+(1-c)xv,a).

Then, s"(O) S, because [0, N] x[0, N2] is a convex set, and we need to
show that

V*(sw(O)) -CV*(S"(O)) +(1 - c) V*(s"(O)). (47)

Fix some E > 0, and let u, v be control laws in UR such that

g"u g* + E, g" : g* + E, (48)

"(s"(0)) S V*(su(0)) + 6, ((sv(0)) - V*((S (0)) + e. (49)

Let s"(w, t) and s"(w, t) be the corresponding sample paths. We now define
a control law w to be used starting from the initial state s"(O). Let, for i = 1, 2,

Aý(w,, t)= cA "(w, t) +(- c)A (w, t), (50)

pf (W, t)= c• (WO, t)+(1- c)tk,(o, t). (51)

With w defined by (50), (51), Assumptions (S i)-(S3) are satisfied, because
these assumptions are satisfied by u and v. Moreover, by linearity of the
dynamics,

x(wco, t) = cxu(w, t) +(1 - c)x((w, t). (52)

Since x = (0, 0) is an extreme point of[0, NI] x[0, N,], Eq. (52) implies
that, whenever

s"(r)= so,

we also have

s"(t)= SV(t)= So.

Therefore,

Tl = T
"ow

and, consequently, we UA. Moreover, u and v regenerate whenever

s"(t) = so

and, therefore, w e UR. Using (52) and the convexity of the cost function,
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we obtain

S (k'(s'(w, o))- g*) drs c n (k"(s"(W, r))-g*) dr

+(1 -Cc) (k(s"(w, 7)) - g*) dr. (53)

We take expectations of both sides of Ineq. (53) and rearrange it to obtain

~:: .::: 'I.
':"

..·.r ·:·- ..1.-
·· :. ·~:

Since

T"= ,lies.and Lem
Lemma 4.3 applies. Using also Ineqs. (48), (49) and Lemma 4. 1(a), we obtain

V*(s'(0)) s- cV"(s"(O)) +(1 - c) V"(s"(O)) + EB

- c"(s'(O)) +(1 - c) '(s°(O)) + EB

-cV*(s"(0)) +(I -c)V*(s"(0)) + E(I + B).

Since e was arbitrary, we may let E10 in (55) to obtain Ineq. (47).

_^_. ____ __

It is not hard to show that, if the storage cost f, [defined by Eq. (12)]
is strictly convex, then Ineq. (47) is strict. In fact, it is also true that (47)
is a strict inequality even if f, is linear. A detailed proof would be fairly
involved, and we only give here an outline.

Assume, without loss of generality, that

x"(0) # x'(o).

With control law w, defined by (50), (51), there is positive probability that

a (t) =(0, 1, 1), x"(t)#o0, I'M(t)< ,*,

for all t belonging to a time interval of positive length. We can then show
(in a way similar to the proof of Theorem 3.1) that any control law with
the above property does not minimize V"(s"(0)) and that

V*(s"(o)) < ^'"(s*(0)) -8,
for some 8 independent of e. Using this inequality in (54) and (55), (47)
becomes a strict inequality.

.........-.·-
:

-:·· · ·' ··' · '·'.··` ·-' ' " ` '~·".` : :

i. -..

~. ·.· ~··5-. -- -. ·-- --· Y11·__l~-·;l _·_·__~

V*(s"(0)) <- (s'(o)) <_ cE o (k"(s"(w, T)) - g") da-is"(o)

+(g - c)IE (k-(s(w, r)) -g') d-ljs"(0 )

+(cg" +(l -c)g -g*)E[T'].
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Let M be such that

Ifx(xx, X2) -(XI +Ad, X2 +A,_)I M(IA1I +1A21).

Such an M exists, since f, is Lipschitz continuous. We then have the
following result.

Theorem 5.2. Let

0 x, < x, +A,~ N,, i=1, 2,

A t +Az> 0.

Then,

-cIAL -c 2 A2 < V*(x, + A, x, +A,) - V*(x 1, x2)

< MB(A, +A,). (57)

In particular, V* is Lipschitz continuous and, iff= 0, then M = 0 and V*
is strictly decreasing in each variable.

