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Abstract
A fast speech extraction (FSE) method is presented using con-
vex optimization made possible by pause detection of the
speech sources. Sparse unmixing filters are sought by l1 reg-
ularization and the split Bregman method. A subdivided split
Bregman method is developed for efficiently estimating long
reverberations in real room recordings. The speech pause de-
tection is based on a binary mask source separation method.
The FSE method is evaluated and found to outperform existing
blind speech separation approaches on both synthetic and room
recorded data in terms of the overall computational speed and
separation quality.
Index Terms: convexity, sparse filters, split Bregman method,
fast blind speech extraction.

1. Introduction
Blind speech separation (BSS) aims to recover source signals
from their mixtures without detailed knowledge of the mixing
process. The time domain scaled natural gradient method [1]
is often time consuming in the regime of long reverberations.
Moreover, small divisors and divergence occur in silent dura-
tions of mixture signals. Though a nonlocally weighted soft
constraint natural gradient method [2] resolves such issues and
renders the method asymptotically consistent, it is still slow in
convergence. Fundamentally, all time domain methods based
on independent component analysis attempt to minimize non-
convex objectives, for which no global convergence is mathe-
matically guaranteed. Time-frequency domain method by spec-
tral data clustering is very efficient and more speedy in sep-
aration because it does not resolve the impulse responses [7].
However, its binary sparseness hypothesis in the time-frequency
domain deteriorates in reverberant conditions [7] and separation
often comes with musical noise in the output.

In this paper, a new fast time domain speech extraction
(FSE) method is proposed based on the assumption that the
speech signal contains pauses. During silent durations of the
speech signal, information of the interference (background) is
collected and allows us to formulate a convex optimization
problem for part of the impulse response functions which suf-
fice to estimate the target speech. A sparse solution is then
computed by l1 regularization and the split Bregman method
for which fast convergence was recently studied [6].

This paper is organized as follows. In section 2, the convex
optimization problem for FSE is introduced. In section 3, com-
putational framework by l1 regularization and the split Bregman
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method is shown. In subsections 3.1 and 3.2, algorithms for
moderately and highly reverberant acoustic environments are
illustrated. The subdivided split Bregman method is proposed
for FSE with long reverberations and large number of sources.
In section 4, an onset-offset detection method of speech is out-
lined. In section 5, evaluations of FSE show its merits in both
speed and separation quality in comparison with existing meth-
ods. Discussion and conclusions are in section 6.

2. Fast Speech Extraction Model
Let us consider two sensors and two sound sources which can
be either two speech signals or one speech signal and one
non-speech background interference (music or other ambient
noises). FSE method shall sequentially extract speech signals
if there are more than one speech sources. Let us denote one of
the two sources as the target speech signal sT , and the other one
as background interference sB . The mixing model is

xi(t) = hi1 ∗ sB(t) + hi2 ∗ sT (t) (1)

where t is time; i = 1, 2; and ∗ is linear convolution. Instead of
finding an unmixing filter W such that W ∗ (x1, x2) recovers
(sT , sB), we extract speech signal sT by eliminating (not re-
covering) interference sB . Suppose that the target speech con-
tains pauses. Then there is a union D of disjoint time intervals
where sT ≈ 0, while interference sB is active. It follows from
(1) that h21∗x1(t)−h11∗x2(t) ≈ 0 for t ∈ D. The elimination
by cross multiplication was known in blind channel identifica-
tion [3] and background suppression [4]. Inside D, we seek a
pair of sparse filters ui (i = 1, 2) to minimize the energy of
u2 ∗ x1 − u1 ∗ x2 in the region D. Ideally, u1 ≈ h11 and
u2 ≈ h21. Filter sparseness is achieved by l1-norm regular-
ization. The resulting convex optimization problem for t ∈ D
is:

(u∗1,u
∗
2) = arg min

(u1,u2)

