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1 Introduction

The theory of convex/concave functions (Rockafellar [36], Stoer-Witzgall [40]) has

played the core role in the field of nonlinear optimization as well as in other fields of

mathematical sciences. Convex/concave functions are computationally tractable

by virtue of the following two facts:

• Global optimality is guaranteed by local optimality. Hence myopic (or greedy)

strategies work for minimizing/maximizing the function value.

• Strong duality holds for a pair of convex and concave functions. Compu-

tationally, this guarantees the existence of a certificate (evidence) for the

optimality in terms of the dual variable.

The theory of matroids (Welsh [42], White [44]) has played a similar role in the

field of combinatorial optimization. It has successfully captured the combinatorial

essence underlying the well-solved class of optimization problems such as those on

graphs and networks (cf., e.g., Lawler [24]). Efficient algorithms are known for

the optimization problems on matroids such as (i) the problem of optimizing a

linear objective function over a single matroid and (ii) the problem of optimizing a

linear objective function over the intersection of two matroids (“weighted matroid

intersection problem”). The tractability of these problems relies on the following

facts:

• Global optimality is guaranteed by local optimality, and moreover, the so-

called greedy algorithm works for the problem (i).

• A duality theorem, Edmonds’ intersection theorem, guarantees the existence

of a certificate for the optimality for the problem (ii) in terms of the dual

variable.

The polyhedral approach of Edmonds [9] recognizes a combinatorial optimiza-

tion problem as a linear programming problem with an extra constraint of inte-

grality. With the combinatorial optimization problem is associated a polyhedron,

the convex hull of the relevant incidence vectors, over which the linear objective

function is maximized. The polyhedron (convex hull) is described by a system of

linear inequalities, that is, it is expressed as the intersection of halfspaces rather

than as the convex combinations of the vertices.

The polyhedral approach to matroid optimization, emphasizing faces rather

than vertices of the polyhedron, has evolved to the theory of submodular/supermodular
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functions (Edmonds-Giles [11], Frank [14], Fujishige [19], Schrijver [38]), where a

set function f : 2V → R is called submodular if

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (X,Y ⊆ V ),

and supermodular if −f is submodular. In particular, the matroid intersection

problem has been extended to the polymatroid intersection problem (Welsh [42])

and further to the independent flow problem (Fujishige [17]) and the submodular

flow problem (Edmonds-Giles [11], Frank [15], Frank-Tardos [16]).

The analogy between convex/concave functions and submodular/supermodular

functions has attracted research interest. Fujishige [18] formulates Edmonds’ in-

tersection theorem into a Fenchel-type min-max duality theorem and considers

further analogy such as subgradients. Frank [14] shows a separation theorem for

a pair of submodular/supermodular functions, with integrality assertion for the

separating hyperplane in the case of integer-valued functions. This theorem can

also be regarded as being equivalent to Edmonds’ intersection theorem. A precise

statement, beyond analogy, about the relationship between convex functions and

submodular functions is made by Lovász [25]. Namely, a set function is submod-

ular if and only if the so-called Lovász extension of that function is convex (see

also [19]). This penetrating remark also establishes a direct link between duality

for convex/concave functions and duality for submodular/supermodular functions.

The essence of the duality principle for submodular/supermodular functions is now

recognized as the discreteness (integrality) assertion in addition to the duality for

convex/concave functions.

In spite of the developments outlined above, our understanding of the relation-

ship between convexity and submodularity seems to be only partial. In convex

analysis, a convex function is minimized over a convex domain of definition which

can be described by a system of inequalities in (other) convex functions. In the

polyhedral approach to matroid optimization, a linear function is optimized over a

(discrete) domain of definition which is described by a system of inequalities involv-

ing submodular functions. The relationship between convexity and submodularity

we have understood so far is concerned only with the domain of definitions and

not with the objective functions. In the literature, however, we can find a number

of results on the optimization of nonlinear functions over the base polytope of a

submodular system. In particular, the minimization of a separable convex function

over such a base polytope has been considered by Fujishige [19] and Groenevelt

[20], and the submodular flow problem with a separable convex objective func-

tion has been treated by Fujishige [19]. Our present knowledge does not help us

3



understand this result in relation to convex analysis.

Remark 1.1 It may be in order here to mention that the minimization of a sub-

modular function is of primary importance in combinatorial optimization (see

Grötschel-Lovász-Schrijver [21]), but this does not seem relevant in the present

context. 2

Quite independently of these developments in the theory of submodular func-

tions, Dress and Wenzel [5], [8] have recently introduced valuated matroids, a

quantitative generalization of matroids. A matroid (V,B), defined in terms of its

family of bases B ⊆ 2V , is characterized by the Steinitz exchange property:

For X,Y ∈ B and u ∈ X − Y , there exists v ∈ Y − X such that

X − u + v ∈ B.

It is well known that this implies a simultaneous exchange property:

For X,Y ∈ B and u ∈ X − Y , there exists v ∈ Y − X such that

X − u + v ∈ B and Y + u − v ∈ B.

A valuation of (V,B) is a function ω : B → R which enjoys the quantitative

extension of the Steinitz exchange property:

(MV) For X,Y ∈ B and u ∈ X−Y , there exists v ∈ Y −X such that X−u+v ∈ B,

Y + u − v ∈ B and

ω(X) + ω(Y ) ≤ ω(X − u + v) + ω(Y + u − v).

A matroid equipped with a valuation is called a valuated matroid.

It has turned out recently that valuated matroids afford a nice combinatorial

framework to which the optimization algorithms established for matroids gener-

alize naturally. Variants of greedy algorithms work for maximizing a matroid

valuation, as has been shown by Dress-Wenzel [5] as well as by Dress-Terhalle [2],

[3], [4] and Murota [27]. (These greedy-type algorithms are similar in the vein

to, but not the same as, those in Korte-Lovász-Schrader [23].) The weighted

matroid intersection problem has been extended by Murota [28], [29] to the val-

uated matroid intersection problem. The optimality criteria and algorithms for

the weighted matroid intersection problem have been generalized for the valuated

matroid intersection problem.

This direction of research can be extended further as follows [32]. Let us say

that B ⊆ ZV is an integral base set if it is a nonempty set that satisfies:
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(B1) For x, y ∈ B and for u ∈ supp+(x − y), there exists v ∈ supp−(x − y) such

that x − χu + χv ∈ B,

where supp+(x − y) := {u ∈ V | x(u) > y(u)}, supp−(x − y) := {v ∈ V | x(v) <

y(v)} and χu denotes the characteristic vector of u ∈ V . We then consider a

function ω : B → R on a finite integral base set B such that:

(EXC) For x, y ∈ B and u ∈ supp+(x − y), there exists v ∈ supp−(x − y) such

that x − χu + χv ∈ B, y + χu − χv ∈ B and

ω(x) + ω(y) ≤ ω(x − χu + χv) + ω(y + χu − χv).

We call such ω an M-concave function, where M stands for Matroid. As will

be illustrated in Section 2, M-concave functions arise naturally in the context of

combinatorial optimization.

In a sense to be made precise later in Theorem 2.1, the exchange property (B1)

is equivalent to submodularity. With the correspondence between convexity and

submodularity in mind, we may then say that (B1) prescribes a certain “convexity”

of the domain of definition of the function ω. The main theme of this paper is to

demonstrate that the exchange property (EXC) can be interpreted as “concavity”

of the objective function in the context of combinatorial optimization. The three

central questions considered in this paper are the following:

• We know a pair of “conjugate” characterizations of the base polytope of

a submodular system, namely, the exchange property (B1) for the points

in the polytope and the submodularity for (the inequalities describing) the

faces of the polytope. The property (EXC) is a quantitative generalization

of (B1). Then what is the generalization of submodularity that corresponds

to (EXC)?

[Domain] [Function]

(B1) =⇒ (EXC)

m m
Submodularity =⇒ ?

(1.1)

An answer is given in Theorem 5.3.

• Can an M-concave function be extended to a concave function in the usual

sense, just as a submodular function can be extended to a convex function

through the Lovász extension? Theorem 4.6 answers this question affirma-

tively.
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• Is there any duality for M-convex/M-concave functions that corresponds to

the duality for convex/concave functions? The main concern here will be

the discreteness (integrality) assertion for a pair of such functions which

are integer-valued. We answer this in the affirmative in Section 6 by ex-

tending the approach of Murota [30] for matroid valuations. To be specific,

this amounts to a generalization of the optimality criteria for the weighted

matroid intersection problem and its variants and extensions such as the

potential characterization of the optimality due to Iri-Tomizawa [22] and

Fujishige [17], and the weight splitting theorem of Frank [13].
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2 Functions with the Exchange Property

2.1 Definitions

Let V be a finite nonempty set and R be the set of real numbers. For u ∈ V

we denote by χu its characteristic vector, i.e., χu = (χu(v) | v ∈ V ) ∈ ZV with

χu(v) := 1 if v = u and χu(v) := 0 otherwise. For x = (x(v) | v ∈ V ) ∈ RV ,

y = (y(v) | v ∈ V ) ∈ RV we define

supp+(x) := {v ∈ V | x(v) > 0}, supp−(x) := {v ∈ V | x(v) < 0},

x(X) :=
∑

{x(v) | v ∈ X} (X ⊆ V ),

||x|| :=
∑

{|x(v)| | v ∈ V }, 〈x, y〉 :=
∑

{x(v)y(v) | v ∈ V }.

Let B ⊆ ZV be a finite integral base set, i.e., a finite nonempty set such that

(B1) For x, y ∈ B and for u ∈ supp+(x − y), there exists v ∈ supp−(x − y) such

that x − χu + χv ∈ B.

As is well known, (B1) is equivalent to the simultaneous exchange property

(B2) For x, y ∈ B and for u ∈ supp+(x − y), there exists v ∈ supp−(x − y) such

that x − χu + χv ∈ B and y + χu − χv ∈ B.

Note that — in view of ||x|| = ||x−χu +χv|| and ||(x−χu +χv)−y|| < ||x−y|| for

u ∈ supp+(x− y) and v ∈ supp−(x− y) — (B1) implies x(V ) = y(V ) for x, y ∈ B.

The following theorem is known as a folklore (according to private commu-

nications from W. Cunningham and S. Fujishige; see also [1], [41], [42] in this

connection). Recall that a function f : 2V → R is said to be submodular if

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (X,Y ⊆ V ), (2.1)

and g : 2V → R is supermodular if

g(X) + g(Y ) ≤ g(X ∪ Y ) + g(X ∩ Y ) (X,Y ⊆ V ). (2.2)

Theorem 2.1 For a finite nonempty set B ⊆ ZV , the following three conditions

are equivalent.

