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CONVEXITY AND SMOOTHNESS OF BANACH SPACES

WITH NUMERICAL INDEX ONE

VLADIMIR KADETS, MIGUEL MARTÍN, JAVIER MERÍ, AND RAFAEL PAYÁ

Abstract. We show that a Banach space with numerical index
one cannot enjoy good convexity or smoothness properties unless

it is one-dimensional. For instance, it has no WLUR points in its

unit ball, its norm is not Fréchet smooth and its dual norm is nei-
ther smooth nor strictly convex. Actually, these results also hold

if the space has the (strictly weaker) alternative Daugavet prop-
erty. We construct a (noncomplete) strictly convex predual of an

infinite-dimensional L1 space (which satisfies a property called

lushness which implies numerical index 1). On the other hand, we

show that a lush real Banach space is neither strictly convex nor

smooth, unless it is one-dimensional. Therefore, a rich subspace

of the real space C[0,1] is neither strictly convex nor smooth. In

particular, if a subspace X of the real space C[0,1] is smooth or

strictly convex, then C[0,1]/X contains a copy of C[0,1]. Finally,

we prove that the dual of any lush infinite-dimensional real space
contains a copy of ℓ1.

1. Introduction

The classical formula ‖T ‖ = sup{ | 〈Tx,x〉| : x ∈ X, ‖x‖ = 1} for the norm of
a self-adjoint operator T on a Hilbert space X can be rewritten, thanks to
the well-known representation of the dual X∗ as

(1) ‖T ‖ = sup{ |x∗(Tx)| : x ∈ X,x∗ ∈ X∗, x∗(x) = ‖x∗ ‖ = ‖x‖ = 1}.
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For a non-self-adjoint operator this formula may fail. Nevertheless, there are
some Banach spaces X in which equality (1) is valid for every bounded linear
operator T on X . As we will explain below, such spaces are said to have
numerical index 1. Among these spaces, are all classical C(K) and L1(μ)
spaces.

Given a real or complex Banach space X , we write BX , SX , X∗ and L(X),
to denote, respectively, the closed unit ball, the unit sphere, the topological
dual and the Banach algebra of bounded linear operators on X .

The numerical range of an operator T ∈ L(X) is the subset of the base field
given by

V (T ) = {x∗(Tx) : x∗ ∈ SX∗ , x ∈ SX , x∗(x) = 1},

and the numerical radius of T is then given by v(T ) = sup{|λ| : λ ∈ V (T )}.
These concepts were independently introduced by Bauer [3] and Lumer [31]
in the 1960s to extend the classical field of values of matrices (Toeplitz, 1918
[43]). We refer the reader to the monographs by Bonsall and Duncan [4], [5]
for a detailed account. The numerical index of the space X (Lumer, 1968
[15]) is the constant n(X) defined by

n(X) := inf{v(T ) : T ∈ L(X), ‖T ‖ = 1}
or, equivalently, the greatest constant k ≥ 0 such that k‖T ‖ ≤ v(T ) for every
T ∈ L(X). Observe that 0 ≤ n(X) ≤ 1 for every Banach space X , and n(X) =
1 if and only if equality (1) is valid for all operators on X . The reader will
find the state-of-the-art on numerical indices in the recent survey paper [20]
to which we refer for background.

Let us mention here several facts concerning the numerical index which are
relevant to our discussion. Examples of Banach spaces having numerical index
1 are C(K) spaces, L1(μ) spaces, Lindenstrauss spaces (i.e., isometric preduals
of L1(μ) spaces) [15], all function algebras [44] (for instance, the disk algebra
A(D) and H∞), and finite-codimensional subspaces of C[0,1] [8]. Next, one
has v(T ∗) = v(T ) for every T ∈ L(X), where T ∗ is the adjoint operator of T
(see [4, Section 9]), and it clearly follows that n(X∗) ≤ n(X) for every Banach
space X . It has recently been discovered that this inequality can be strict.
Actually, in [8, Example 3.1] an example is given of a real Banach space X
such that n(X) = 1 while n(X∗) = 0. We refer to the very recent paper [34] for
sufficient conditions to ensure the equality in the inequality n(X∗) ≤ n(X).
Every separable Banach space containing c0 can be equivalently renormed to
have numerical index 1 [7, Section 4], in particular, this happens with any
closed subspace of c0. On the other hand, there is no infinite-dimensional real
reflexive space with numerical index 1 [30].

Our main goal in this paper is to study which convexity or smoothness
properties are possible for the unit ball of a Banach space with numerical
index 1. At the end of this Introduction, we give the necessary definitions of
the convexity and smoothness properties we use along the paper. A difficulty
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with such a study is that the property of having numerical index 1 deals with
all operators on the space and we do not know of any characterization of
it in terms of the space and its successive duals. The previous solutions to
this difficulty have been to deal with either weaker or stronger geometrical
properties. Let us briefly give an account of some of them. Let X be a real
or complex Banach space.

(a) X is said to be a CL-space if BX is the absolutely convex hull of every
maximal convex subset of SX .

(b) We say that X is an almost-CL-space if BX is the closed absolutely convex
hull of every maximal convex subset of SX .

(c) X is lush if for every x, y ∈ SX and every ε > 0, there is a slice

S = S(x∗, ε) := {z ∈ BX : Rex∗(z) > 1 − ε}
with x∗ ∈ SX∗ such that x ∈ S and dist(y,aco(S)) < ε, where aco(S)
denotes the absolutely convex hull of the set S.

(d) X has numerical index 1 (n(X) = 1 in short) if v(T ) = ‖T ‖ for every
T ∈ L(X).

(e) We say that X has the alternative Daugavet property provided that every
rank-one operator T ∈ L(X) satisfies v(T ) = ‖T ‖. The same equality is
then satisfied by all weakly compact operators on X [36, Theorem 2.2].