Proof. The two inequalities in (57) will be proved separately. Without
loss of generality, we assume that A2 = 0 and we start by proving the second
inequality.

(a) Fix two initial states

s"(O) = (xt, x 2, a) and s"(O)=(x, +A, x2, a), A> 0,

with the same value of a. Let u E UR be such that (Lemma 4.4)

v"(s"(O)) 5.V*(s"(O)) + -, g" g* + .

We now define a new control law w E UR to be used starting from s'( 0 ) as
follows:

0t , A (, t),
if x'(w, t) = x'(w, t),
if x"'(•o, t)= x"(w,, t),

0 a(w, t), , ifxl'(

A2(ow, t) = •(2"( , t), g(w, t)=

Then, w E UR and

X"'(, t) 5 x'(W, t) 5 x"(w, t) + A,

g •'(0,, 0) ý: A(•O, 0).

a,, t) = x,(w, t),

·:·
.- 1:·.·:· ·:- ... ·: .~ .:i.;I ^·'

'~·" :·
·. · ·r

: .~:::

~--:?: :::::·-·····- ·--~~.~-.-.·- :

~'·:· .·:·
:·:::: .·i:-~·~· .:::::.~

:....: ::::.. .··...· . :·.
:. :. . :.:·:

·:.I. ' ~~~··
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Moreover,

T" = T-'

r- ,....-..;.;:.............. .. .. .,... ... :.-;

f T-, 
T
,

.k"(s "(o, r)) dr = (f.(x'"(w, )) - ct~y '(O, r) - cpz'(wo, 7)) dr

f (X (f,(X(c, 7)) + MA - CIA"(, r) - c2t,"(, 7)) dr
a

.* .

.. ' .-. -..

= J k"(s"(o, 7)) dr + MAT'.
o

We claim that there exists a set A C 0 of positive probability measure such
that Ineq. (64) is strict for all w e A. Namely, consider all those w for which
a(w, t) becomes (0, 1, 1) before time A/2(A*+4g*) and stays equal to
(0, 1, 1) until time T'. Let 8 > 0 be such that

Pr(o E A) > 8.

For all w e A, we have

f - T-"
CI /k(W, -7)d7r> C1AY(w, )dr+c)cLA/2

· :r:::::::.... · .. . .-.-. . . . :

. . . . . . . . . . . . ..·:..

and, consequently,

Sk'(s(w, 7.)) dr < k"(s"(w, i')) dc&+MAT'-cA/2, & rA.

(66)

Taking expectations in (64) and using (66) for we A, we obtain

E[ o(k'(s"(w, r)) -g*) dIr sE o(k"(s"(&, r)) - g*) d7l

+ MAE[Tfl - ctSA/2.

Using Lemma 4.3 and following the same steps as in the proof of Theorem
5.1, we obtain

V*(s"(o)) : "(s"(o))

- V*(s"(0))+e(1 +B) +MAB- 8c,A/2.

Since E was arbitrary, we may let E decrease to zero to obtain the second
inequality in (57).

,: "-- -" -" ::. . i- -:....L ' .., .-.-..:-:.... - ..,.
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(b) For the proof of the left-hand-side of (57), let s"(0) and s"(0)
be as before; let we UR be such that

.... ... ... U.. . .. . .··

V"(s"(0)) - V*(s"(0)) +E, gw<g*+E:

and define u E UR [to be used starting from s"(0)] as follows:

A t t)= a°do(t, t)(A* -A (w, t) ) ,
lA 'I(w0, t),

if x"I(w, t) # x'(, t),

if X "(Wo, t)0= x'(W, t),

:: ~:~::~.:~;:..:.:..L .::
'1 -:·:r

t- ·; ·;.r. ~~-· ·

ifx"(w, t) 0 x,"(w, t),
if xUI(to, t) = x•'(t, t),

"(0o, t) -xW (to, t).
2 2_

We now assume that

x"(0) > 0.