(a) B satisfies (B1).

(b) There exists an integer-valued submodular function f : 2V → Z with f(∅) =

0 such that

B = ZV ∩ {x ∈ RV | x(X) ≤ f(X) (∀X ⊂ V ), x(V ) = f(V )}.
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(c) There exists an integer-valued supermodular function g : 2V → Z with

g(∅) = 0 such that

B = ZV ∩ {x ∈ RV | x(X) ≥ g(X) (∀X ⊂ V ), x(V ) = g(V )}.

Moreover, the functions f and g are given by

f(X) = max{x(X) | x ∈ B}, g(X) = min{x(X) | x ∈ B}.

2

This theorem allows us to say that we assume B to be the integral points of an

integral base polytope, where an integral base polytope means the base polytope

of an integral submodular/supermodular system [19]. Note that we have

B = ZV ∩ B, (2.3)

where B denotes the convex hull of B.

In this paper we are concerned with a function ω : B → R that satisfies the

following variant of Steinitz’s exchange property:

(EXC) For x, y ∈ B and u ∈ supp+(x − y), there exists v ∈ supp−(x − y) such

that x − χu + χv ∈ B, y + χu − χv ∈ B and

ω(x) + ω(y) ≤ ω(x − χu + χv) + ω(y + χu − χv). (2.4)

Using the notation

ω(x, u, v) := ω(x − χu + χv) − ω(x), (2.5)

which represents the local behavior of ω around x, we can rewrite (2.4) to

ω(x, u, v) + ω(y, v, u) ≥ 0. (2.6)

We often use the convention ω(x) := −∞ for x 6∈ B. Note that a pair (B,ω) of a

nonempty set B ⊆ ZV and a function ω : B → R satisfies (B2) and (EXC) if and

only if the associated extended function ω : ZV → R ∪ {−∞} satisfies

(EXC′) For x, y ∈ ZV with ω(x) 6= −∞ and ω(y) 6= −∞, and for u ∈ supp+(x−
y), there exists v ∈ supp−(x − y) such that

ω(x) + ω(y) ≤ ω(x − χu + χv) + ω(y + χu − χv).
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2.2 Examples

We discuss a number of natural classes of M-concave functions.

Example 2.1 (Affine function) For η : V → R and α ∈ R, the function ω :

B → R defined by

ω(x) := α + 〈η, x〉 (x ∈ B)

satisfies the exchange property (EXC) with equality in (2.4). This is an immediate

consequence of the simultaneous exchange property (B2). 2

Example 2.2 (Separable concave function) We call g : Z → R concave if its

piecewise linear extension ĝ : R → R is a concave function, that is, if g(t − 1) +

g(t + 1) ≤ 2g(t) holds for all t ∈ Z. For a family of concave functions gv : Z → R

indexed by v ∈ V , the (separable concave) function ω : B → R defined by

ω(x) :=
∑

{gv(x(v)) | v ∈ V } (x ∈ B)

satisfies the exchange property (EXC). See [32] for a proof. 2

Example 2.3 (Min-cost flow) Let G = (V,A) be a directed graph with vertex

set V and arc set A. Assume further that we are given an upper capacity function

c : A → Z and a lower capacity function c : A → Z. A feasible (integral) flow ϕ is

a function ϕ : A → Z such that c(a) ≤ ϕ(a) ≤ c(a) for each a ∈ A. Its boundary

∂ϕ : V → Z is defined by

∂ϕ(v) :=
∑

{ϕ(a) | a ∈ δ+v} −
∑

{ϕ(a) | a ∈ δ−v},

where δ+v and δ−v denote the sets of the out-going and in-coming arcs incident

to v, respectively. Then

B := {∂ϕ | ϕ : feasible flow }

is known to satisfy (B1). See, e.g., [19].

Suppose further that we are given a family of convex functions fa : Z → R

indexed by a ∈ A, where we call f : Z → R convex if its piecewise linear extension

f̌ : R → R is a convex function, that is, if f(t − 1) + f(t + 1) ≥ 2f(t) holds for

all t ∈ Z. Define Γ(ϕ) :=
∑{fa(ϕ(a)) | a ∈ A}. Then the function ω : B → R

defined by

ω(x) := −min{Γ(ϕ) | ϕ : feasible flow with ∂ϕ = x} (x ∈ B)

satisfies the exchange property (EXC) (see [32] for a proof). In general, this

construction yields a nonseparable function ω (see [28, Example 3.3] for a concrete

instance). 2
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Example 2.4 (Determinant) Let A(t) be an m×n matrix of rank m with each

entry being a polynomial in a variable t, and let M = (V,B) denote the (linear)

matroid defined on the column set V of A(t) by linear independence of the column

vectors, where J ⊆ V belongs to B if and only if |J | = m and the column vectors

with indices in J are linearly independent. Let B be the set of the incidence vectors

of the bases (the members of B). Then ω : B → Z defined by

ω(χJ) := degt det A[J ] (J ∈ B)

satisfies (EXC), where χJ is the incidence vector of J and A[J ] denotes the m ×
m submatrix with column indices in J . In fact [5], [8], the Grassmann-Plücker

identity implies the exchange property of ω. 2

Remark 2.1 In connection with the construction in Example 2.2, it is worth

while to mention that a general concave function on RV (or on a base polytope

over R) does not necessarily satisfy (EXC) when restricted to ZV . See Remark

2.2 of [32] for a concrete instance. In fact, it is one of the main objectives of this

paper to identify the precise relationship between Steinitz’s exchange property and

concavity, which will be stated as Theorem 4.6. 2

2.3 Fundamental properties

In this section we mention some consequences of (EXC) that have been used in

[32]. We emphasize the analogy to concave functions. We assume that ω : B → R

satisfies (EXC).

For p : V → R we define ω[p] : B → R by

ω[p](x) := ω(x) + 〈p, x〉. (2.7)

Just as a concave function remains concave when a linear function is added, we

have the following theorem. The proof is easy.

Theorem 2.2 ω[p] satisfies (EXC). 2

For a concave function g, we have the subgradient inequality [36]:

g(y) ≤ g(x) + 〈∇g(x), y − x〉,

where ∇g(x) ∈ RV denotes a subgradient of g at x. As a counterpart for ω, we

have the “upper-bound lemma” described as follows. For x, y ∈ B we consider a

10



bipartite graph G(x, y), which has (V +, V −) := (supp+(x − y), supp−(x − y)) as

its vertex bipartition and

Â := {(u, v) | u ∈ V +, v ∈ V −, x − χu + χv ∈ B}

as its arc set. Each arc (u, v) is associated with “arc weight” ω(x, u, v) of (2.5).

We define

ω̂(x, y) := max


∑

(u,v)∈Â

ω(x, u, v)λ(u, v)

∣∣∣∣∣∣∣
λ(u, v) ≥ 0 ((u, v) ∈ Â),∑
v:(u,v)∈Â

λ(u, v) = x(u) − y(u) (u ∈ V +),

∑
u:(u,v)∈Â

λ(u, v) = y(v) − x(v) (v ∈ V −)

 . (2.8)

It is known [19, Theorem 3.28] that such λ : Â → R exist and that ω̂(x, y) is

a well-defined finite real number. It may be mentioned that the maximization

in (2.8) can be identified as a transportation problem [24]. The “upper-bound

lemma” reads as follows.

Theorem 2.3 ([32, Lemma 2.4]) For x, y ∈ B we have

ω(y) ≤ ω(x) + ω̂(x, y). (2.9)

(Proof) See [32] or [28, Lemma 3.4]. 2

This yields the following theorem, stating that local optimality implies global

optimality. This is a straightforward extension of a similar result of [5], [8] for a

matroid valuation. The analogy to concave functions should be obvious.

Theorem 2.4 ([32]) Let x ∈ B. Then ω(x) ≥ ω(y) for all y ∈ B if and only if

ω(x, u, v) ≤ 0 (∀ u, v ∈ V ). (2.10)

(By convention, ω(x, u, v) := −∞ if x − χu + χv 6∈ B.) 2

For y, z ∈ ZV we define

By := {x ∈ B | x ≤ y}, Bz := {x ∈ B | x ≥ z}, (2.11)

called the reduction of B by y and the contraction of B by z respectively. They

satisfy (B1). Let ωy : By → R (resp. ωz : Bz → R) be the restriction of ω to By

(resp. Bz), provided that By 6= ∅ (resp. Bz 6= ∅).

11



Lemma 2.5 ωy and ωz satisfy (EXC). 2

The above lemma shows that M-concave functions defined on B naturally in-

duce such functions on the reduction (resp. contraction) by a superbase y (resp.

subbase z). In Section 6.4, we will see in Theorem 6.10 that an M-concave function

can be induced on the sum of two integral base polytopes through the “convolu-

tion” operation.
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3 Local Exchange Property

We will show that the exchangeability condition (EXC) is in fact a local property,

though its definition refers globally to all pairs (x, y). Namely, we may impose

exchangeability only on neighboring pairs (x, y). This may be compared to a

similar phenomenon for concavity, which is generally defined by a global property

but which can also be characterized in local terms (e.g., in terms of the second

order derivative).

The following theorem claims that — assuming (B1) for B — the exchange

property (EXC) is equivalent to a seemingly weaker local exchange property

(EXCloc) For x, y ∈ B with ||x − y|| = 4 there exist u ∈ supp+(x − y) and

v ∈ supp−(x − y) such that x − χu + χv ∈ B, y + χu − χv ∈ B and

ω(x) + ω(y) ≤ ω(x − χu + χv) + ω(y + χu − χv) (3.1)

(see [7, Theorem 3.4] for a similar statement relating to matroid valuations).

Theorem 3.1 Let ω : B → R be a function defined on a finite integral base set

B ⊆ ZV . Then ω satisfies (EXC) if and only if it satisfies (EXCloc). 2

We prove (EXCloc) =⇒ (EXC). For p : V → R we abbreviate ω[p] of (2.7) to

ωp and define ωp(x, u, v) := ωp(x − χu + χv) − ωp(x) as in (2.5). For x, y ∈ B, we

have

ω(x, u, v) + ω(y, v, u) = ωp(x, u, v) + ωp(y, v, u). (3.2)

Lemma 3.2 Let x ∈ B, y := x−χu0 −χu1 + χv0 + χv1 ∈ B with u0, u1, v0, v1 ∈ V

and {u0, u1} ∩ {v0, v1} = ∅, and let p : V → R. If (EXCloc) is satisfied, then

ωp(y) − ωp(x) ≤ max(π00 + π11, π01 + π10), (3.3)

where πij := ωp(x, ui, vj) for i, j = 0, 1.