The implications (a) =⇒ (b) =⇒ (c) and (d) =⇒ (e) are clear and none of
them reverses (see [8, Section 3 and Section 7] for a detailed account). Also,
(c) =⇒ (d) by [8, Proposition 2.2].

Some additional comments on the above properties may be in place. CL-
spaces where introduced in 1960 by Fullerton [17] and it was later shown
that a finite-dimensional Banach space has numerical index 1 if and only if
it is a CL-space ([38, Theorem 3.1] and [27, Corollary 3.7]). Therefore, the
above five properties are equivalent in the finite-dimensional case. All C(K)
spaces as well as real L1(μ) spaces are CL-spaces, while infinite-dimensional
complex L1(μ) spaces are only almost-CL-spaces (see [37]). Almost-CL-spaces
first appeared without a name in the memoir by Lindenstrauss [28] and were
further discussed by Lima [26], [27] who showed that real Lindenstrauss spaces
(i.e., isometric preduals of L1(μ)) are CL-spaces [26, Section 3] and complex
Lindenstrauss spaces are almost-CL-spaces [27, Section 3]. The disk algebra
is another classical example of an almost-CL-space [5, Theorem 32.9]. More
information can be found in [9], [32], [37], [41].

Lush spaces were introduced recently [8], and they were the key to provide
an example of a Banach space X such that n(X∗) < n(X) and to estimate
the polynomial numerical index of some spaces [10], [23]. We refer to [7]
for characterizations and examples of lush spaces. Among the advantages of
the concept of lushness, are that this property is separably determined [7,
Theorem 4.2] and that it gives many new examples of Banach spaces with
numerical index 1. Namely, C-rich subspaces of C(K) are lush and so they
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have numerical index 1 [8, Theorem 2.4]. A closed subspace X of a C(K)
space is said to be C-rich if for every nonempty open subset U of K and
every ε > 0, there is a positive function h ∈ C(K) of norm 1 with support
inside U such that the distance from h to X is less than ε. This definition
covers finite-codimensional subspaces of C[0,1] [8, Proposition 2.5], so they
are lush. Also, all function algebras are lush (see [7, Example 2.4] and [44,
Section 3]).

The alternative Daugavet property was introduced and characterized in
[36], but, in an equivalent way, the property defining it had appeared in some
papers of the 1990s. The name comes from the fact that an operator T on a
Banach space X satisfies v(T ) = ‖T ‖ if and only if ‖Id + ωT ‖ = 1 + ‖T ‖ for
some ω ∈ T (T being the set of modulus one scalars) [15], that is, the operator
S = ωT satisfies the so-called Daugavet equation ‖Id + S‖ = 1 + ‖S‖. There-
fore, X has the alternative Daugavet property if and only if every rank-one
operator (equivalently, every weakly compact operator) satisfies the Daugavet
equation up to rotation. We refer to the already cited paper [36] and to [33]
for more information and background. Let us comment that Banach spaces
with the Radon–Nikodým property and the alternative Daugavet property are
actually almost-CL-spaces [32]. Asplund spaces with the alternative Daugavet
property are lush, but they need not be almost-CL-spaces [8, Example 2.4].

The main question in this paper, not yet solved, is whether a Banach
space X with n(X) = 1 can be smooth or strictly convex. Two remarks
are pertinent. First, even though the exact value of n(ℓ2p) is not known for
p 	= 1,2, ∞ (see [35]), it is known that the set

{n(ℓ2p) : 1 < p < ∞}

contains all possible values of the numerical index except 1 [15]. Thus, the
question above only makes sense for the value 1. Second, it is clear that an
almost-CL-space cannot be strictly convex (almost-CL-spaces are somehow
the extremely opposite property to strict convexity), and it has recently been
shown that a real almost-CL-space cannot be smooth [9, Theorem 3.1].

Let us summarize the main results in this paper. Section 2 is devoted
to show that a Banach space with the alternative Daugavet property and
dimension greater than one has no WLUR points in its unit ball, its norm is
not Fréchet smooth and its dual norm is neither strictly convex nor smooth.
Next, in Section 3, we construct a noncomplete predual of an L1(μ) space
which is strictly convex. This space is lush (extending this definition to general
normed spaces literally), while its completion is an almost-CL-space. The aim
of Section 4 is to show that separable lush spaces actually satisfy a stronger
property: there is a norming subset K̃ of SX∗ such that for every x∗ ∈ K̃ and
every ε > 0, one has

BX = aco(S(x∗, ε)).
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In the real case, it is actually true that BX is the closed absolutely convex
hull of the (nonempty) face generated by x∗. This implies that a real lush Ba-
nach space is neither strictly convex nor smooth, unless it is one-dimensional.
Therefore, a C-rich subspace of the real space C[0,1] is neither strictly convex
nor smooth, and this answers a question of Popov from 1996. In particular,
if a subspace X of the real space C[0,1] is smooth or strictly convex, then
C[0,1]/X contains a copy of C[0,1]. We devote Section 5 to some localizations
of convexity and smoothness properties. Namely, it was asked in [20, Prob-
lem 13] whether a Banach space X with n(X) = 1 satisfies that |x∗(x)| = 1 for
every x ∈ ext(BX) (the set of extreme points in BX) and every x∗ ∈ ext(BX∗ ),
as it happens in the finite-dimensional case [38] (a positive answer would lead
to the impossibility of having a strictly convex space with numerical index 1
other than the one-dimensional one). But actually, we construct examples
of separable lush spaces where this does not happen, giving a negative an-
swer to the cited problem. On the other hand, we show that for lush spaces,
|x∗(x)| = 1 for every x∗ ∈ ext(BX∗ ) and every w∗-extreme point, which gives
us that a lush space which is WMLUR has to be one-dimensional.

We finish the Introduction with the definitions and notations of the convex-
ity and smoothness properties that we need throughout the paper. We refer
the reader to the books [11], [12] and the papers [2], [24] for more information
and background.