Then, it is easy to check that (62) holds, that

T"" = T" = T•,

and that

r (s(, r))- r- T" '(s(, )) d +CA.
k"(s"(w, 7)) dr 5 k"(s"(w, 7)) d7 + cI .

Consider the set A C of those w such that a becomes (i, 0, 0) within
,/2(,* +A*) time units and stays equal to (1, 0, 0) for at least (NI + N2)/A*
additional time units. For any we A, we will have

ruw TUw

k", (s"(w, r)) dý' k'(s"(o, T)) d" +c,A/2. (74)

Taking expectations and following the same procedure as in Part (a), we
establish the desired result for

x";(0) > 0.

Now, if

x"(0) = 0,
the statements

T- = T-'

;' ~` ;i~,G:~-.;·...... i?`-·..-3 . ~I.~..-'I.·'--I"~' '~ ~" "

and u E UR are not necessarily true, and the above argument fails. However,
a sample path argument of the same flavor easily shows that V* is continuous

S(o, t)=r0,
2U(W 1) 2(w , t),
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x, =0.

Since (57) has been proved for

x, 0 0,

it follows, by continuity, that (57) is also true at

x, = 0.

Corollary 5.1. Let 0 < x, < Ni. Then,

-c1 < im
V*(x, +A,, x,) - V*(x,, x,)

<M. (75)

The right-hand-side inequality also holds if xt = 0. Inequalities (75)
also hold with ATO, 0 < xO < N,. In that case, the left-hand-side inequality
also holds for x, = N,. Finally, the same results are obtained if we consider
the slopes with respect to x-.

We have shown (Theorem 3.3) that the optimal cost g* is independent
of the initial state. We now view g* as a function of the parameters of the
system and examine the form of the functional dependence. In particular,
we consider the dependence of g* on the buffer sizes N,, N2 as well as the
machine capacities A*, T*, t2*. To illustrate this dependence, we write
g*(NI, N 2, A*, fT_, /). Our result states that g* is a convex function of its
parameters. The proof is similar to the proof of Theorem 5.1, and hence it
is omitted.

Theorem 5.3. g*(NI, Nz, A*, /*, gl) is a convex function of its argu-
ments.

6. Necessary Conditions for Optimality

In this section, we prove the necessary conditions for optimality that
will be used in the next section. We start by demonstrating that V* is in
the domain of Y" (defined in Section 2), for any admissible control law u.
Using the convexity and Lipschitz continuity of V*, we get the following
lemma.

Lemma 6.1. Let x(t) be a trajectory in [0, N1 ] x[0, N2], and suppose

d - lim (x(t) - x(O))/ t
o,0

...." .... .- . ..

- - _ - ý -

.. .... . .. . .. .. ... .

fZ...

': '-·" · -' :
· ·'-··~.: : : : ·:.

:= :::: .:I;...
I:I : I`

xI--~;1----- --c~~·
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exists. Then,

l V*(x(t)) - V*(x(0)) . V*(x(O) + td) - V*(x(O))
tm t lim
tno t to t (76)

The existence of the limits is part of the result.
Let u E UR. As in Section 2, for any fixed a, let x"(t) be the value of

x at time t if no jump occurs until time t. By right-continuity and bounded-
ness of the control variables, the trajectory x"(t) possesses right-hand-side
derivatives. Then, Lemma 6.1 and (10) imply the following theorem.

Theorem 6.1. V* belongs to the domain of Y", for any u e UR.

Lemma 6.2. For any e > 0, there exists some w e UR such that

VsC S.

Proof. Outline. Partition the state space S into a finite collection of
disjoint and small enough rectangles R 1,..., Rk. Choose a state s, e Rj and
a control law wj E UR such that

"'(sj)5 V*(sj) +E,

where el is small enough. Define wj for all initial states in the rest of the
rectangle Rj, so that all sample paths s',(w, t), w(w&o, t) starting from Rj stay
close enough. In particular, choose wj in such a way that s"(w, t) and
i.t(w, t) are continuous functions of the initial state, for any w, t. In that
case,

Vs E Rj,

for some small enough e,. Then, define a control law w by lumping together
control laws wj, j = 1,..., k. Given that V* is Lipschitz continuous and
since e1, e2 may be chosen as small as desired, w satisfies (77). O

Lemma 6.3. The following result holds:

lim (1/ t)E[V*(s"(t))x]= 0,
•40

where X is the indicator function of the event T" - t.