1

2
||u2 ∗ x1 − u1 ∗ x2||22

+
η2

2
(

2X
i=1

ui(1)− 1)2 + µ(||u1||1 + ||u2||1) (2)

where the second term η2

2
(

2P
i=1

ui(1)− 1)2 is to fix scaling and

prevent zero (trivial) solution. Denote the length of D by LD
and that of ui by L. D can be as short as even 0.25 s’ duration,
which makes FSE method efficient on the data usage and dif-
ferent from other BSS methods that are based on the high order
statistics of data. Since the solution ui is l1 regularized, the sur-
plus length of it would be 0 while solving (2). In matrix form,
convex objective (2) becomes:

u∗ = arg min
u

1

2
||Au− f ||22 + µ||u||1 (3)
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where u is formed by stacking up u1 and u2; vector f =
(0, 0, · · · , 0, η)T with length LD + 1; and (LD + 1) × 2L
matrix A (T is transpose) is:

A =

0BBBBBBBB@

x1(1) x1(2) ... ... x1(LD−1) x1(LD) η
x1(1) ... ... x1(LD−2) x1(LD−1) 0

. . .
...

...
x1(1) ... x1(LD−L+1) 0

−x2(1) −x2(2) ... ... −x2(LD−1) −x2(LD) η
−x2(1) ... ... −x2(LD−2) −x2(LD−1) 0

. . .
...

...
−x2(1) ... −x2(LD−L+1) 0

1CCCCCCCCA

T

When t 6∈ D, cross multiplication of (1) shows that ŝT =
u∗2 ∗ x1 − u∗1 ∗ x2 ≈ h21 ∗ x1 − h11 ∗ x2 = (h21 ∗ h12 −
h11 ∗ h22) ∗ sT . Interference sB is eliminated and ŝT sounds
same as sT to human ear. Here we assumed that the acoustic
environment does not change much so that estimates of h11 and
h21 during D still apply when t 6∈ D. For a convex objective
with non-negativity filter constraints for sparsity, see [4].

Extraction of a speech source from M ≥ 3 mixtures of N
sources (N = M ) is similar. Let a source sn (1 ≤ n ≤ N) be
silent in t ∈ D, for proper value of (η, µ) > 0, we minimize:

1

2
||
MX
j=1

ujn ∗ xj ||22 +
η2

2
(

MX
j=1

ujn(1)− 1)2 + µ(

MX
j=1

||ujn||1),

and estimate sn by ŝn =
MP
j=1

ujn ∗ xj .

3. Split Bregman Method
The split Bregman method was introduced in [6] as an efficient
tool for solving optimization problems involving total variation
or l1 regularizations. It solves the unconstrained problem:

min
u
J(Φu) +H(u),

where J is convex but not necessarily differentiable such as the
l1 norm, H is convex and differentiable, and Φ is a linear oper-
ator. The key idea of the split Bregman method is to introduce
an auxiliary variable d = Φu, and try to solve the constrained
problem:

min
d,u

J(d) +H(u), s.t. d = Φu.

In [5, 6], it is proved that this kind of problem can be solved by
the following iterations:

(uk+1, dk+1) = arg min
u,d

J(d) +H(u)− 〈pkd, d− dk〉

− 〈pku, u− uk〉+
λ

2
||d− Φu||22

pk+1
d =pkd − λ(dk+1 − Φuk+1)

pk+1
u =pku − λΦT (Φuk+1 − dk+1)

where 〈·, ·〉 is the inner product. For simplicity, we introduce a
new variable bk = pkd/λ, and notice that pkd = λbk and pku =
−λΦT bk. Then dk+1 and uk+1 can be updated alternatively.
The general split Bregman iteration is:

dk+1 = arg min
d

1

λ
J(d)− 〈bk, d− dk〉+

1

2
||d− Φuk||22

uk+1 = arg min
u

1

λ
H(u) + 〈bk,Φ(u− uk)〉

+
1

2
||dk+1 − Φu||22

bk+1 =bk − (dk+1 − Φuk+1)