(Proof) By (EXCloc) we have

ω(y) − ω(x) ≤ max(ω(x, u0, v0) + ω(x, u1, v1), ω(x, u0, v1) + ω(x, u1, v0)).

This shows (3.3) with p = 0, which immediately implies the general case. 2

Define

D := {(x, y) | x, y ∈ B, ∃u∗ ∈ supp+(x − y), ∀v ∈ supp−(x − y) :

ω(x, u∗, v) + ω(y, v, u∗) < 0},
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which denotes the set of pairs (x, y) for which the exchangeability (EXC) fails. We

want to show D = ∅.
Suppose to the contrary that D 6= ∅, take (x, y) ∈ D such that ||x − y|| is

minimum, and let u∗ ∈ supp+(x − y) be as in the definition of D. We have

||x − y|| > 4. Define p : V → R by

p(v) :=


−ω(x, u∗, v) (v ∈ supp−(x − y), x − χu∗ + χv ∈ B)

ω(y, v, u∗) + ε (v ∈ supp−(x − y), x − χu∗ + χv 6∈ B, y + χu∗ − χv ∈ B)

0 (otherwise)

with some ε > 0 and consider ωp.

Claim 1:

ωp(x, u∗, v) = 0 if v ∈ supp−(x − y), x − χu∗ + χv ∈ B, (3.4)

ωp(y, v, u∗) < 0 for v ∈ supp−(x − y). (3.5)

The equality (3.4) follows from the definition of p, whereas the inequality (3.5) can

be shown as follows. If x − χu∗ + χv ∈ B, we have ωp(x, u∗, v) = 0 by (3.4) and

ωp(x, u∗, v) + ωp(y, v, u∗) = ω(x, u∗, v) + ω(y, v, u∗) < 0,

which in turn follows from (3.2) and the definition of u∗. Otherwise, we have

ωp(y, v, u∗) = −ε or −∞ according to whether y + χu∗ − χv ∈ B or not.

Claim 2: There exist u0 ∈ supp+(x − y) and v0 ∈ supp−(x − y) such that

y + χu0 − χv0 ∈ B, and

ωp(y, v0, u0) ≥ ωp(y, v, u0) (v ∈ supp−(x − y)). (3.6)

In fact, by (B1) we have y + χu0 − χv0 ∈ B for some u0 ∈ supp+(x − y) and

v0 ∈ supp−(x − y). We can further assume (3.6) by fixing u0 and redefining v0 to

be the element v ∈ supp−(x − y) that maximizes ωp(y, v, u0).

Claim 3: (x, y′) ∈ D with y′ := y + χu0 − χv0 .

To prove this it suffices to show

ωp(x, u∗, v) + ωp(y
′, v, u∗) < 0 (v ∈ supp−(x − y′)).

We may restrict ourselves to v with x−χu∗ +χv ∈ B since otherwise the first term

ωp(x, u∗, v) is equal to −∞. For such v, the first term is equal to zero by (3.4).

For the second term, it follows from Lemma 3.2, (3.5) and (3.6) that

ωp(y
′, v, u∗) = ωp(y + χu0 + χu∗ − χv0 − χv) − ωp(y + χu0 − χv0)
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≤ max [ωp(y, v0, u0) + ωp(y, v, u∗), ωp(y, v, u0) + ωp(y, v0, u∗)]

−ωp(y, v0, u0)

< max [ωp(y, v0, u0), ωp(y, v, u0)] − ωp(y, v0, u0)

= 0.

Since ||x − y′|| = ||x − y|| − 2, Claim 3 contradicts our choice of (x, y) ∈ D.

Therefore we conclude D = ∅, completing the proof of Theorem 3.1.
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4 Conjugate Functions and Concave Extensions

4.1 Concave conjugate functions

In line with the standard method in convex analysis [36], [40], we introduce the

concept of conjugate functions.

For any nonempty finite set B ⊆ ZV and any function g : B → R, we define

g◦ : RV → R by

g◦(p) := min{〈p, x〉 − g(x) | x ∈ B}. (4.1)

We call g◦ the concave conjugate function of g. Since B is finite, g◦ is a polyhedral

concave function [36], [40], taking finite values for all p. Furthermore we define

ĝ : RV → R by

ĝ(b) := inf{〈p, b〉 − g◦(p) | p ∈ RV }. (4.2)

Obviously, ĝ is a concave function, which we call the concave closure of g. By

a standard result from convex analysis (cf. [40, §4.8]) (or equivalently by linear

programming duality) we have

ĝ(b) =


max{

∑
y∈B

λyg(y) | b =
∑
y∈B

λyy, λ ∈ Λ(B)} (b ∈ B)

−∞ (b 6∈ B)
(4.3)

where

Λ(B) := {λ ∈ RB |
∑
y∈B

λy = 1, λy ≥ 0 (y ∈ B)}

and B denotes the convex hull of B, that is,

B := {b ∈ RV | b =
∑
y∈B

λyy, λ ∈ Λ(B)}. (4.4)

Also, in general, we denote by X the convex hull of a subset X ⊆ RV .

Define

argmax (g) := {x ∈ B | g(x) ≥ g(y), ∀y ∈ B}, (4.5)

argmax (ĝ) := {b ∈ B | ĝ(b) ≥ ĝ(c), ∀c ∈ B}, (4.6)

where we regard ĝ as ĝ : B → R.

Lemma 4.1

(1) ĝ(x) ≥ g(x) for x ∈ B.

(2) max{ĝ(b) | b ∈ B} = max{g(x) | x ∈ B}.
(3) argmax (ĝ) = argmax (g).
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(Proof) These claims follow easily from (4.3). 2

For p : V → R (that is, p ∈ RV ), we define g[p] : B → R and ĝ[p] : B → R by

g[p](x) := g(x) + 〈p, x〉, ĝ[p](b) := ĝ(b) + 〈p, b〉 (4.7)

as in (2.7). The following relations are easy to see, where (g[p0])ˆ denotes the

concave closure of g[p0].

Lemma 4.2

(1) (g[p0])
◦(p) = g◦(p − p0).

(2) (g[p0])ˆ(b) = ĝ[p0](b). 2

4.2 Characterization of M-concavity by the maximizers

Just as the maximizers of a concave function form a convex set, the family of the

maximizers of an M-concave function ω enjoys a nice property. In the following we

assume that B is a finite integral base set. Recall (4.5) for the notation argmax (ω).

Lemma 4.3 If ω : B → R has the exchange property (EXC), then argmax (ω) is

an integral base set, that is, argmax (ω) is an integral base polytope. 2

(Proof) Put ωmax := max{ω(x) | x ∈ B}. In (EXC) we must have ω(x−χu+χv) =

ω(y + χu − χv) = ωmax if ω(x) = ω(y) = ωmax. 2

The above lemma implies furthermore that argmax (ω[p]) is an integral base

polytope for each p : V → R, since ω[p] also satisfies (EXC) by Theorem 2.2. This

turns out to be a key property for M-concavity as follows.

Theorem 4.4 Let ω : B → R be a function defined on a finite integral base set

B ⊆ ZV . Then ω satisfies (EXC) if and only if argmax (ω[p]) is an integral base

polytope for each p : V → R.

(Proof) The “only if” part has already been shown. For the “if” part, we will

show that ω satisfies the local exchange property (EXCloc). Then Theorem 3.1

establishes the claim.

Take x, y ∈ B with ||x − y|| = 4 and put c := (x + y)/2 ∈ RV . By considering

the concave closure ω̂ of (4.2) and its supporting hyperplane at c, we see that

c ∈ argmax (ω̂[p]) for some p : V → R. On the other hand, putting Bp :=

argmax (ω[p]), we have

argmax (ω̂[p]) = argmax ((ω[p])ˆ) = argmax (ω[p]) = Bp (4.8)
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from Lemma 4.2(2) and Lemma 4.1(3). Therefore, we have c ∈ Bp. Here Bp ⊆
B ⊆ ZV and Bp is an integral base polytope by the assumption. [Remark: It is

not claimed — and not even true in general — that {x, y} ⊆ Bp.]

Consider an “interval” I defined by

I := {b ∈ RV | x ∧ y ≤ b ≤ x ∨ y},

where x ∧ y ∈ ZV and x ∨ y ∈ ZV are given by

(x ∧ y)(v) := min(x(v), y(v)), (x ∨ y)(v) := max(x(v), y(v)) (v ∈ V ).

We have I ∩ Bp 6= ∅ since c ∈ I ∩ Bp. Hence (cf. [19, Theorem 3.8]), I ∩ Bp

is an integral base polytope that contains c. Therefore, c can be represented as

a convex combination of some integral vectors, say z1, · · · , zm, in I ∩ Bp. Since

ZV ∩ (I ∩ Bp) = I ∩ Bp by (2.3), we see

c =
m∑

k=1

λkzk, zk ∈ I ∩ Bp (k = 1, · · · ,m), (4.9)

with
∑m

k=1 λk = 1 and λk > 0 (k = 1, · · · ,m).

Since ||x−y|| = 4, we can find v1, v2, v3, v4 ∈ V such that {v1, v2}∩{v3, v4} = ∅
and y = x − χv1 − χv2 + χv3 + χv4 . In the following, we consider the case where

v1 6= v2 and v3 6= v4, since the other cases can be treated similarly (and more

easily).

When v1, v2, v3, v4 are distinct, a vector z ∈ I ∩ Bp, which is integral, can be

identified with a 2-element subset {vi, vj} of V0 = {v1, v2, v3, v4} according to the

correspondence

z = (x ∧ y) + χvi
+ χvj

(i 6= j).

Denoting this correspondence z 7→ {vi, vj} by ϕ and referring to (4.9), we define

an undirected graph G = (V0, E0) with vertex set V0 and edge set E0 = {ϕ(zk) |
k = 1, · · · ,m}.

Claim: G has a perfect matching (of size 2).