Proof. Observe that

E[V*(s"(t))X] Pr(T",s r)
lim = lim lim E[ V*(s"(t))Tl T" t]. (78)
rjo t 40 t ro

.', ' .:2-:--.. ..*.-. . - .

... :~:::I~.~~,:._:. ,::,; ,:.... ...: ~, · ·'.. :... .~~... .,··.·-
· ·. ·~?·ii~-*·.~.j .. ~.

::.~. ~.... · ~·`·~-' ~,
:'·
.:..

.:._:.._.-- -· I · I·-; '':' " · ·..

~·
:·:.-::

I
ji-. .;ti-

'' ."I

ý"(s)s- V*(s) +6,

I "(si) - '",(s)) 1 'E,
"'~" -~x- ·~ r·-· ·-- · · · ·
... :.:: ::: ----- ·- · ~·~~·~ ·,.;·'·:· ·L .·~·

~.:. .i :·::

· ·1 .··~

.:.:. :':'·::···
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.77 . . .·- 

:- · : ·-

The first limit in the r.h.s. of (78) is bounded by the transition rates pi, r,;
the second limit is equal to

V*(so) = 0,

unless a jump occurs in [T", t], which is an event whose probability goes
to zero, as t goes to zero. R

Lemma 6.4. The following result holds:

" V* + k" - g*, Vs E S, VUE UR.

Proof. Let u e UR, t > 0, s S be fixed and let w be the control law
of Lemma 6.2. Consider a new control law v with the following properties:
v coincides with u up to time t; at that time the past is forgotten, and the
process is restarted using control law w. Then,

[ 
m in 

(r,T "}

V*(s) (s) = E 
(

-: E (k"(s"(r)
0-,I O

k"(s"(T))- g*) dr

Since E was arbitrary, we may let e10, then divide by t, take the limit, as
t10, and invoke Lemma 6.3 to obtain

E[V*(s"(t))]- V*(s)
C"V*(s)= lim
rlo t

Ž -lim!E [Jrnwor.Tui

= -k"(s) +g*.

· ·
;·

-
.. : ~··': ~.

··.-. ·~·:· .:

(k"(s"(T))-g*) dr

The last equality follows from the right-continuity of k" and the dominated
convergence theorem. O

Theorem 6.2. If u E UR is everywhere optimal, then

Vw UR, Vs E S. (81)

. :. , . . -- .:.

" V* +k" - •"V* + k*,

Proof. We note that

V*= u,

.. ·:.-.··
.. ~

.; ·:-~:..: .~.....-._: .. ,: r~

`"
.")

· ~~·sr~

~"--~~"~i- -~-·-··--· -----L-r · ~·-·.. -. : ;-- .··-.,----. ~'·:·- ·--:

) - g* d7-1 CE[V*(s'l0)(' -X)] +6
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and we start with the equation

Yu"V* +k" = g*,

which is derived in the same way as Lemma 6.4, except that inequalities
become equalities. We then use Lemma 6.4 to get

i?"V* +k" = g*- -9W V* + k- , for all w UR.

7. Characterization of Optimal Control Laws

In this section, we use the optimality conditions (Theorem 6.2) together
with the properties of V* (Theorems 5.1 and 5.2) to characterize everywhere
optimal control laws. We mainly consider Markovian control laws for which
the control variables A,, ~, (and hence the cost function k) can be viewed
as functions of the state. The first two theorems (Theorems 7.1 and 7.2)
state that the machines should be always operated at the maximum rate
allowed, as it should be expected. Theorem 7.4 is much more substantial,
as it characterizes the way that the flow through machine Mo should be split.

Theorem 7.1. If u e UL n UR is everywhere optimal, then

(a) A,"(x, ) = a,p~,

if x, =0, i = 1,2.