3.1. Split Bregman for Moderate Reverberations

In the case of (3), J(u) = µ||u||1, Φ = I , and H(u) =
1
2
||Au− f ||22. The iterations are

dk+1 = arg min
d

µ

λ
||d||1 − 〈bk, d− dk〉+

1

2
||d− uk||22 (4)

uk+1 = arg min
u

1

2λ
||Au− f ||22 + 〈bk, u− uk〉

+
1

2
||dk+1 − u||22 (5)

bk+1 =bk − (dk+1 − uk+1) (6)

Explicitly solving (4) and (5) gives the simple algorithm

Initialize u0 = d0 = b0 = 0

While ||uk+1 − uk||2/||uk+1||2 > ε

(1) dk+1 = shrink(uk + bk,
µ

λ
)

(2) uk+1 = (λI +ATA)−1(AT f + λ(dk+1 − bk))

(3) bk+1 = bk − dk+1 + uk+1

end While

Here shrink is the soft threshold function defined by
shrink(v, t) = (τt(v1), τt(v2), · · · , τt(vNL)) with τt(x) =
sign(x) max{|x| − t, 0}. Noting that the matrix A is fixed,
we can precalculate (λI + ATA)−1, then the iterations only
involve matrix multiplication and are fast as a result. For mod-
erate reverberation, the length of room impulse response (RIR)
is not too long. The size of matrix λI +ATA is NL×NL, N
being the number of sources. The computational cost for ma-
trix inversion is not high. The above algorithm runs fast for the
purpose of FSE.

3.2. Subdivided Split Bregman for Long Reverberations

In the strong reverberation regime, RIR length is on the or-
der of thousands. In order to have a more accurate solution,
the length of u should be large accordingly. The length of u
also goes up when N ≥ 3. To reduce cost of matrix inver-
sion when u is high dimensional, we subdivide u into r parts:
u = (u1, u2, · · · , ur)T with ui ∈ R

NL
r . Correspondingly

A = [A1, A2, · · · , Ar]. The minimization problem is:

u = arg min
u

1

2
||

rX
i=1

Aiui − f ||22 + µ

rX
i=1

||ui||1.

Apply the split Bregman method to update each subdivided part
of u sequentially (update ui by fixing the other r−1 uj’s). The
3-step algorithm in the While loop is the same except step 2 is
modified as:

(2) For i from 1 to r

uk+1
i = (λI +ATi Ai)

−1(ATi (f −
X
j 6=i

Ajuj)

+ λ(dk+1
i − bki ))

end For

where di and bi are the subdivided parts of d and b. We precal-
culate inverse matrices (λI+ATi Ai)

−1, each NL
r

dimensional.
With proper choice of the number r, the computation speed can
be improved significantly, as shown in section 5.
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4. Source Activity Detection
The necessary preparation for FSE is silence detection of the
speech sources. To maintain the overall speed of the proposed
method, silence detection is based on the binary mask (BM)
separation method [7], a fast method of blind speech separa-
tion without resolving RIRs. Though musical noise may oc-
cur due to binary operation in time-frequency domain and wide
enough sensor spacings, BM appears reliable for identifying si-
lence periods of a target speech from a mixture (a robust speech
feature). A brief review of BM algorithm is given here. First,
time domain signals xj(t), j = 1, ...,M , are transformed into
time-frequency domain signals Xj(f, τ) by short-time Fourier
transform (STFT). Next, time-frequency points are grouped into
clusters such that within each cluster n, time-frequency points
are dominated by the source n. The feature Θ(f, τ) was de-
fined in [7] by direction of arrival (DOA) and distance. ThenK-
means clustering method finds N clusters from time-frequency
points (f, τ). The separated signals Yn(f, τ) are estimated by
Yn(f, τ) = Mn(f, τ)XJ(f, τ), where J is a selected sensor
index, and Mn(f, τ) is the binary mask for cluster n.