(Proof of Claim) For each i (1 ≤ i ≤ 4), we have c(vi) − (x ∧ y)(vi) = 1/2,

whereas zk(vi)− (x∧y)(vi) ∈ {0, 1} for all k (1 ≤ k ≤ m) in (4.9). Hence, for each

i, there exist k1 and k0 such that

zk1(vi) − (x ∧ y)(vi) = 1, zk0(vi) − (x ∧ y)(vi) = 0.

Translating this into G, we see that for each vertex vi there is an edge which covers

(is incident to) vi and also there is another edge which avoids (is not incident to)
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vi. Then it is not difficult to see that this condition implies the existence of a

perfect matching in G (either by a straightforward enumeration of all possible

configurations or by invoking Tutte’s theorem [26]). Thus the claim has been

proven.

Finally we derive (EXCloc) from the above claim. We divide into two cases.

Case 1: In case {{v1, v2}, {v3, v4}} ⊆ E0, both x and y appear among the zk’s.

This means in particular that {x, y} ⊆ Bp. Since Bp is an integral base polytope by

assumption, we can apply (B2) to obtain x−χvi
+χvj

∈ Bp and y +χvi
−χvj

∈ Bp

for some i ∈ {1, 2} and j ∈ {3, 4}. This shows

ω[p](x) = ω[p](y) = ω[p](x − χvi
+ χvj

) = ω[p](y + χvi
− χvj

) = max(ω[p]),

which implies (3.1).

Case 2: If {{v1, v2}, {v3, v4}} 6⊆ E0, it follows from the above claim that

{{v1, vi}, {v2, vj}} ⊆ E0 for some i, j with {i, j} = {3, 4}. This means both (x ∧
y) + χv1 + χvi

and (x ∧ y) + χv2 + χvj
appear among the zk’s, which belong to

Bp = argmax (ω[p]). Noting

(x ∧ y) + χv1 + χvi
= x − χv2 + χvi

, (x ∧ y) + χv2 + χvj
= y + χv2 − χvi

,

we see

ω[p](x − χv2 + χvi
) = ω[p](y + χv2 − χvi

) = max(ω[p]).

This implies

ω[p](x) + ω[p](y) ≤ ω[p](x − χv2 + χvi
) + ω[p](y + χv2 − χvi

),

which establishes (3.1). 2

4.3 Concave extensions

In this section we reveal a precise relationship between exchangeability (EXC)

and concavity. By Lemma 4.1(1), which is independent of (EXC), we know that

ω̂ : B → R is a concave function such that ω̂(x) ≥ ω(x) for x ∈ B. The exchange-

ability condition (EXC) guarantees the equality here as follows.

Lemma 4.5 If ω : B → R has the exchange property (EXC), then ω̂(x) = ω(x)

for all x ∈ B.
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(Proof) Fix x ∈ B. Since ω̂ is concave, there exists p : V → R such that x ∈
argmax (ω̂[p]), i.e.,

ω̂[p](x) = max(ω̂[p]). (4.10)

Put Bp := argmax (ω[p]) (⊆ ZV ). Then by (4.8), we have x ∈ Bp, which implies

x ∈ ZV ∩ Bp = Bp by (2.3). That is,

ω[p](x) = max(ω[p]). (4.11)

Since max(ω̂[p]) = max((ω[p])ˆ) = max(ω[p]) by Lemma 4.2(2) and Lemma

4.1(2), we see from (4.10) and (4.11) that ω̂[p](x) = ω[p](x), i.e., ω̂(x) = ω(x). 2

We say that ω : B → R is an extension of ω : B → R if ω(x) = ω(x) for x ∈ B.

Theorem 4.6 (Extension Theorem) Let ω : B → R be a function defined on

a finite integral base set B ⊆ ZV . Then ω satisfies (EXC) if and only if it can be

extended to a concave function ω : B → R such that argmax (ω[p]) is an integral

base polytope for each p : V → R.

(Proof) To show the “only if” part, we can take ω = ω̂, which is an extension of

ω by Lemma 4.5 and meets the requirement by (4.8) and Theorem 4.4.

The “if” part can be shown as follows. Obviously we have

max(ω[p]) := max{ω[p](b) | b ∈ B} ≥ max{ω[p](x) | x ∈ B} =: max(ω[p])

since ω[p](x) = ω[p](x) for x ∈ B. On the other hand, argmax (ω[p]) contains

an integral point, which belongs to ZV ∩ B = B (cf. (2.3)). Therefore we have

max(ω[p]) = max(ω[p]) and

ZV ∩ argmax (ω[p]) = argmax (ω[p]).

Since argmax (ω[p]) is an integral base polytope by assumption, it follows from

Theorem 4.4 that ω satisfies (EXC). 2
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5 Supermodularity in Conjugate Function

In Theorem 2.1 we have seen that the exchange property (B1) (or (B2)) of B

is equivalent to the sub/supermodularity of the function (f or g) describing the

face of the polytope B. As the exchange property (EXC) for ω can be regarded

as a quantitative extension of the simultaneous exchange property (B2) for B,

it is quite natural to seek for an extension of the above correspondence between

the exchangeability and the sub/supermodularity (see (1.1)). We answer this

question in Theorem 5.3 below, which says that (EXC) for ω is equivalent to

“local supermodularity” of the concave conjugate function ω◦.

5.1 Exchangeability (B1) and supermodularity

We reformulate known facts (cf. Theorem 2.1) about the relationship between

(B2) and supermodularity in a form that is suitable for our subsequent discussion.

We assume B ⊆ ZV is a finite nonempty set such that B = ZV ∩ B.

We define ψ◦ : RV → R by

ψ◦(p) := min{〈p, x〉 | x ∈ B}. (5.1)

Note that ψ◦ is the concave conjugate function of ψ ≡ 0 (on B) in the sense of

(4.1), and also that

− ψ◦(−p) = max{〈p, x〉 | x ∈ B} (5.2)

agrees with the support function of B as defined in [36], [40]. Obviously, ψ◦(p) is

concave, ψ◦(0) = 0, and positively homogeneous, i.e., ψ◦(λp) = λψ◦(p) for λ > 0.

Hence the hypograph

Hyp(ψ◦) := {(p, q) ∈ RV × R | q ≤ ψ◦(p)} (5.3)

is a convex cone.

Suppose B satisfies (B1). We first observe that the function g : 2V → R defined

by g(X) := ψ◦(χX) (X ⊆ V ) is supermodular. In fact, we have

g(X) = min{〈χX , x〉 | x ∈ B} = min{x(X) | x ∈ B}

and this is how the supermodular function g in Theorem 2.1 is constructed. Sec-

ondly, the value of ψ◦(p) at arbitrary p can be expressed as a linear combination of

ψ◦(χX) (X ⊆ V ). In fact, the greedy algorithm (cf. [19]) for minimizing a linear
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function over the base polytope, say B(g), of the supermodular system (2V , g)

shows

min{〈p, x〉 | x ∈ B(g)} =
n∑

j=1

(pj − pj+1)g(Vj), (5.4)

where, for given p ∈ RV , the elements of V are indexed as {v1, v2, · · · , vn} (with

n = |V |) in such a way that

p(v1) ≥ p(v2) ≥ · · · ≥ p(vn);

pj := p(vj), Vj := {v1, v2, · · · , vj} for j = 1, · · · , n, and pn+1 := 0. Noting B = B(g)

we obtain

ψ◦(p) =
n∑

j=1

(pj − pj+1)ψ
◦(χVj

). (5.5)

Conversely, suppose ψ◦(p) defined from B by (5.1) satisfies the two conditions:

(C1) [supermodularity] g(X) := ψ◦(χX) is supermodular.

(C2) [greediness] ψ◦(p) =
n∑

j=1

(pj − pj+1)ψ
◦(χVj

),

where, for given p ∈ RV , the elements of V are indexed as {v1, v2, · · · , vn}
in such a way that p(v1) ≥ p(v2) ≥ · · · ≥ p(vn); pj := p(vj), Vj :=

{v1, v2, · · · , vj} for j = 1, · · · , n, and pn+1 := 0.

The condition (C1) implies (5.4). Combining this with (C2) and (5.1) we see that

min{〈p, x〉 | x ∈ B(g)} = min{〈p, x〉 | x ∈ B} (p ∈ RV ).

This means B(g) = B, from which follows B = ZV ∩ B = ZV ∩ B(g). Then

Theorem 2.1 shows that B satisfies (B1).

We say that a positively homogeneous function h : RV → R is “matroidal” if

it satisfies (C1) and (C2) with ψ◦ replaced by h. By a result of Lovász [25] (see

also [19, Theorem 6.13]) such h is necessarily concave. We also say that a cone is

“matroidal” if it is a hypograph of a “matroidal” h.

With this terminology the above observations are summarized in the following

theorem, which characterizes the exchange property of B in the language of ψ◦ (or

the support function of B).

Theorem 5.1 Let B ⊆ ZV be a finite nonempty set with B = ZV ∩ B. Then B

satisfies (B1) if and only if ψ◦ is “matroidal” (satisfying (C1) and (C2)). 2

The following fact will be used later. The proof is easy from (C1) and (C2).

Lemma 5.2 Let h1, h2 : RV → R be positively homogeneous functions. If h1 and

h2 are “matroidal”, then h1 + h2 is also “matroidal”. 2
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5.2 M-concavity (EXC) and supermodularity

We now consider the concave conjugate function

ω◦(p) := min{〈p, x〉 − ω(x) | x ∈ B} (5.6)

of ω : B → R defined on a finite integral base set B ⊆ ZV . As opposed to ψ◦, ω◦

is not a positively homogeneous function though it is concave. Accordingly, the

hypograph

Hyp(ω◦) := {(p, q) ∈ RV × R | q ≤ ω◦(p)} (5.7)

is not a cone but a polyhedron. Its characteristic cone (or recession cone) [36],

[39], [40] is given by Hyp(ψ◦) of (5.3), and hence it is “matroidal” by Theorem 5.1.