The norm of a real or complex Banach space X (or X itself) is said to be
smooth if for every x ∈ SX , there is a unique norm-one functional x∗ such that
x∗(x) = 1. The space X is said to be strictly convex when ext(BX) = SX . It
is well known that X is smooth (resp. strictly convex) if X∗ is strictly convex
(resp. smooth), but the converse is not true. We say that the norm of X
is Fréchet smooth when the norm of X is Fréchet differentiable at any point
of SX . By the Smulyan test, the norm of X is Fréchet smooth if and only
if every functional x∗ ∈ SX∗ which attains its norm is w∗-strongly exposed
(i.e., there is x ∈ SX such that for every sequence (x∗

n) in BX∗ such that
x∗

n(x) −→ 1 = x∗(x) one has x∗
n −→ x∗ in norm).

An x ∈ SX is said to be a point of local uniform rotundity (LUR point) if
‖xn − x‖ −→ 0 for every sequence (xn) in SX such that ‖xn + x‖ −→ 2. If for
every sequence (xn) of SX with ‖xn + x‖ −→ 2 one only has that xn −→ x in
the weak topology, we say that x is a point of weakly local uniform rotundity
(WLUR point).

A point x in SX is said to be (weakly) midpoint locally uniformly rotund
or MLUR (resp. WMLUR) if for any sequence (yn) in BX , limn ‖x ± yn‖ ≤ 1
implies limn ‖yn‖ = 0 (limn yn = 0 in the weak topology). A point x of BX is
called weak∗-extreme if it is an extreme point of BX∗ ∗ . Every WMLUR point
of BX is a weak∗-extreme point of BX (see [18, p. 674] and [24, p. 173]). We
say that the norm of X is MLUR (WMLUR) if every point in SX is MLUR
(WMLUR).
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2. Prohibitive results for the alternative Daugavet property

The aim in this section is to show that there are some convexity and
smoothness properties which are incompatible with the alternative Daugavet
property, and so, they are incompatible with the numerical index 1. We start
with smoothness and strict convexity of the dual norm.

Theorem 2.1. Let X be a Banach space with the alternative Daugavet
property and dimension greater than one. Then, X∗ is neither smooth nor
strictly convex.

Proof. Since the dimension of X is greater than 1, we may find x0 ∈ SX and
x∗

0 ∈ SX∗ such that x∗
0(x0) = 0. Then we consider the norm-one operator T =

x∗
0 ⊗ x0, which satisfies T 2 = 0. On the other hand, thanks to [1, Theorem 1.2],

there is a sequence of norm-one operators (Tn) converging in norm to T and
such that the adjoint of each of them attains its numerical radius. Moreover,
we may suppose that all the Tn’s are compact by [1, Remark 1.3]. Since X
has the alternative Daugavet property, we get

v(T ∗
n) = v(Tn) = ‖Tn‖ = 1.

As the operators T ∗
n attain their numerical radius, for every positive integer

n, we may find λn ∈ T and (x∗
n, x∗ ∗

n ) ∈ SX∗ × SX∗ ∗ such that

(2) λnx∗ ∗
n (x∗

n) = 1 and [T ∗ ∗
n (x∗ ∗

n )](x∗
n) = x∗ ∗

n (T ∗
n(x∗

n)) = 1.

If X∗ is smooth, we deduce that

T ∗ ∗
n (x∗ ∗

n ) = λnx∗ ∗
n (n ∈ N).

Thus,
‖[T ∗ ∗

n ]2(x∗ ∗
n )‖ = ‖λ2

nx∗ ∗
n ‖ = 1 (n ∈ N).

But, since Tn −→ T and T 2 = 0, we have that [T ∗ ∗
n ]2 −→ 0, a contradiction.

If X∗ is strictly convex, we deduce from (2) that

T ∗
n(x∗

n) = λnx∗
n (n ∈ N),

which leads to a contradiction the same way as before. �

As a consequence of the above result, we get that n(H1) < 1, where H1

represents the Hardy space. Actually, we have more.

Example 2.2. Let X be C(T)/A(D). Then its dual X∗ = H1 is smooth
(see [19, Remark IV.1.17], for instance), so X does not have the alternative
Daugavet property by Theorem 2.1 and neither does X∗ = H1. In particular,
n(X) < 1 and n(X∗) < 1.

Remarks 2.3. (a) The proof of Theorem 2.1 can be adapted to yield the
following result. Let X be a Banach space with the alternative Daugavet
property and such that the set of compact operators attaining its numerical
radius is dense in the space of all compact operators. Then X is neither
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strictly convex nor smooth, unless it is one-dimensional. Indeed, we may
follow the proof of Theorem 2.1 (without considering adjoint operators)
to get the result.

(b) It is known that for Banach spaces with the Radon–Nikodým property,
the set of compact operators attaining their numerical radius is dense in
the space of all compact operators [1, Theorem 2.4]. Therefore, we get that
a Banach space having the Radon–Nikodým property and the alternative
Daugavet property is neither smooth nor strictly convex, unless it is one-
dimensional.

(c) Actually, the above result was essentially known. Namely, if X has the
alternative Daugavet property and the Radon–Nikodým property, then
X is an almost-CL-space [32, Theorem 1]. It is clear that a (nontrivial)
almost-CL-space cannot be strictly convex. On the other hand, the fact
that a nontrivial real almost-CL-space cannot be smooth follows from a
very recent result [9, Theorem 3.1].

(d) The fact that there are Banach spaces in which the set of numerical radius
attaining operators is not dense in the space of all operators was discovered
in 1992 [39]. Nevertheless, we do not know of any Banach space for which
the set of compact operators which attain their numerical radius is not
dense in the space of all compact operators.