Proof. Let u e UM -I UR be everywhere optimal. Then, u must
minimize

VsES.

Using (10), Lemma 6.1, and dropping those terms that do not depend on
u, we conclude that '1, 2 must be chosen so as to minimize

V*V(x, +(A" - "')N, x 2 +(At• - ")A) - V*(x,, x,)
lim cI,lI - C2A 2 .

(84)

x,j0 and a,#O.

By Corollary 5.1, the slopes of V* are strictly larger than -c1 , -c2 and, as
a result, A, must be set to its highest admissible value, which is ajgýf, thus
proving (82).

.. 

.-......

.

!,~;~.~~, ~~~~~::;:::~: :~ ~.· ·::3::·' : :· -..... :

-- ·........-- · ·· · --

:.:: :·::::.

:.·· ~ · .·-·

· ·'·· ·

-~L:::-/ ~:.;·,~~ .....-.r``-`·---·-··-·· ;;-*~..rc-.;

ifx, 0, i=1,2,

(b) p"(x, a)=a,min{pf, A"(xa)},

("• V* + k")(s),
^s~··~· -:~ .c·-· '·~ : :-~.~. I...-· -·~-

I : .

-'·"';·- t---*'I---I- ----~·.
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: ........

Now, let

xi = 0,

and suppose that (83) is violated. In that case,

7'(x, a)< g*;

also, the trajectory s"(t) enters immediately the region in which

x, > 0,

and therefore

1"(0t)= I*,

for all small enough positive times. Hence, the sample path .•"(t) is not
right-continuous and u is not an admissible control law. OE

Theorem 7.2. If V* is strictly decreasing in each variable (or in
particular, by Theorem 5.2, if k'= -C1 •A" -c2A1) and if u E UM n UR is
everywhere optimal, then

(a) A"(x,a)=aoA*, if x (N, N,),

(b) A"(x, a)= a. min{A*, aýtA* +a,(2 *},

(85)

if x = (N,, N2). (86)

Proof. Let u UM n UR be everywhere optimal. Then, u must
minimize

(2"V* +k")(s), Vs E S.

Theorem 7.1 determines ,"u uniquely and ku is no more dependent on u.
By dropping those terms that do not depend on u, we conclude that A'u, A"
must be chosen so as to minimize

....... .. ... .:.. ·. . . . . . . .

...........

. . . . . . . . . . .

SV*(x, +(A -kA)A, X2 +(A" - ~)A)- V*(x, x2)
lim ,a•,o

(xI, x 2) # (NI, N 2).

Since V* is strictly decreasing,

A" = A= +A 2

must be set equal to its highest admissible value, which is aoA*. If

(x , x,)= (N1 , N,),

·- ·-- ~·-·~Y.~--. -.-.- . "

(87)

.. ..... . . .. . ... .. .. .

,.' -'. ,-" '., " : -" ,- " ..:'•.: ..: :, '," ." , .":, " .." ..-
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S .:. . . . .
· : -- · ·- V

Eq. (86) follows by the right-continuity requirement on admissible control
laws, in the same way as in the proof of Theorem 7. 1. O[

If f. (x) is nonzero and large enough, compared to c,, c2 , then V* need
not be decreasing. Equivalently, the penalty for having large buffer levelg
will be larger than the future payoff in terms of increased production. In
that case, for any optimal control law, A" should be set to zero whenever
the buffer levels exceed some threshold.

From now on, we assume that V* is strictly decreasing, for all a.
Theorems 7.1 and 7.2 define A ", •', h uniquely. It only remains to decide
on how A" is going to be split. It is here that convexity of V* plays a major
role. Note that there is no such decision to be made whenever ao = 0. We
will therefore assume that ao A 0.

Let

h.(p) = infI V*(x1,x,): x, +x 2 =p , pe [0, N, + N2].

Because of the continuity of V*, the infimum is attained, for each p, and
the set

H(p)= ((xL, x2 ): x, +x 2 = p, V*(xt, x2)= h.(p)} (89)

is nonempty. Finally, let (see Fig. 2)

H,,= U HH(p). (90)
pe[ON, +N,]

We should point out that the points on the x,-axis to the left of point B
(point C in particular) belong to H,.