Since ω◦(p) is a concave function, we can think of its subdifferential in the

ordinary sense of convex analysis. Namely, the subdifferential of ω◦ at p0 ∈ RV ,

denoted by ∂ω◦(p0), is defined by

∂ω◦(p0) := {b ∈ RV | ω◦(p) − ω◦(p0) ≤ 〈p − p0, b〉, ∀p ∈ RV }. (5.8)

Using this notion, we define a positively homogeneous concave function L̂(ω◦, p0) :

RV → R by

L̂(ω◦, p0)(p) := inf{〈p, b〉 | b ∈ ∂ω◦(p0)}, (5.9)

which we call the localization of ω◦ at p0 (provided ∂ω◦(p0) 6= ∅). Note that

ω◦(p) ≤ ω◦(p0) + L̂(ω◦, p0)(p − p0) (5.10)

and that ω◦(p) is equal to the right-hand side in the neighborhood of p0. Also note

that

Hyp(L̂(ω◦, p0)) = {(p, q) ∈ RV × R | q ≤ 〈p, b〉, b ∈ ∂ω◦(p0)}. (5.11)

The following theorem establishes a link between (EXC) and supermodularity,

showing that (EXC) for ω is equivalent to the localization of ω◦ being “matroidal”

at each point. Recalling that the first condition (C1) for being “matroidal” refers to

supermodularity, while (C2) is related to greediness, we may say that the exchange

property (EXC) is nothing but “a collection of local supermodularity”, just as the

exchange property (B1) corresponds to supermodularity.

Theorem 5.3 (Local Supermodularity Theorem) Let ω : B → R be a func-

tion defined on a finite integral base set B ⊆ ZV . Then ω satisfies (EXC) if and

only if the localization L̂(ω◦, p0) of ω◦ is “matroidal” (satisfying (C1) and (C2))

at each point p0.

23



(Proof) The hyperplane Hx := {(p, q) ∈ RV × R | q = 〈p, x〉 − ω(x)} in RV × R,

indexed by x ∈ B, contains (p, q) := (p0, ω
◦(p0)) if and only if

〈p0, x〉 − ω(x) = ω◦(p0) = min{〈p0, y〉 − ω(y) | y ∈ B},

which means x ∈ argmax (ω[−p0]) and 〈p, x〉−ω(x) = 〈p− p0, x〉+ω◦(p0) for such

x. Therefore, in the neighborhood of p0, ω◦(p) is equal to

min{〈p, x〉 − ω(x) | x ∈ argmax (ω[−p0])}
= min{〈p − p0, x〉 | x ∈ argmax (ω[−p0])} + ω◦(p0).

This shows

L̂(ω◦, p0)(p) = min{〈p, x〉 | x ∈ argmax (ω[−p0])}. (5.12)

By Theorem 5.1, this is “matroidal” if and only if argmax (ω[−p0]) satisfies (B1),

whereas the latter condition for all p0 is equivalent to (EXC) by Theorem 4.4. 2

Remark 5.1 It follows from Theorem 5.3 (with ω = 0) that the localization of a

“matroidal” function is again “matroidal”. Therefore, it is sufficient in Theorem

5.3 (for a general ω) to consider the localization of ω◦ at points p0 such that

(p0, ω
◦(p0)) lies in the minimal faces of Hyp(ω◦). 2

Remark 5.2 For an affine function ω(x) = α + 〈η, x〉 on B, we have

ω◦(p) = ψ◦(p − η) − α, L̂(ω◦, η) = ψ◦,

where ψ◦ is defined by (5.1). 2

Remark 5.3 Just as in Theorem 5.3, a valuated ∆-matroid [6], [43] can be char-

acterized in terms of local bisupermodularity. See [33] for details. 2

Finally, note that a combination of Theorem 5.1 and Theorem 5.3 yields the

following variant of Theorem 5.3.

Theorem 5.4 Let ω : B → R be a function defined on a finite nonempty set

B ⊆ ZV with B = ZV ∩B. Then ω satisfies (EXC) if and only if (i) the character-

istic cone of the hypograph Hyp(ω◦) of ω◦ is “matroidal” and (ii) the localization

L̂(ω◦, p0) of ω◦ is “matroidal” at each point p0. 2
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6 Duality

Using the standard Fenchel duality framework of convex analysis [36], [40], we

derive a min-max duality formula for a pair of an M-convex and an M-concave

function. Its content lies in the integrality assertion that both the primal (max-

imization) problem and the dual (minimization) problem have integral optimum

solutions when the given functions satisfying (EXC) are integer-valued. This min-

max formula is a succinct unification of two groups of more or less equivalent

theorems, (i) Edmonds’ polymatroid intersection theorem [9], Fujishige’s Fenchel-

type duality theorem [18], and Frank’s discrete separation theorem for a pair of

sub/supermodular functions [14], and (ii) (an extension of) Iri-Tomizawa’s poten-

tial characterization of optimality for the independent assignment problem [22],

Fujishige’s generalization thereof to the independent flow problem [17] and Frank’s

weight splitting theorem for the matroid intersection problem [13]. The min-max

formula can also be reformulated as discrete separation theorems, which are dis-

tinct from Frank’s.

6.1 Convex conjugate function

Dually to (4.1), for an arbitrary function f : B → R, we define the convex

conjugate function f• : RV → R by

f•(p) := max{〈p, x〉 − f(x) | x ∈ B}. (6.1)

We also define, dually to (4.2), the convex closure f̌ : RV → R of f by

f̌(b) := sup{〈p, b〉 − f•(p) | p ∈ RV }. (6.2)

The following relations are immediate from the definitions, where (−f)ˆ denotes

the concave closure of −f .

Lemma 6.1

(1) (−f)◦(p) = −f•(−p).

(2) (−f)ˆ(b) = −f̌(b). 2

This lemma allows us to translate the results for g◦(p) and ĝ(b) into corresponding

ones for f•(p) and f̌(b). For example, from (4.3) we obtain

f̌(b) =


min{

∑
y∈B

λyf(y) | b =
∑
y∈B

λyy, λ ∈ Λ(B)} (b ∈ B)

+∞ (b 6∈ B)
(6.3)

Accordingly, we may regard f̌ as f̌ : B → R. Lemma 4.1 translates as follows:
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Lemma 6.2

(1) f̌(x) ≤ f(x) for x ∈ B.

(2) min{f̌(b) | b ∈ B} = min{f(x) | x ∈ B}.
(3) argmin (f̌) = argmin (f). 2

6.2 Duality theorems

Let B1 and B2 be finite integral base sets (⊆ ZV ). For ω : B1 → R and ζ : B2 → R,

we define the conjugate functions ω◦ and ζ• by (4.1) and (6.1) with reference to

B1 and B2, respectively, and also the concave/convex closure functions ω̂ and ζ̌

by (4.2) and (6.2), respectively. We sometimes use the following convention:

ω(x) = −∞ (x 6∈ B1), ζ(x) = +∞ (x 6∈ B2). (6.4)

Note that ω◦(p) ∈ Z and ζ•(p) ∈ Z for p ∈ ZV if ω and ζ are integer-valued.

We define a primal-dual pair of problems as follows.

[Primal problem]

Maximize Φ(x) := ω(x) − ζ(x) (x ∈ B1 ∩ B2).

[Dual problem]

Minimize Ψ(p) := ζ•(p) − ω◦(p) (p ∈ RV ).

Using the concave/convex closures, we also introduce a relaxation of the primal

problem:

[Relaxed primal problem]

Maximize Φ̃(b) := ω̂(b) − ζ̌(b) (b ∈ B1 ∩ B2).

The following identity is known as the Fenchel duality [36], [40]:

max{ω̂(b) − ζ̌(b) | b ∈ B1 ∩ B2} = inf{ζ•(p) − ω◦(p) | p ∈ RV }, (6.5)

which holds true independently of (EXC). Here we assume the convention that

the maximum taken over an empty family is equal to −∞. With this convention,

the above formula implies in particular that B1 ∩ B2 6= ∅ if the infimum on the

right-hand side is finite.

Combining (6.5) with the obvious inequalities (cf. Lemma 4.1(1) and Lemma

6.2(1)):

ω(x) ≤ ω̂(x) (x ∈ B1), ζ(x) ≥ ζ̌(x) (x ∈ B2),

we obtain the following weak duality.
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Lemma 6.3 For any functions ω : B1 → R and ζ : B2 → R,

max{ω(x) − ζ(x) | x ∈ B1 ∩ B2}
≤ max{ω̂(b) − ζ̌(b) | b ∈ B1 ∩ B2} = inf{ζ•(p) − ω◦(p) | p ∈ RV }.

(This is even independent of the property (B1) for B1 and B2.) 2

Naturally, we are interested in whether the equality holds in the weak duality

above. The next theorem shows that this is indeed the case if ω and −ζ enjoy the

exchange property (EXC).

Theorem 6.4 Let ω : B1 → R and ζ : B2 → R be such that ω and −ζ satisfy

(EXC).

(1) [Primal integrality]

max{ω(x) − ζ(x) | x ∈ B1 ∩ B2}
= max{ω̂(b) − ζ̌(b) | b ∈ B1 ∩ B2} = inf{ζ•(p) − ω◦(p) | p ∈ RV }.

To be more precise,

(P1) If inf{ζ•(p) − ω◦(p) | p ∈ RV } 6= −∞, then B1 ∩ B2 6= ∅,
(P2) If B1 ∩ B2 6= ∅, all these values are finite and equal, and the infimum is

attained by some p ∈ RV .

(2) [Dual integrality] If ω and ζ are integer-valued, the infimum can be taken

over integral vectors, i.e.,

max{ω(x) − ζ(x) | x ∈ B1 ∩ B2} = inf{ζ•(p) − ω◦(p) | p ∈ ZV },

and the infimum is attained by some p ∈ ZV if it is finite. 2

Before giving the proof, we observe that the essence of the first half of Theorem

6.4 lies in the integrality of the relaxed primal problem. Since Bi = ZV ∩ Bi

(i = 1, 2), we have

B1 ∩ B2 = ZV ∩ (B1 ∩ B2).

Hence, if the relaxed primal problem has an integral optimal solution, say b, then

b belongs to B1 ∩ B2. Furthermore, ω(b) = ω̂(b) and ζ(b) = ζ̌(b) by Lemma 4.5

and Lemma 6.1. So, Theorem 6.4(1) would follow.