(e) Let us comment that it is also an open problem whether a Banach space
with the Daugavet property can be smooth or strictly convex. We recall
that a Banach space has the Daugavet property if ‖Id + T ‖ = 1 + ‖T ‖
for every rank-one operator T ∈ L(X) [22]. It is clear that the Daugavet
property implies the alternative Daugavet property (and the converse re-
sult is not true). Therefore, an example of a smooth or strictly convex
Banach space with the Daugavet property would give an example of a
Banach space where the rank-one operators cannot be approximated by
compact operators attaining the numerical radius.

More prohibitive results for the alternative Daugavet property are the fol-
lowing.

Proposition 2.4. Let X be a Banach space with the alternative Dau-
gavet property. Then, BX fails to contain a WLUR point, unless X is one-
dimensional.

Proof. Let x0 ∈ SX be a WLUR point. If the dimension of X is greater than
1, there is x∗

0 ∈ SX∗ such that x∗
0(x0) = 0. Then the rank-one operator T =

x∗
0 ⊗ x0 satisfies ‖T ‖ = 1 and so, v(T ) = 1. Therefore, we may find sequences

(xn) in SX and (x∗
n) in SX∗ such that

x∗
n(xn) = 1 and |x∗

n(x0)| |x∗
0(xn)| = |x∗

n(Txn)| −→ 1.
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Therefore, we get |x∗
n(x0)| −→ 1 and |x∗

0(xn)| −→ 1. If for every n ∈ N we take
λn ∈ T such that x∗

n(x0) = λn|x∗
n(x0)|, we have

2 ≥ ‖x0 + λnxn‖ ≥ |x∗
n(x0 + λnxn)| −→ 2.

So, being x0 a WLUR point, we get that (λnxn) −→ x0 in the weak topology,
which contradicts the fact that |x∗

0(xn)| −→ 1. �

The above result is not true if we replace the WLUR point by a point of
Fréchet smoothness. For instance, n(c0) = 1 but the norm of c0 is Fréchet
differentiable at a dense subset of Sc0

since c0 is Asplund. But it is not
difficult to show that a Banach space with the alternative Daugavet property
cannot have a Fréchet smooth norm, unless it is one-dimensional.

Proposition 2.5. Let X be a Banach space with the alternative Dau-
gavet property. Then the norm of X is not Fréchet smooth, unless X is
one-dimensional.

Proof. Using [30, Lemma 1], we have that |x∗ ∗(x∗)| = 1 for every x∗ ∗ ∈
ext(BX∗ ∗ ) and every w∗-strongly exposed point x∗ of BX∗ . Now, if the norm
of X is Fréchet-smooth, then every functional on SX∗ attaining its norm is
w∗-strongly exposed (see [11, Corollary I.1.5] for instance). Since, by the
Bishop–Phelps theorem, we have that the set of norm-attaining norm-one
functionals is (norm) dense on SX∗ , we get that

|x∗ ∗(x∗)| = 1

for all x∗ ∗ ∈ ext(BX∗ ∗ ) and all x∗ ∈ SX∗ . This clearly leads to the fact that
X is one-dimensional. �

3. A noncomplete strictly convex lush space

The aim of this section is to construct an example of a noncomplete infinite-
dimensional strictly convex normed space with numerical index 1 (actually
lush). As we will see, its completion is very far away from being strictly
convex. In the next section, we will show that actually no real lush complete
space can be strictly convex.

We need some definitions and preliminary results.

Definitions 3.1. Let ‖| · ‖| and ‖ · ‖ be two norms on a linear space X and
ε > 0. We say that ‖| · ‖| is ε-equivalent to ‖ · ‖ if

1

1 + ε
‖x‖ ≤ ‖|x‖| ≤ (1 + ε)‖x‖ (x ∈ X).

A property P of normed spaces is said to be a stable C-property, if C[0,1] ∈ P
and for every Banach space X the following condition is sufficient for X ∈
P : for every ε > 0 and for every finite subset F ⊂ X , there is a subspace
Y ⊂ X , such that F ⊂ Y and Y possesses an ε-equivalent norm ‖ · ‖ε with
(Y, ‖ · ‖ε) ∈ P .
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It is immediate that lushness and the alternative Daugavet property are
stable C-properties.

We are now ready to state the main result to get the example.

Theorem 3.2. For every strictly convex separable Banach space Y0, there
is a strictly convex separable normed space X ⊃ Y0 possessing all stable C-
properties.

We will need the following surely well-known lemma.

Lemma 3.3. Let Y be a strictly convex closed subspace of a separable Ba-
nach space X . Then for every ε > 0, there is an ε-equivalent strictly convex
norm ‖| · ‖| on X which coincides with the original one on Y .

Proof. The existence of a norm p satisfying all conditions of this statement
except being ε-equivalent to the original one is well known (see for example
[11, p. 84] or [42, Theorem 1.1]). Then for sufficiently small t > 0, the norm
‖|x‖| := (1 − t)‖x‖ + tp(x) will be the one which we need. �

Proof of Theorem 3.2. We are going to construct a sequence of separable
strictly convex Banach spaces (Xn) with the following properties:

(i) X1 = Y0.
(ii) Xn is a subspace of Xm for n < m.
(iii) For every n ∈ N, there is a 1

n -equivalent norm ‖ · ‖n on Xn with (Xn, ‖ · ‖n)
being isometric to C[0,1].

Since X1 is already known, the only thing we need for this construction is to
show how to get Xm+1 from Xm. Let us fix m ∈ N. Since Xm is separable, we
can (and do so) consider Xm as a subspace of C[0,1]. According to Lemma 3.3,
there is an ( 1

m )-equivalent strictly convex norm ‖| · ‖| on C[0,1] which coincides
with the original norm on Xm. Put Xm+1 = (C[0,1], ‖| · ‖|), and the original
norm of C[0,1] plays the role of ‖ · ‖n in the condition (iii). So the construction
is completed.