From the convexity and continuity of V*, we can easily obtain the
following theorem.

... . . .
Theorem 7.3. (a) H,(p) is connected for any p, a.
(b) If V* is strictly convex, then H,(p) is a singleton.
(c) H, is closed and connected.

Fig. 2. Regions related to the optimality conditions.

;:-.:.-: -. L _--. , . _.- , . ..:...; -.-. .-- .... .... ... . . ...
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L,(p) = {(x,, x2): x +x2 = p, xt -2 > Y -y2,

and (see Fig. 2)

U. = U
pE[ON +N]21

.: : .: .1
:::: :'.: ::

"·I
:3.`

:.:::;

U.(p), L, = U
peCO, N, 4-N]

L=(p). (93)

(94)

Since H,(p) is connected, it follows that

U.(p)u L,(p) U H.(p)= {(xt, x2): x, +X2 = p};

consequently,

U. u L, u H. = [0, N,] x [0, N,].

Finally, note that, keeping (xt, x:) e U. fixed, the function V*(x, + A, x2 - A)
is a strictly decreasing function of A (for small enough A), because of the
convexity of V* and the definition of U,. With this remark, we have the
following characterization of the optimal values of A i, A, in the interior of
the state space.

Theorem 7.4. If V* satisfies (57) with M = 0, u e Um n UR is
everywhere optimal, and x is in the interior of[0, N,] x [0, N2], the following
results hold:

(a) ifxE U., then A"(x,a)= A*ao;
(b) if xE L,, then ku(x, a) = ,*ao.

Proof. Let x belong to the interior of U,. We must again minimize
the expression (87). Because of the monotonicity property mentioned in
the last remark, it follows that A u has to be set equal to its maximum value
aoA*. Part (b) follows from a symmetrical argument. O]

We now discuss the optimality conditions on the separating set H,.
We assume that V* is strictly convex and (by Theorem7.3) H,(p) is a
singleton, for any fixed p. Equivalently, H. is a continuous curve. According
to the remarks following Theorem 5.1, V* is always strictly convex; but,
since we have not given a proof of this fact, we introduce it as an assumption.

Fix (x,, x2) E H., and suppose that

.'.....'.. . .- .

I . .. . . - . . . . . . . . .

0 < xi < N;, i = 1,2,

- -"..- ' I:. ..1~:- r.~...~ . i'
I--·----,,.s, i ...-. ;...:. ·--. j

V(y,• y,2 - (p)01
(91)

V(y,, Y2) HI (p),
(92)
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(interior point). Given a control law u, let

A(u)= r > 0: x (r)E U}J,

B(u) = {r > 0: x.(7) E L, ,

where x,(r) is the path followed starting from ((xt, x2), a) if no jump of
ac occurs. We distinguish four cases.

(a) Suppose that, for all u E UM n UR, time t = 0 is a limit point of
A(u). For all re A(u), we have

A (r) = A *,

by Theorem 7.4. Then, by right continuity of A"(t), we must have

X '(0) = *.

(b) Similarly, if for all u E UM n UR, t = 0 is a limit point of B(u),
we must have

A2(0)= A*.

(c) If t = 0 is a limit point of both A(u) and B(u), for all u e UM n UR,

then no everywhere optimal control law exists. Fortunately, this will never
be the case, if H, is a sufficiently smooth curve.

(d) Finally, suppose that there exists some u such that t =0 is not a
limit point of either A(u) or B(u). In that case,

x"(t) e H,, VtE [0, A],

for some small enough A > 0. An argument similar to that in Theorem 7.4
will show that this control law satisfies the optimality conditions at (x,, x2).
Such a control law travels on H,, i.e., stays on the deepest part of the
valley-like convex function V*.

The optimality conditions on the boundaries are slightly more compli-
cated, because the constraints on A~, ~, are interrelated through the require-
ment that xi stays in [0, N,]. The exact form of these conditions depends,
in general, on the relative magnitudes of the parameters A*, /A*,4A*.
However, for any particular problem, Theorem 6.2 leads to an unambiguous
selection of the values of the control variables.