The ratio Rn(τ) =
||Yn(·,τ)||22
||YB(·,τ)||22

is used for detecting the
silence part of source n, where YB is the sum of background
sources. Though the separation quality may degrade if reverber-
ation is long, the onset-offset feature is robust and detectable if
we delete certain “fuzzy points” and reduce binary masking er-
rors. For each time-frequency point (f, τ), the confidence coef-
ficient of Θ(f, τ) ∈ Cn is defined by CC(f, τ) = dn

minj 6=n dj
,

where dj is the distance between Θ(f, τ) and j-th cluster cen-
troid. The binary mask is redefined as

Mn(f, τ) =

(
1 Θ(f, τ) ∈ Cn & CC(f, τ) ≤ ρ
0 otherwise

(7)

The ρ is usually set to be 1/2. We check the mean and vari-
ance of the ratio Rn frame by frame with proper frame size and
overlapping. The time intervals with small mean and variance
values are selected as the region where source n is almost silent.
The entire FSE algorithm is:

Input: Acoustic mixing signals, xj , j = 1, ...,M
(M ≥ 2)

Output: Extracted speech source ŝn, n ∈ [1, N ].
Activity Detection: Find durations of total length LD
where speech source n is either weak or silent
if Room reverberation and number of sources are low
then

Apply split Bregman method directly to obtain
filters ujn, j = 1, ...,M

end
else

Apply subdivided split Bregman method to obtain
filters ujn, j = 1, ...,M

end

Speech Extraction: Calculate ŝn =
MP
j=1

ujn ∗ xj .

5. Evaluation and Comparison
The implementation is in Matlab 2009b and the evaluation is
done in the Windows 7 Home Premium operation system with
Intel Core i5-M520 2.40 GHz CPU and 3.00 GB memory. We
first evaluate the proposed FSE method, and compare the split
Bregman algorithm with subdivided split Bregman algorithm

Figure 1: Source activity detection (mixture of speech and mu-
sic). Top: ratioR(τ); middle: mean ofR(τ); bottom: variance
ofR(τ). Detection frame size is 10 with shift as 2. The range of
detection frame is half of time frame. Segments marked by the
shadows are selected regions for D where the speech is weak.
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Figure 2: Output SIR vs. input SIR for the proposed FSE method
with different reverberation times.

with synthetically mixed data (two sensors and two sources).
[Setup 1]: The room size is 5 × 9 × 3.5 m, and the impulse
responses are measured by two omni-directional microphones
(middle of the room and 1.5 m above the floor) with the spac-
ing 15 cm. The sources are 1 m away from the sensors with the
azimuth 30◦ and 90◦, and the same height as sensors. The re-
verberation times of impulse responses are from 0 s (anechoic)
to 1.0 s. In order to illustrate the separation quality and speed of
our proposed method, we simplify the detection step by know-
ing 0.5 s’ silent duration D of target speech source ahead of
time. The other source is either speech or background music.
The duration of the sources is 5 s and the sampling rate is 16000
Hz. Two mixtures are synthesized by measured RIRs as (1).
The parameters for FSE are chosen as µ = ε = 10−3, η = 1,
and λ = 2µ throughout the evaluation. As the reverberation
time goes up, the length of solution u increases accordingly
from 40 taps to 2000 taps. Shown in Fig. 2 are the average
output signal to interference ratios (SIRs) achieved by FSE for
the various reverberation times and input SIRs.

Table 1 illustrates the average iterations, computation time
[s] and SIR improvement (SIRI [dB]) of the split Bregman algo-
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rithm and the subdivided split Bregman algorithm by different
lengths of unmixing filters. The data are synthetic mixtures of
two sources same as in [Setup 1] with however the reverbera-
tion time T60 = 780 ms and the input SIR ≈ −5.9 dB. The
comparison indicates that the subdivided split Bregman (r = 2
here) performs better than the split Bregman if the length of
unmixing filters is larger than 800 taps. When the length L is
above 2000, the split Bregman runs out of memory. There is a
trade-off between improved separation and computation costs.
From Table 1, L = 800 already achieves a good separation.