What remains to complete the proof itself is to put X =
⋃

m∈N
Xm. Then

for every ε > 0 and for every finite subset F ⊂ X , one can find n ∈ N such
that 1

n < ε and F ⊂ Xn. Since ‖ · ‖n is ε-equivalent to the norm of Xn, we
get the requirement. �

Since lushness is a stable C-property, we get the desired example.

Example 3.4. There are normed lush spaces which are strictly convex.

We are going to show that the completions of the above examples (which
are of course also lush) are not strictly convex. Actually, they are almost-CL-
spaces.

Following Bourgain’s book [6], we say that a Banach space X is an L ∞
1+-

space if for any finite-dimensional subspace E of X and every ε > 0, there
is another finite-dimensional subspace F of X containing E, such that the
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Banach–Mazur distance between F and ℓ
(dim(F ))
∞ is less than 1 + ε. It is well

known [25] that this property is equivalent to the fact that X∗ is isometrically
isomorphic to an L1(μ) space. The completions of the spaces constructed in
Theorem 3.2 are L ∞

1+-spaces, so they are preduals of L1(μ) spaces. In the
real case, it is known that preduals of L1(μ) spaces are almost-CL-spaces (see
[28, Theorem 4.8] or [27, Corollary 3.6]). Actually, the same is true for the
complex case. We include here a proof of this fact since we have been unable
to find it in the literature.

Proposition 3.5. Let X be a (real or complex) Banach space such that
X∗ is isometrically isomorphic to an L1(μ) space. Then, X is an almost-CL-
space.

Proof. If we consider a maximal convex subset F of BX , the Hahn–Banach
and Krein–Milman theorems ensure that there is an extreme point f of the
unit ball of X∗ = L1(μ), such that

F = F (f) := {x ∈ BX : f(x) = 1}.

We observe that the linear span of an extreme point f in the unit ball of
an L1(μ) space is an L-summand (i.e., L1(μ) = lin(f) ⊕1 Z for some closed
subspace Z). So, a result by Lima [27, Theorem 5.3] says that F (f) is not
empty (we already knew it) and that BX is the closure of aco(F (f)). This
shows that X is an almost-CL-space. �

As a immediate consequence of this result, we get the following.

Corollary 3.6. The completions of the noncomplete lush strictly convex
normed spaces constructed in Theorem 3.2 are almost-CL-spaces and, there-
fore, they are not strictly convex.

We finish the section by remarking that the arguments of the construc-
tion given in Theorem 3.2 cannot be adapted for smoothness, since a smooth
norm on a subspace cannot always be extended to the whole space (see [11,
Theorem 8.3]).

4. Separable lush spaces

We have seen in the previous section that the completions of the normed
strictly convex lush spaces constructed are not strictly convex by showing that
they are almost-CL-spaces. We cannot expect that every Banach space with
numerical index 1 is an almost-CL-space since there are lush spaces which
do not fulfil this property [8, Example 3.4]. Nevertheless, our aim here is to
show that, in the separable case, lush spaces actually have a much stronger
property which in the real case is very close to being an almost-CL-space and
which will allow us to show that a real lush space cannot be strictly convex,
unless it is one-dimensional.
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We need a characterization of lushness given in [7] in terms of a norming
subset of SX∗ . Also, to carry some consequences to the nonseparable case, we
need a result of the same paper saying that lushness is a separably determined
property. We state both results here for easier reference.

Proposition 4.1 ([7, Theorems 4.1 and 4.2]). Let X be a Banach space.

(a) The following assertions are equivalent:
(i) X is lush.
(ii) For every x, y ∈ SX and for every ε > 0 there is a slice S = S(x∗, ε) ⊂

BX , x∗ ∈ ext(BX), such that

x ∈ S and dist(y,aco(S)) < ε

(i.e. x∗ in the definition of lushness can be chosen from ext(BX)).
(b) The following two conditions are equivalent:

(i) X is lush.
(ii) Every separable subspace E ⊂ X is contained in a separable lush sub-

space Y , E ⊂ Y ⊂ X .

The following lemma, which will be the key to prove the main result of
the section, will be also useful in Section 5 and does not depend upon the
separability of the space.

Lemma 4.2. Let X be a lush space and let K ⊂ BX∗ be the weak* closure
of ext(BX∗ ) endowed with the weak* topology. Then for every y ∈ SX , there

is a Gδ-dense subset Ky of K such that y ∈ aco(S(y∗, ε)) for every ε > 0 and
every y∗ ∈ Ky .

Proof. Fix y ∈ SX . For every n,m ∈ N, we consider

Ky,n,m :=
{

x∗ ∈ K : dist
(

y,aco
(

S(x∗,1/n)
))

< 1/m
}

.

Claim. Ky,n,m is weak*-open and dense in K.

In fact, openness is almost evident: if x∗ ∈ Ky,n,m, then there is a finite set
A = {a1, . . . , ak } of elements of S(x∗,1/n) such that dist(y,aco(A)) < 1/m.
Denote

U := {y∗ ∈ K : Rey∗(ai) > 1 − 1/n for all i = 1, . . . , k}.

U is a weak*-neighborhood of x∗ in K, and A ⊂ S(y∗,1/n) for every y∗ ∈ U .
This means that dist(y,aco(S(y∗,1/n))) < 1/m for all y∗ ∈ U , i.e. U ⊂ Ky,n,m.

To show density of Ky,n,m in K, it is sufficient to demonstrate that the
weak* closure of Ky,n,m contains every extreme point x∗ of SX∗ . Since weak*-
slices form a base of neighborhoods of x∗ in BX∗ (see [16, Lemma 3.40],
for instance), it is sufficient to prove that every weak*-slice S(x, δ), δ ∈
(0,min{1/n,1/m}), intersects Ky,n,m, i.e., that there is a point y∗ ∈ S(x, δ) ∩
Ky,n,m. Which property of y∗ do we need to make this true? We need that
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y∗(x) > 1 − δ, y∗ ∈ K, and that dist(y,aco(S(y∗,1/n))) < 1/m. But the exis-
tence of such a y∗ is a simple application of item (ii) from Proposition 4.1(a).
The claim is proved.