8. Conclusions and Generalizations

Let us start by pointing out the main properties of our queueing system
on which our development has been based:

.A. .: U .· .

---. t~'T·.s:r·c.c ~-···
;1-~--:-~····--·· -- ;·;:-:

.· ·. ·.., ··. ·. ~
· · ··- -- ·-. L. '

: :~.:

: I

3
;Z·: ·':·~: ~·---·· :~:
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(i) We first have the existence of a special state, which is recurrent
when we restrict ourselves to a class of control laws that have equally good
performance as the original set of admissible control laws.

(ii) We have the convexity of the optimal cost-to-go function, which
only depends on the following facts: (a) the state space is convex; (b) the
set of admissible values of the control variables is convex; and (c) the cost
function is convex.

Our methodology is therefore applicable, with minor adjustments, to
the large class of linear dynamical systems in which the above-enumerated
properties are present.

We now indicate a few alternative configurations for which all steps
of our development would remain valid. We may let the buffer capacities
be infinite. Then, provided that storage costs increase fast enough with x,,
it is still possible to obtain a recurrence result. The convexity theorem would
be still valid. A few derivations would need some more care, because V*
and f will no more be bounded functions.of the state space, but the main
results of Section 7 would remain unchanged.

We may also have three (instead of two) downstream buffers and
machines, in which case the state space is three-dimensional. Convexity of
V* and the optimality conditions then imply that, for any fixed a, the
three-dimensional state space is divided into three regions, separated by
three two-dimensional surfaces that intersect on a one-dimensional curve.
In each of the three regions, all material is to be routed to a unique buffer.
The switching surfaces have interpretations similar to the switching curves
H, of Section 7.

As pointed out earlier, our recurrence results (Theorem 3.2) have been
based on the assumption that the lead machine is unreliable, po # 0. While
this is a convenient assumption, it is not a necessary one, except that, if
Po = 0, the reference state so should be differently chosen. This choice should
be problem specific and would not present any difficulties for most interest-
ing cases. The only difference that arises when Po= 0 is that V* need not
be strictly convex and the separating set H. could even be the entire state
space (Ref. 23, Chapter 6).

As another variation of our problem, we could include a nonlinear,
convex, and increasing cost on the utilization rates of the machines, to
penalize utilization at or near capacity limits. The rationale behind this cost
criterion is that high utilization rates are generally undesirable (in the long
run). In that case, V* would still be convex, but Theorem 7.1 would no
longer hold. Rather, the optimal utilization rates ji, of the downstream
machines would be an increasing function of the buffer levels.

The next issue of concern is the computation of V* and the generation
of an optimal control law. One conceivable procedure (resembling the

... . ...-... - ...... . .
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Howard algorithm) is to evaluate V", for a fixed Markovian u, by solving
the equation

£RV" +k" = g"

for V" and g". This equation has a unique solution within an additive
constant for VU. It really consists of eight coupled first-order, linear, partial
differential equations with nonconstant coefficients and can only be solved
numerically. Based on V", we may generate a control law w which improves
performance by minimizing f"'V" +-k", and so on. In practice, any such
algorithm would involve a discretization procedure, so it might be preferable
to formulate the problem on a discrete state space. In that case, the successive
approximation algorithm (or accelerated versions of it) could yield a sol-
ution relatively efficiently.

An alternative iterative optimizing algorithm, based on an equivalent
deterministic optimal control problem, has been also suggested in Ref. 24
(see also Refs. 17 and 23 for related ideas).

The drawback of any numerical procedure is that the computational
requirements become immense, even for moderate sizes of the state space
(e.g., N, = N2 = 20, see Ref. 15). Fortunately, the existing numerical evidence
shows that the performance functional is not very sensitive to variations of
the dividing curve, so that rough approximations may be particularly useful.
Estimates of the asymptotic slope of H,, as N1, N 2 increase, as well as of
the intercepts of H, with the axes xj = 0 would be very helpful for obtaining
an acceptable suboptimal control law.
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