The proof of Theorem 6.4 relies on Frank’s discrete separation theorem for a

pair of sub/supermodular functions and a recent theorem of the present author.
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Theorem 6.5 (Discrete Separation Theorem [14]) Let f : 2V → R and g :

2V → R be submodular and supermodular functions, respectively, with f(∅) =

g(∅) = 0. If g(X) ≤ f(X) (X ⊆ V ), there exists x∗ ∈ RV such that

g(X) ≤ x∗(X) ≤ f(X) (X ⊆ V ). (6.6)

Moreover, if f and g are integer-valued, there exists such an x∗ in ZV . 2

Remark 6.1 The original statement of the discrete separation theorem covers the

more general class of sub/supermodular functions on crossing-families. Note also

that Frank’s discrete separation theorem, Edmonds’ intersection theorem [9], [10],

and Fujishige’s Fenchel-type min-max theorem [18] can be regarded as, essentially,

equivalent assertions (see [19, §6.1(b)]). 2

Theorem 6.6 ([32, Theorem 4.1]) Assume that ω1 : B1 → R and ω2 : B2 → R

satisfy (EXC) and let x∗ ∈ B1 ∩ B2. Then

ω1(x
∗) + ω2(x

∗) ≥ ω1(x) + ω2(x), ∀x ∈ B1 ∩ B2

if and only if there exists some p∗ ∈ RV such that

ω1[−p∗](x∗) ≥ ω1[−p∗](x), ∀x ∈ B1; ω2[p
∗](x∗) ≥ ω2[p

∗](x), ∀x ∈ B2.

Moreover, if ω1 and ω2 are integer-valued, there exists such an p∗ in ZV .

(Proof) See [32], [28], or [35]. 2

Remark 6.2 When ω1 and ω2 are affine functions, the above theorem coincides

with the optimality criterion (Fujishige’s potential characterization [17]) for the

weighted intersection problem for a pair of submodular systems (see also [19]). On

the other hand, when B1, B2 ⊆ {0, 1}V representing a pair of matroids, the above

theorem reduces to the optimality criterion [28, Theorem 4.2] for the valuated

matroid intersection problem. If, in addition, ω1 is affine and ω2 = 0, this criterion

recovers Frank’s weight splitting theorem [13] for the weighted matroid intersection

problem, which is in turn equivalent to Iri-Tomizawa’s potential characterization

of the optimality for the independent assignment problem [22]. 2

We now prove the assertion (P1) in Theorem 6.4(1). Recall Theorem 2.1 and let

g1 be the supermodular function describing B1 and f2 be the submodular function

describing B2. We have g1(∅) = f2(∅) = 0. We also introduce (cf. (5.1))

ψ1
◦(p) := min{〈p, x〉 | x ∈ B1}, ψ2

•(p) := max{〈p, x〉 | x ∈ B2}.

The following fact is fundamental.
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Lemma 6.7

inf{ζ•(p) − ω◦(p) | p ∈ ZV } 6= −∞ (6.7)

⇐⇒ inf{ζ•(p) − ω◦(p) | p ∈ RV } 6= −∞ (6.8)

⇐⇒ ψ2
•(p) ≥ ψ1

◦(p) (p ∈ RV ) (6.9)

⇐⇒ f2(X) ≥ g1(X) (X ⊆ V ), f2(V ) = g1(V ). (6.10)

2

(Proof) Since

|ω◦(p) − ψ1
◦(p)| ≤ max

x∈B1

|ω(x)|, |ζ•(p) − ψ2
•(p)| ≤ max

x∈B2

|ζ(x)|,

and ψ1
◦(p) and ψ2

•(p) are positively homogeneous, we have

inf{ζ•(p) − ω◦(p) | p ∈ RV } 6= −∞
⇐⇒ inf{ψ2

•(p) − ψ1
◦(p) | p ∈ RV } 6= −∞

⇐⇒ ψ2
•(p) ≥ ψ1

◦(p) (p ∈ RV ).

By Theorem 5.1 and (5.2), it suffices to consider the last inequality for p = χX

(X ⊆ V ). A straightforward calculation using (5.5) shows that this in turn is

equivalent to (6.10). The above argument is also valid when p is restricted to an

integral vector, and therefore (6.7) is equivalent to the other conditions. 2

If (6.10) is true, we can apply Theorem 6.5 to obtain x∗ ∈ B1 ∩ B2. [End of

proof of (P1)]

Remark 6.3 In view of the above proof, we may say that (P1) in Theorem 6.4(1)

is equivalent, modulo Lemma 6.7, to Theorem 6.5. 2

Next, we prove the assertion (P2) in Theorem 6.4(1). By Lemma 6.3, we see

that (P2) is equivalent to the existence of x∗ ∈ B1 ∩ B2 and p∗ ∈ RV such that

ω(x∗) − ζ(x∗) = ζ•(p∗) − ω◦(p∗). (6.11)

Put ω1 := ω and ω2 := −ζ and denote by x∗ a common base that maximizes

ω1(x) + ω2(x). By Theorem 6.6, we have

ω1[−p∗](x∗) = max{ω1[−p∗](x) | x ∈ B1},
ω2[p

∗](x∗) = max{ω2[p
∗](x) | x ∈ B2}
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for some p∗ ∈ RV . This implies

ω(x∗) − ζ(x∗) = ω1(x
∗) + ω2(x

∗)

= ω1[−p∗](x∗) + ω2[p
∗](x∗)

= max
x∈B1

ω1[−p∗](x) + max
x∈B2

ω2[p
∗](x)

= max
x∈B1

(−〈p∗, x〉 + ω(x)) + max
x∈B2

(〈p∗, x〉 − ζ(x))

= ζ•(p∗) − ω◦(p∗).

The second half of Theorem 6.4 follows from the second half of Theorem 6.6

which guarantees the existence of an integral vector p∗. [End of proof of Theorem

6.4]

Remark 6.4 The above proof shows that (P2) with the integrality assertion in

(2) is in fact equivalent to Theorem 6.6. 2

The min-max identity of Theorem 6.4 yields a pair of separation theorems, one

for the primal pair (ω, ζ) and the other for the dual (conjugate) pair (ω◦, ζ•). It is

emphasized that these separation theorems do not exclude the case of B1∩B2 = ∅.

Theorem 6.8 (Primal Separation Theorem) Let ω : B1 → R and ζ : B2 →
R be such that ω and −ζ satisfy (EXC). If ω(x) ≤ ζ(x) (x ∈ B1 ∩B2), there exist

α∗ ∈ R and p∗ ∈ RV such that

ω(x) ≤ α∗ + 〈p∗, x〉 ≤ ζ(x) (x ∈ ZV ). (6.12)

[This is a short-hand expression for

ω(x) ≤ α∗ + 〈p∗, x〉 (x ∈ B1), α∗ + 〈p∗, x〉 ≤ ζ(x) (x ∈ B2)

relying on our convention (6.4).]

Moreover, if ω and ζ are integer-valued, there exist such α∗ in Z and p∗ in ZV .

(Proof) First note that

(6.12) ⇐⇒ ζ•(p∗) ≤ −α∗ ≤ ω◦(p∗).

In case B1 ∩ B2 6= ∅, we see from (6.11) and Theorem 6.4, (P2), that there exist

x∗ ∈ B1 ∩ B2 and p∗ ∈ RV such that

[〈p∗, x∗〉 − ζ(x∗)] − [〈p∗, x∗〉 − ω(x∗)] = ζ•(p∗) − ω◦(p∗).
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Hence we have

ω◦(p∗) = min{〈p∗, x〉 − ω(x) | x ∈ B1} = 〈p∗, x∗〉 − ω(x∗), (6.13)

ζ•(p∗) = max{〈p∗, x〉 − ζ(x) | x ∈ B2} = 〈p∗, x∗〉 − ζ(x∗). (6.14)

Since ω(x∗) ≤ ζ(x∗) by assumption, there exists α∗ ∈ R with

ζ•(p∗) = 〈p∗, x∗〉 − ζ(x∗) ≤ −α∗ ≤ 〈p∗, x∗〉 − ω(x∗) = ω◦(p∗).

Next we consider the case of B1 ∩ B2 = ∅. By Theorem 6.4, (P1), this implies

ζ•(p∗) ≤ ω◦(p∗) for some p∗ ∈ RV . By choosing α∗ ∈ R with ζ•(p∗) ≤ −α∗ ≤
ω◦(p∗), we obtain (6.12).

The integrality assertion for α∗ and p∗ follows from the integrality assertions

in Theorem 6.4 and Lemma 6.7. 2

Remark 6.5 Conversely, the min-max formula of Theorem 6.4 can be derived

from the primal separation theorem. Note in this connection that the primal

separation theorem implies the following: If B1 ∩ B2 = ∅, then for any M ∈ R

there exist α∗ ∈ R and p∗ ∈ RV such that

0 ≤ α∗ + 〈p∗, x〉 (x ∈ B1), α∗ + 〈p∗, x〉 ≤ −M (x ∈ B2);

which implies ψ2
•(p∗)−ψ1

◦(p∗) ≤ (−α∗−M)− (−α∗) = −M . The assertion (P1)

in Theorem 6.4(1) is immediate from this. For (P2) we apply the primal separation

theorem to (ω̃, ζ) with ω̃(x) := ω(x) − max{ω(y) − ζ(y) | y ∈ B1 ∩ B2}. 2

Remark 6.6 The primal separation theorem in case B1 ∩B2 6= ∅ has been estab-

lished in [32]. 2

Theorem 6.9 (Dual Separation Theorem) Let ω : B1 → R and ζ : B2 → R

be such that ω and −ζ satisfy (EXC). If ω◦(p) ≤ ζ•(p) (p ∈ RV ), there exist

β∗ ∈ R and x∗ ∈ B1 ∩ B2 such that

ω◦(p) ≤ β∗ + 〈p, x∗〉 ≤ ζ•(p) (p ∈ RV ). (6.15)

Moreover, if ω and ζ are integer-valued, there exists such an β∗ in Z.

(Proof) First note that

(6.15) ⇐⇒ ζ̌(x∗) ≤ −β∗ ≤ ω̂(x∗).
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The assumption means infp(ζ
•(p)−ω◦(p)) ≥ 0, which in turn implies B1 ∩B2 6= ∅

by Theorem 6.4, (P1). Then by Theorem 6.4, (P2), as well as (6.11), there exist

x∗ ∈ B1 ∩ B2 and p∗ ∈ RV such that

ω(x∗) − ζ(x∗) = [〈p∗, x∗〉 − ω◦(p∗)] − [〈p∗, x∗〉 − ζ•(p∗)].

The left-hand side is equal to ω̂(x∗)− ζ̌(x∗) since ω̂(x∗) = ω(x∗) and ζ̌(x∗) = ζ(x∗)

by Lemma 4.5. Hence we have

ω̂(x∗) = inf{〈p, x∗〉 − ω◦(p) | p ∈ RV } = 〈p∗, x∗〉 − ω◦(p∗),

ζ̌(x∗) = sup{〈p, x∗〉 − ζ•(p) | p ∈ RV } = 〈p∗, x∗〉 − ζ•(p∗).