Now, we consider Ky =
⋂

n,m∈N
Ky,n,m, which is a weak*-dense Gδ subset

of K due to the Baire theorem. �

We are now ready to state and prove the main result of the section.

Theorem 4.3. Let X be a separable lush space. Then there is a norming
subset K̃ of SX∗ such that BX = aco(S(x∗, ε)) for every ε > 0 and for every

x∗ ∈ K̃. The last condition implies that

|x∗ ∗(x∗)| = 1
(

x∗ ∗ ∈ ext(BX∗ ∗ ), x∗ ∈ K̃
)

,

and that in fact K̃ ⊂ ext(BX∗ ).

Proof. We select a sequence (yn) dense in SX in such a way that every

element of the sequence is repeated infinitely many times, and consider K̃ =
⋂

n∈N
Kyn

. Due to the Baire theorem, K̃ is a weak*-dense Gδ subset of K.

This implies that for every x ∈ SX and for every ε > 0 there is an x∗ ∈ K̃,
such that x ∈ S(x∗, ε) (i.e. K̃ is 1-norming). For x∗

0 ∈ K̃ and ε > 0 fixed,
the inequality dist(yn,aco(S(x∗

0,1/n))) < 1/n holds true for all n ∈ N. Select
an N > 1/ε. Then for every n > N we have dist(yn,aco(S(x∗

0, ε))) < 1/n.
Since every element of the sequence (yn) is repeated infinitely many times,
this means that dist(yn,aco(S(x∗

0, ε))) = 0. So the closure of aco(S(x∗
0, ε))

contains the whole ball BX . Then

BX∗ ∗ = BX
w∗

⊆ aco(S(x∗
0, ε))

w∗

.

Finally, the reversed Krein–Milman theorem gives us that

ext(BX∗ ∗ ) ⊂ TS(x∗
0, ε)

w∗

,

and the arbitrariness of ε > 0 gives us

|x∗ ∗(x∗
0)| = 1

(

x∗ ∗ ∈ ext(BX∗ ∗ )
)

. �

We do not know whether the statement of the theorem is true in the non-
separable case.

Remark 4.4. From the proof of the above theorem, it follows that the set
K̃ is actually a Gδ-dense subset of the weak* closure of ext(BX∗ ) endowed
with the weak* topology.

As a consequence of the above theorem and results of Lima [27], we get the
following interesting version valid in the real case.

Corollary 4.5. Let X be a lush real separable space. Then there is a
subset A of SX∗ norming for X such that for every a∗ ∈ A one has

BX = aco
(

{x ∈ SX : a∗(x) = 1}
)

.
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Proof. By the above theorem, there is a subset A of SX∗ norming for X
such that

|x∗ ∗(a∗)| = 1
(

x∗ ∗ ∈ ext(BX∗ ∗ ), a∗ ∈ A
)

.

Now, Theorems 3.1 and 3.5 of [27] give us that each a∗ ∈ A attains its norm
on X and, moreover, that the closed absolutely convex hull of the points of
BX where a∗ attains its norm is the whole ball BX , as claimed. �

Corollary 4.6. Let X be a real Banach space which is lush. Then X is
neither strictly convex nor smooth, unless it is one-dimensional.

Proof. If X is a lush space, then every separable closed subspace Z of
X is contained in a separable lush subspace Y by Proposition 4.1(b), and

Corollary 4.5 provides us with a face F of BY such that BY = co(F ∪ −F ).
If Y is not one-dimensional, then F contains at least two distinct points
y1, y2 and 1

2 (y1 + y2) ∈ F ⊂ SY is not extreme. On the other hand, if Y is
not one-dimensional, following the proof of [9, Theorem 3.1], we get that the
smooth points of F are exactly the norm-one elements of the cone generated
by F which are not support points of the cone. But then, the Bishop–Phelps
theorem provides us with (norm-one) support points of such a cone (see [40,
Theorem 3.18] for instance). Then F and so SY contains nonsmooth points.
Therefore, Y is not smooth, all the more X . �

We do not know whether the above two results are true in the complex
case. We do not know either whether there are real strictly convex Banach
spaces with numerical index 1 others than R.

As a consequence of the corollary above, we get a negative answer to a
problem by Popov, which he posed to the first author in 1996 while discussing
the still open problem on the existence of a strictly convex Banach space with
the Daugavet property.

Corollary 4.7. A C-rich closed subspace of the real space C[0,1] is nei-
ther strictly convex nor smooth.

It is known that a subspace X of C[0,1] is C-rich whenever C[0,1]/X does
not contain a copy of C[0,1] (see [21, Proposition 1.2 and Definition 2.1]).
Therefore, the following is a particular case of the above proposition.

Corollary 4.8. Let X be a closed subspace of the real space C[0,1]. If
X is smooth or strictly convex, then C[0,1]/X contains an isomorphic copy
of C[0,1].

Finally, another interesting consequence of Theorem 4.3 is the following.

Corollary 4.9. Let X be an infinite-dimensional real Banach space which
is lush. Then X∗ contains an isomorphic copy of ℓ1.
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Proof. If X is lush, by Proposition 4.1(b), there is an infinite-dimensional
separable closed subspace Y of X which is lush. Then, by Theorem 4.3, there
is a norming subset K̃ of SY ∗ (in particular, K̃ is infinite) such that

|y∗ ∗(y∗)| = 1
(

y∗ ∗ ∈ ext(BY ∗ ∗ ), y∗ ∈ K̃
)

.