Table 1: Comparison of (subdivided) split Bregman algorithms

Split Bregman Subdivided Split Bregman

L Ite. Time SIRI Ite. Time SIRI

100 50 0.058 6.21 50 0.531 6.22
200 42 0.209 6.77 43 0.796 6.78
400 44 0.780 8.07 43 1.565 8.11
800 62 4.386 9.11 50 4.064 9.20
1200 63 10.994 10.36 41 7.019 10.40
1600 71 21.684 11.38 66 14.820 11.27
3600 - - - 123 83.295 13.47

Table 2: Comparison of BSS methods on synthetic mixture data

Time [s] SIR [dB] SDR [dB] SAR [dB]

Parra[9] 7.16 5.55 1.62 5.34
IVA[10] 42.72 14.59 7.21 9.52
SNGTD[1] 122.35 11.28 4.67 7.21
FastICA[1] 1.32 9.31 4.12 7.05
FSE 1.56 26.60 15.35 16.39

The comparison of a list of existing BSS methods is shown
in Table 2 in terms of computation time, SIR, signal to distor-
tion ratio (SDR) and signal to artifact ratio (SAR). The data are
synthetic mixtures of two speech sources as in [Setup 1] with
reverberation time T60 = 150 ms and input SIR ≈ −5.9 dB.
To compare the computation time of the algorithms directly and
fairly, the proposed FSE method extracts two speech sources
sequentially with the silent unions for the two speech sources
known ahead of time. Table 2 indicates that proposed FSE
achieves the best separation quality in objective measures at al-
most the speed of FastICA.

Room recorded mixture data are used to evaluate and com-
pare the above BSS methods by the Perceptual Evaluation of
Speech Quality (PESQ) [8]. [Setup 2]: The room size is
4.4 × 3.5 × 2.5 m with reverberation time T60 = 130 ms.
The loudspeakers and omni-directional microphones are 1.3 m
high from the floor. The sensors are set in the middle of the
room with 4 cm spacing linearly arranged. For the two sen-
sors and two sources case, the two loudspeakers are set 1.2 m
from the sensors with the azimuth at 40◦ and 80◦ respectively.
For the case of three sensors and three sources, the third loud-
speaker is set 1.2 m from the sensors with the azimuth 120◦.
The mixture data are male and female speeches with the dura-
tion about 7 s and sampling rate 8000 Hz. Now with the source
activity detection added, the separation quality of the proposed
FSE exceeds those of the known methods, as seen from Table
3. The speech sources activity detection is done within 2 to 3
seconds, and does not affect the efficiency of the FSE method.
DUET BSS method [11] is included in Table 3 as the micro-
phone spacing is small enough so that there is no phase-wrap
ambiguity to degrade its performance.

Table 3: Average PESQ of BSS methods on real recording mix-
ture data. PRE PESQ is the average PESQ of the mixture data. Time
for FSE is shown as detection time + speech extraction time.

2 sources (time[s]) 3 sources (time[s])

PRE PESQ 1.37 1.00
Parra 1.57 (7.9) 1.44 (16.0)
FastICA 1.90 (2.1) 1.70 (3.3)
SNGTD 2.07 (120) 1.88 (265)
IVA 2.35 (49.0) 2.02 (52.2)
DUET 2.36 (2.2) 2.00 (4.3)
FSE 2.58 (1.9+2.4) 2.15 (2.3+3.8)

6. Discussion and Conclusion
We proposed and evaluated a fast and efficient blind speech ex-
traction method as long as target speeches contain pauses. A
convex optimization problem is formulated and solved by the
split Bregman method to yield sparse unmixing filters. Binary
mask blind speech separation method is modified to detect the
speech source onset-offset activity. Experimental results indi-
cate that the proposed method outperforms conventional blind
speech separation methods in terms of the overall computation
speed and separation quality. The limitation of the proposed
method is that it relies on a robust silence detection in a long re-
verberation multi-talker environment which will be studied fur-
ther in future work.
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