Since ω◦(p∗) ≤ ζ•(p∗) by assumption, there exists β∗ ∈ R with

ζ̌(x∗) = 〈p∗, x∗〉 − ζ•(p∗) ≤ −β∗ ≤ 〈p∗, x∗〉 − ω◦(p∗) = ω̂(x∗).

The integrality assertion for β∗ and p∗ follows from the integrality assertion in

Theorem 6.4. 2

Remark 6.7 The dual separation theorem for ω = 0 and ζ = 0 reduces to the

discrete separation theorem (Theorem 6.5) for sub/supermodular functions. In

fact, the assumption reduces to (6.9), which is equivalent to (6.10), and we have

β∗ = 0 in the conclusion. 2

Remark 6.8 The dual separation theorem, with the aid of Lemma 4.5 and Lemma

6.7, implies the min-max formula of Theorem 6.4. Apply the dual separation

theorem to (ω̃, ζ) with ω̃(x) := ω(x) − infp(ζ
•(p) − ω◦(p)) to obtain (P2). 2

Finally we schematically summarize the relationship among the min-max dual-

ity (Theorem 6.4), the discrete separation theorem (Theorem 6.5), the optimality

criterion for the weighted intersection problem (Theorem 6.6), the primal separa-

tion theorem (Theorem 6.8), and the dual separation theorem (Theorem 6.9). It

is emphasized that the “equivalence” relies on Lemma 4.5 and Lemma 6.7.
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Primal separation

(Theorem 6.8)

m

Min-max duality

(Theorem 6.4)


(P1) ⇐⇒ Frank’s discrete separation

(Theorem 6.5)

(P2) ⇐⇒ M-concave weighted intersection

(Theorem 6.6)

m
Dual separation

(Theorem 6.9)

6.3 Reduction to affine cases

Based on Theorem 5.3 (Local Supermodularity Theorem), we can derive the dual

separation theorem (Theorem 6.9) for general pairs (ω, ζ) from its special case for

affine functions.

Let ω and ζ be as in Theorem 6.9. Recall (5.9) and (5.12):

L̂(ω◦, p1)(p) = inf{〈p, b〉 | b ∈ ∂ω◦(p1)}
= min{〈p, x〉 | x ∈ argmax (ω[−p1])}.

Dually, we define

∂ζ•(p2) := {b ∈ RV | ζ•(p) − ζ•(p2) ≥ 〈p − p2, b〉 (∀p ∈ RV )},
Ľ(ζ•, p2)(p) := sup{〈p, b〉 | b ∈ ∂ζ•(p2)}

= max{〈p, x〉 | x ∈ argmin (ζ[−p2])}.

Putting

ω◦
L(p) := ω◦(p1) + L̂(ω◦, p1)(p − p1),

ζ•
L(p) := ζ•(p2) + Ľ(ζ•, p2)(p − p2),

we see (cf. (5.10))

ω◦(p) ≤ ω◦
L(p), ζ•

L(p) ≤ ζ•(p). (6.16)

From the assumption, ω◦(p) ≤ ζ•(p) (p ∈ RV ), we see there exist p1, p2 ∈ ZV

such that

ω◦
L(p) ≤ ζ•

L(p) (p ∈ RV ).
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(This is geometrically obvious, and also easy to prove.)

Theorem 5.3 shows that ω◦
L is the concave conjugate of some function with the

property (EXC), which we denote by ωL : B′
1 → R. In fact, B′

1 = argmax (ω[−p1])

and ωL(x) = −ω◦(p1)+ 〈p1, x〉, which is an affine function on B′
1 (cf. Remark 5.2).

Similarly, ζ•
L is the convex conjugate of ζL : B′

2 → R, where B′
2 = argmin (ζ[−p2])

and ζL(x) = −ζ•(p2) + 〈p2, x〉.
Applying the dual separation theorem to the pair (ωL, ζL) of affine functions,

we obtain

ω◦
L(p) ≤ β∗ + 〈p, x∗〉 ≤ ζ•

L(p) (p ∈ RV )

for some β∗ ∈ R and x∗ ∈ B′
1 ∩ B′

2 ⊆ B1 ∩ B2. From (6.16) this means

ω◦(p) ≤ β∗ + 〈p, x∗〉 ≤ ζ•(p) (p ∈ RV ).

Finally, if ω and ζ are integer-valued, so are ωL and ζL, and we can take β∗ ∈ Z.

Thus we have derived the dual separation theorem for the general pair (ω, ζ).

6.4 Convolution

We show that the supremum convolution operation of two functions preserves the

property (EXC). This means as a corollary that the union operation can be defined

for a pair of valuated matroids.

Assume that ω1 : B1 → R and ω2 : B2 → R satisfy (EXC). We define their

(supremum) convolution, ω12ω2 : B1 + B2 → R, by

(ω12ω2)(x) := sup{ω1(x1) + ω2(x2) | x1 + x2 = x, x1 ∈ B1, x2 ∈ B2}.

Here

B1 + B2 := {x1 + x2 | x1 ∈ B1, x2 ∈ B2},

which is known [19] to satisfy (B1).

We first observe

(ω12ω2)
◦ = ω1

◦ + ω2
◦, (6.17)

which follows immediately from the definitions.

Theorem 6.10 If ω1 : B1 → R and ω2 : B2 → R satisfy (EXC), then ω12ω2 :

B1 + B2 → R satisfies (EXC).
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(Proof) It follows from Theorem 5.3 (Local Supermodularity Theorem) that both

L̂(ω1
◦, p0) and L̂(ω2

◦, p0) are “matroidal” for each p0. This implies by Lemma 5.2

that L̂(ω1
◦, p0) + L̂(ω2

◦, p0) is also “matroidal” for each p0. Noting the relation

L̂(ω1
◦, p0) + L̂(ω2

◦, p0) = L̂(ω1
◦ + ω2

◦, p0) = L̂((ω12ω2)
◦, p0),

where the first equality is due to the definition of localization and the second to

(6.17), we see that L̂((ω12ω2)
◦, p0) is “matroidal” for each p0. Finally we use the

other direction of Theorem 5.3 to conclude that ω12ω2 satisfies (EXC). 2

Whereas (6.17) is a trivial identity, its dual counterpart, (6.18) below, relies on

the duality theorem. For ω1
◦ and ω2

◦, we distinguish the convolutions over R and

over Z. Namely, we define ω1
◦2Rω2

◦ : RV → R by

(ω1
◦2Rω2

◦)(p) := sup{ω1
◦(p1) + ω2

◦(p2) | p1 + p2 = p, p1 ∈ R, p2 ∈ R}

and ω1
◦2Zω2

◦ : ZV → R by

(ω1
◦2Zω2

◦)(p) := sup{ω1
◦(p1) + ω2

◦(p2) | p1 + p2 = p, p1 ∈ Z, p2 ∈ Z}.

We define ω1 + ω2 : B1 ∩ B2 → R by

(ω1 + ω2)(x) := ω1(x) + ω2(x) (x ∈ B1 ∩ B2),

provided B1 ∩ B2 6= ∅. Note that ω1 + ω2 does not necessarily satisfy (EXC).

Theorem 6.11 If ω1 : B1 → R and ω2 : B2 → R satisfy (EXC) and B1∩B2 6= ∅,
then

(ω1 + ω2)
◦ = ω1

◦2Rω2
◦. (6.18)

If, in addition, ω1 and ω2 are integer-valued, then

(ω1 + ω2)
◦ = ω1

◦2Zω2
◦, (6.19)

where it is understood that the left-hand side denotes the restriction of (ω1 + ω2)
◦

to ZV .

(Proof)

(ω1 + ω2)
◦(p) = min

x∈B1∩B2

(〈p, x〉 − ω1(x) − ω2(x))

= − max
x∈B1∩B2

(ω(x) − ζ(x)) (where ω := ω1[−p], ζ := −ω2)

= −min
p′

(ζ•(p′) − ω◦(p′)) (by Theorem 6.4)

= max
p′

((ω1[−p])◦(p′) − (−ω2)
•(p′))

= max
p′

(ω1
◦(p + p′) + ω2

◦(−p′)) (by Lemmas 4.2, 6.1).

The integral case follows from the integrality assertion in Theorem 6.4. 2

35



Remark 6.9 Theorem 6.11 implies

(ω1 + ω2)ˆ(b) = ω̂1(b) + ω̂2(b) (b ∈ B1 ∩ B2).

The proof is the same as in ordinary convex analysis. See [30, Theorem 3.8]. 2
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7 Induction through Networks

7.1 Theorems

We show that an M-concave function can be transformed into another M-concave

function through a network. This is an extension of the well known fact in matroid

theory that a matroid can be transformed through a bipartite graph into another

matroid.

Let G = (V,A; V +, V −) be a (directed) graph with a vertex set V , an arc

set A, a set V + of entrances and a set V − of exits such that V +, V − ⊆ V and

V + ∩ V − = ∅. Also let c : A → Z be an upper capacity function, c : A → Z be

a lower capacity function, and w : A → R be a weight function. Suppose further

that we are given a finite nonempty set B+ ⊆ ZV +
and a function ω+ : B+ → R.

A flow is a function ϕ : A → Z. Its boundary ∂ϕ : V → Z is defined by

∂ϕ(v) :=
∑

{ϕ(a) | a ∈ δ+v} −
∑

{ϕ(a) | a ∈ δ−v} (v ∈ V ), (7.1)

where δ+v and δ−v denote the sets of the out-going and in-coming arcs incident

to v, respectively. We denote by (∂ϕ)+ (resp. (∂ϕ)−) the restriction of ∂ϕ to V +

(resp. V −). A flow ϕ is called feasible if

c(a) ≤ ϕ(a) ≤ c(a) (a ∈ A), (7.2)

∂ϕ(v) = 0 (v ∈ V − (V + ∪ V −)), (7.3)

(∂ϕ)+ ∈ B+. (7.4)

We assume throughout that a feasible flow exists.

Define B̃ ⊆ ZV −
and ω̃ : B̃ → R by

B̃ := {(∂ϕ)− | ϕ : feasible flow}, (7.5)

ω̃(x) := max{〈w,ϕ〉A + ω+((∂ϕ)+) | ϕ : feasible flow with (∂ϕ)− = x}
(x ∈ B̃), (7.6)

where

〈w,ϕ〉A :=
∑
a∈A

w(a)ϕ(a).