Now, Proposition 2 of [30] shows that Y ∗ contains either c0 or ℓ1. But a
dual space contains ℓ∞ (hence, also ℓ1) as soon as it contains c0 (see [13,
Theorem V.10] or [29, Proposition 2.e.8], for instance). Finally, if Y ∗ contains
a copy of ℓ1, then so does X∗ (see [14, p. 11], for instance). �

The above corollary has already been known for real spaces with numerical
index 1 which are Asplund or have the Radon–Nikodým property [30], and
for real almost-CL-spaces [37].

5. Extreme points of the unit ball

The fact that a finite-dimensional strictly convex Banach space with nu-
merical index 1 has to be one-dimensional is a direct consequence of an old
result by McGregor [38]. Namely, if X is a finite-dimensional Banach space
with n(X) = 1, then

|x∗(x)| = 1
(

x∗ ∈ ext(BX∗ ), x ∈ ext(BX)
)

.

In [20, Problem 13], it was asked whether the above result is also true in the
infinite dimensional case. There are two goals in this section. On the one
hand, we will show that this is not the case. We present two examples of lush
spaces (actually, C-rich subspaces of C(K)) such that there are x∗

0 ∈ ext(BX∗ )
and x0 ∈ ext(BX) with |x∗

0(x0)| = 0. On the other hand, we will show that
such an example is not possible when the point x0 is actually extreme in BX∗ ∗ .
In particular, we obtain that a lush space which is MLUR or WMLUR must
be one-dimensional.

Let us start with the first two examples. We give two different construc-
tions, one for both the real and the complex case and another one for the
complex case only, showing that the answer to the already mentioned Prob-
lem 13 of [20] is negative.

Example 5.1. There is a C-rich subspace X of the space C[0,1] (hence X
is lush) and there are f0 ∈ ext(BX) and x∗

0 ∈ ext(BX∗ ) satisfying x∗
0(f0) = 0.

Proof. Let us fix a function f0 ∈ C[0,1] such that ‖f0‖ = 1, f0(t) = 0 for
t ∈ (0,1/3), and f0(t) = 1 for t ∈ (2/3,1). We select a sequence of intervals
Δn ⊂ [0,1], |Δn| < 1/3, such that for every (a, b) ⊂ [0,1] there is a Δj ⊂ (a, b).
Also, fix a null sequence (εn), εn > 0. Now, one can easily construct functions
fn ∈ C[0,1], n ∈ N, and functionals f ∗

n ∈ C[0,1]∗, n = 0,1,2, . . . , recursively
with the following properties:

(i) ‖fn‖ = 1, ‖fn|∆n
‖ ∞ = 1 and ‖fn|[0,1]\∆n

‖ ∞ ≤ εn.
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(ii) All the fn are linear splines and fn(t) = 0 in all the nonsmoothness points
of fk, k < n, as well as in the points 0,1/3,2/3 and 1.

(iii) Every fn|(2/3,1) is linearly independent of {fk |(2/3,1)}n−1
k=0 .

(iv) The measure representing f ∗
n is supported in (2/3,1).

(v) f ∗
n(fm) = 0 when n 	= m, and f ∗

n(fn) = 1.

Let us explain the construction. Since f0|(2/3,1) 	= 0, we can select f ∗
0 sup-

ported in (2/3,1) with f ∗
0 (f0) = 1. Now, we are going to select f1. The

conditions (ii) and (v) on f1 mean that the linear spline f1 must satisfy a
finite number of linear equations:

f1(0) = f1(1/3) = f1(2/3) = 0, f ∗
0 (f1) = 0,

so the set of splines supported on a fixed nonvoid interval satisfying these
conditions is a finite-codimensional subspace. Select a norm-one spline g1 ∈
C[0,1] supported on Δ1 satisfying the equations above. Find a spline h1 ∈
C[0,1] of norm less than ε1, supported on (2/3,1) \ Δ1, linearly independent
of f0|(2/3,1)\∆1

, and also satisfying the linear equations for f1. Then f1 :=
g1 + h1 will serve its purpose. By linear independence of f0|(2/3,1)\∆1

and
f1|(2/3,1)\∆1

= h1, we may find a measure supported on (2/3,1) (and even
more: on (2/3,1) \ Δ1) which annihilates f0 and takes the value 1 on f1.
Take this measure as f ∗

1 . Then, in the same way we construct f2, then f ∗
2 ,

etc.
Now, we take X := lin{fn}n∈N∪{0}. The property (i) ensures that X is

C-rich in C[0,1]. Thanks to the property (ii), {fn}n∈N∪{0} forms a monotone
basic sequence (i.e., a basis of X), and property (v) gives us that the coordi-
nate functionals can be written as restrictions of f ∗

n to X .
Since X is C-rich, there is a function g ∈ SX which attains its norm only

on (0,1/3). Fix x∗
0 ∈ ext(BX∗ ) with x∗

0(g) = 1. Let μ ∈ SC[0,1]∗ be a measure
representing x∗

0. Then μ is automatically supported on (0,1/3), so x∗
0(f0) = 0.

What remains to prove is that f0 ∈ ext(BX). To this end, we consider h ∈ X
such that ‖f0 ± h‖ = 1. Since f0(t) = 1 for t ∈ (2/3,1), we have that h = 0 on
(2/3,1). But then, h =

∑∞
n=0 f ∗

n(h)fn ≡ 0. �

In the complex case, an easier example can be constructed.

Example 5.2. There is a C-rich subspace X of the complex space C(T)
(in particular, X is lush and so n(X) = 1), and extreme points x∗

0 ∈ BX∗ and
φ0 ∈ BX such that x∗

0(φ0) = 0.

Proof. Let A(D) be the disk algebra, considered as a closed subspace of
C(T). Then A(D) is C-rich in C(T). Indeed, let ϕ(z) = exp(z)/e for every
z ∈ D. Then ‖ϕ‖ = |ϕ(1)| = 1 and there is no other point on T, but z = 1
where ϕ attains its norm. Then the family

A = {ϕn(z0·) : n ∈ N, z0 ∈ T}
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belongs to A(D), and for every ε > 0 and every open subset U of T, we may
find an element of A which is at ε-distance from a function whose support is
inside U .

Let X = lin{A(D), φ0}, where φ0 is any function in C(T) for which there
are nonempty open sets U1, U2, and U3 of T such that φ0 ≡ 1 on U1, φ0 ≡ −1
on U2 and φ0 ≡ 0 on U3. Then X is C-rich because it contains A(D). Next,
φ0 is extreme on BX . Indeed, if g = αφ0 + f ∈ X is such that ‖φ0 ± g‖ ≤ 1,
then g ≡ 0 on U1 ∪ U2, so f ≡ α on U1 and f ≡ −α on U2. It follows that
α = 0 and so g = 0. Also, for every z ∈ T, the functional δz is extreme in
BX∗ . Namely, for every z ∈ T there is a function ϕ ∈ A(D) which attains its
norm only at the point z. Then there is an extreme point x∗ of BX∗ such
that |x∗(ϕ)| = 1. Then the norm-one measure which represents x∗ must be
supported on z (otherwise the integral would be strictly smaller than 1), so
x∗ is of the form θδz . Finally, taking z ∈ U2 and calling x∗

0 = δz , we have that
x∗

0 ∈ ext(BX∗ ) and x∗
0(φ0) = 0. �

Let us comment that the extreme points f0 and φ0 of the examples above
are not rotund. In fact, we do not know if a rotund point may exist in a lush
space with dimension greater than one. We recall that a point x in the unit
sphere of a Banach space X is said to be rotund if it is not an element of any
nontrivial closed segment in the unit sphere or, equivalently, if ‖x+ y‖ = 2 for
some y ∈ BX implies y = x.

To finish the section, we show that in the previous examples the extreme
points of the unit ball cannot be w∗-extreme. We will use this to show that
there are no lush spaces which are WMLUR.

Proposition 5.3. Let X be a lush space. Then for every w∗-extreme point
x0 of BX and every x∗ ∈ ext(BX∗ ), one has |x∗(x0)| = 1. In particular, this
happens for WMLUR points of BX .

Proof. We fix a w∗-extreme point x0 of BX . By Lemma 4.2, there is a
subset Kx0

of ext(BX∗ ) norming for X such that x0 ∈ aco(S(k∗, ε)) for every
ε > 0 and every k∗ ∈ Kx0

. Then since x0 is an extreme point of the bidual
ball, the same argument as at the end of the proof of Theorem 4.3 shows that
for all k∗ ∈ Kx0

|x0(k
∗)| = 1.

Since Kx0
is norming for X , we have that BX∗ is the weak∗-closure of

aco(Kx0
), and the reversed Krein–Milman theorem gives us that the set

ext(BX∗ ) is contained in the w∗-closure of TKx0
. The result follows since

x0 ∈ X . �

As a consequence, we have the following prohibitive result. In the real
case, it is a particular case of Corollary 4.6, since WMLUR spaces are strictly
convex.



CONVEXITY AND SMOOTHNESS OF SPACES WITH NUMERICAL INDEX 1 179

Corollary 5.4. Let X be a lush space. Then X is not WMLUR (in
particular, it is not MLUR), unless it is one-dimensional.

Proof. Since X is a WMLUR, Proposition 5.3 gives us that |x∗(x)| = 1 for
every x∗ ∈ ext(BX∗ ) and every x ∈ SX . But this clearly implies that X is
one-dimensional. �

Let us mention that another consequence of Proposition 5.3 is that every
w∗-extreme point of a lush space is actually MLUR, as the following remark
shows.

Remark 5.5. Let X be a Banach space and let x be a point in BX so that
|x∗(x)| = 1 for every x∗ ∈ ext(BX∗ ). Then x is an MLUR point of BX . Indeed,
fixed y ∈ X , we take x∗ ∈ ext(BX∗ ) so that x∗(y) = ‖y‖ and we estimate as
follows

max
±

‖x ± y‖ ≥ max
±

∣

∣x∗(x) ± ‖y‖
∣

∣ ≥
(

|x∗(x)|2 + ‖y‖2
)1/2

= (1 + ‖y‖2)1/2.

Finally, we present an example showing that the results above are not valid
for Banach spaces having the alternative Daugavet property. We do not know
whether they are true for spaces with numerical index 1.

Example 5.6. The real or complex space X = C([0,1], ℓ22) has the alter-
native Daugavet property (and even the Daugavet property). However, there
exist x∗

0 ∈ ext(BX∗ ) and a MLUR point f0 of BX such that |x∗
0(f0)| < 1.

Proof. First, C([0,1], ℓ22) has the alternative Daugavet property by [36,
Theorem 3.4], for instance. Now, we fix any x0 ∈ Sℓ2

2
and consider f0 ∈ SX

given by f0(t) = x0 for every t ∈ [0,1]. To prove that f0 is an MLUR point in
BX , we take g ∈ X and we observe that

max
±

‖f0 ± g‖ = sup
t∈[0,1]

max
±

‖x0 ± g(t)‖ ≥ sup
t∈[0,1]

(

1 + ‖g(t)‖2
)1/2

= (1 + ‖g‖2)1/2.

We notice that the above inequality becomes an equality when one considers
g ∈ X given by g(t) = x⊥

0 for every t ∈ [0,1], where x⊥
0 ∈ Sℓ2

2
is orthogonal

to x0. Finally, it suffices to take x∗
0 ∈ ext(BX∗ ) so that x∗

0(g) = 1 to get the
desired condition. Indeed,

√
2 = max

ω∈T

‖f0 + ωg‖ ≥ max
ω∈T

|x∗
0(f0) + ω| = 1 + |x∗

0(f0)|,

so |x∗
0(f0)| ≤

√
2 − 1 < 1. �
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