The following fact is easy to see from the similar results for matroids and

polymatroids (cf. [19], [37]).

Lemma 7.1 If B+ satisfies (B1), then B̃ of (7.5) satisfies (B1). 2
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The following is the main result of this section.

Theorem 7.2 If ω+ satisfies (EXC), then ω̃ of (7.6) satisfies (EXC). 2

Remark 7.1 This theorem affords an alternative proof to Theorem 6.10: Let

V1 and V2 be disjoint copies of V (in the notation of Section 6) and consider

a bipartite graph G = (V +, V −, A) with V + := V1 ∪ V2, V − := V and A :=

{(v1, v) | v ∈ V } ∪ {(v2, v) | v ∈ V }, where vi ∈ Vi is the copy of v ∈ V

(i = 1, 2). Take c sufficiently large, c sufficiently small, w ≡ 0, B+ := B1 × B2,

and ω+(x1, x2) := ω1(x1) + ω2(x2). Then we have ω12ω2 = ω̃, where ω̃ is the

M-concave function induced from ω+. 2

As a special case of Theorem 7.2, a valuated matroid can be induced by match-

ings in a bipartite graph. Let G = (V +, V −, A) be a bipartite graph, w : A → R

a weight function, and M+ = (V +,B+) a matroid with valuation ω+ : B+ → R.

Then

B̃ := {∂−M | M is a matching with ∂+M ∈ B+}

is known to form the base family of a matroid, provided B̃ 6= ∅. Here ∂+M ⊆ V +

and ∂−M ⊆ V − denote the sets of vertices incident to M . Define ω̃ : B̃ → R by

ω̃(X) := max{w(M) + ω+(∂+M) | M : matching, ∂+M ∈ B+, ∂−M = X}
(X ∈ B̃). (7.7)

Theorem 7.3 ω̃ of (7.7) is a valuation of (V −, B̃).

This theorem has important consequences. Let M1 = (V,B1) and M2 = (V,B2)

be matroids with valuations ω1 : B1 → R and ω2 : B2 → R. Let M1 ∨ M2 =

(V,B1 ∨ B2) denote the union of M1 and M2, where B1 ∨ B2 is defined to be

the family of the maximal elements of {X1 ∪ X2 | X1 ∈ B1, X2 ∈ B2}. Define

ω1 ∨ ω2 : B1 ∨ B2 → R by

(ω1 ∨ ω2)(X) := max{ω1(X1) + ω2(X2) | X1 ∪ X2 = X,X1 ∈ B1, X2 ∈ B2}
(X ∈ B1 ∨ B2).

Theorem 7.4 ω1 ∨ ω2 is a valuation of the union M1 ∨ M2.

(Proof) Let V1 and V2 be disjoint copies of V , and U be a set of size equal to

rankM1 + rankM2 − rank (M1 ∨ M2).
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Consider a bipartite graph G = (V +, V −, A) with V + := V1 ∪ V2, V − := V ∪ U

and

A := {(v1, v) | v ∈ V } ∪ {(v2, v) | v ∈ V } ∪ {(v2, u) | v ∈ V, u ∈ U},

where vi ∈ Vi is the copy of v ∈ V (i = 1, 2). Let ω̃ be the valuation induced

on V − from the valuation ω+ on V + defined by ω+(X1 ∪X2) := ω1(X1) + ω2(X2)

(Xi ∈ Bi (i = 1, 2)). Then (ω1 ∨ ω2)(X) = ω̃(X ∪ U) for X ⊆ V . 2

For a matroid M = (V,B), its truncation to rank k is given by Mk = (V,Bk)

with

Bk := {X ⊆ V | |X| = k, ∃B : X ⊆ B ∈ B}.

For a valuation ω : B → R of M, define ωk : Bk → R by

ωk(X) := max{ω(B) | X ⊆ B ∈ B} (X ∈ Bk).

The following theorem has been established in [31]; here is an alternative proof by

means of the induction through a bipartite graph.

Theorem 7.5 ([31]) ωk is a valuation of the truncation Mk, where k ≤ rankM.

(Proof) Let V ′ be a copy of V , and U be a set of size = rankM − k. Consider a

bipartite graph G = (V +, V −, A) with V + := V ′, V − := V ∪ U and

A := {(v′, v) | v ∈ V } ∪ {(v′, u) | v ∈ V, u ∈ U},

where v′ ∈ V ′ is the copy of v ∈ V . Let ω̃ be the valuation induced on V − from

ω+ := ω on V +. Then ωk(X) = ω̃(X ∪ U) for X ⊆ V . 2

7.2 Proof of Theorem 7.2

The proof of Theorem 7.2 relies on the optimality criterion of [32] for the submodu-

lar flow problem with an objective function satisfying (EXC). First we reformulate

Theorem 3.1 of [32] into a form convenient for us. Suppose we are given, in ad-

dition to the network (G = (V,A; V +, V −), c, c, w), a pair of M-concave functions

ω+ : B+ → R and ω− : B− → R, where B+ ⊆ ZV +
and B− ⊆ ZV −

are nonempty

finite sets. [Do not confuse B− with B̃, and ω− with ω̃.]

[Problem P]

Maximize

〈w,ϕ〉A + ω+((∂ϕ)+) + ω−((∂ϕ)−)
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subject to (7.2), (7.3), (7.4) and

(∂ϕ)− ∈ B−. (7.8)

The following theorem involves a “potential” function q : V → R. We denote

by q+ : V + → R and q− : V − → R the restrictions of q and define

ω+[q+](x) := ω+(x) + 〈q+, x〉 (x ∈ B+),

ω−[q−](x) := ω−(x) + 〈q−, x〉 (x ∈ B−),

as in (2.7). We also use the notation

wq(a) := w(a) − q(∂+a) + q(∂−a) (a ∈ A), (7.9)

where ∂+a and ∂−a denote the initial vertex and the terminal vertex of a ∈ A,

respectively.

Theorem 7.6 ([32, Theorem 3.1])

(1) A flow ϕ : A → Z with (7.2), (7.3), (7.4) and (7.8) is optimal for P if and

only if there exists a “potential” function q : V → R such that (i)–(iii) below hold

true.

(i) For each a ∈ A,

wq(a) < 0 =⇒ ϕ(a) = c(a), (7.10)

wq(a) > 0 =⇒ ϕ(a) = c(a). (7.11)

(ii) (∂ϕ)+ maximizes ω+[q+].

(iii) (∂ϕ)− maximizes ω−[q−].

Moreover, if ω+ and ω− are integer-valued, then q can be chosen to be also

integer-valued.

(2) Let q be a potential that satisfies (i)–(iii) above for some (optimal) flow ϕ.

A flow ϕ′ with (7.2), (7.3), (7.4) and (7.8) is optimal if and only if it satisfies

(i)–(iii) (with ϕ replaced by ϕ′). 2

We now start proving Theorem 7.2. By Theorem 4.4, it suffices to show that

argmax (ω̃[p]) satisfies (B1) for each p : V − → R.

Since B̃ of (7.5) is a finite set, we can find a finite set B− ⊆ ZV −
such that B−

satisfies (B1) and contains B̃ in the relative interior [36], [40] of its convex hull:

B̃ ⊆ ri B−. (7.12)
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Fix p : V − → R and define ω− : B− → R by ω−(x) := 〈p, x〉 (x ∈ B−). For x ∈ B̃

we have

ω̃[p](x) = max{〈w,ϕ〉A + ω+((∂ϕ)+)

| (7.2), (7.3), (7.4) and (∂ϕ)− = x} + 〈p, x〉
= max{〈w,ϕ〉A + ω+((∂ϕ)+) + ω−((∂ϕ)−)

| (7.2), (7.3), (7.4) and (∂ϕ)− = x}.

Recalling the definition of B̃ and the relation B̃ ⊆ B−, we see from this expression

that

argmax (ω̃[p]) = {(∂ϕ)− | ϕ : optimal for P(p)}, (7.13)

where P(p) means the problem P with ω− defined by ω−(x) := 〈p, x〉.
Let q : V → R be the potential function in Theorem 7.6 for the problem P(p).

With reference to q, we define a capacitated network (G = (V,A; V +, V −), cq, cq),

where the capacity functions cq and cq are given by

wq(a) < 0 =⇒ cq(a) := cq(a) := c(a),

wq(a) > 0 =⇒ cq(a) := cq(a) := c(a),

wq(a) = 0 =⇒ cq(a) := c(a), cq(a) := c(a).

Recall from Theorem 4.4 that

B+
q := argmax (ω+[q+]) ⊆ ZV +

satisfies (B1). Let B−
q be the subset of ZV −

induced from B+
q by the network

(G = (V,A; V +, V −), cq, cq) as (7.5). Note that B−
q ⊆ B̃ and that B−

q satisfies

(B1) by Lemma 7.1. The proof of Theorem 7.2 can now be completed by the

following claim.

Claim: argmax (ω̃[p]) = B−
q .

(Proof of Claim) By Theorem 7.6, a flow ϕ satisfying (7.2), (7.3), (7.4) and

(7.8) is optimal to P(p) if and only if it is a feasible flow for the network (G =

(V,A; V +, V −), cq, cq) with B+
q ⊆ ZV +

such that (∂ϕ)− ∈ argmax (ω−[q−]). (It

should be clear that, by definition, ϕ is feasible for the network (G, cq, cq) with B+
q

if ϕ satisfies (7.2), (7.3), and (7.4) — with (c, c) replaced by (cq, cq) in (7.2) and

with B+ replaced by B+
q in (7.4).) Hence, in view of (7.13), we obtain

argmax (ω̃[p]) = B−
q ∩ argmax (ω−[q−]).

Since ω−[q−] is a linear function on B−, argmax (ω−[q−]) is a face of B−. On the

other hand, a proper face of B− is disjoint from B̃ by (7.12). This means that
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argmax (ω−[q−]) = B− since (∂ϕ)− ∈ B̃ ∩ argmax (ω−[q−]) for an optimal flow ϕ

for P(p). Hence the claim follows. 2

8 Conclusion

In this paper, we have restricted ourselves to functions ω defined on the integral

points in base polytopes (bounded base polyhedra). The boundedness assumption

is not essential: all the results can be extended mutatis mutandis to the unbounded

case [35]. For instance, the first part of the Fenchel-type duality (Theorem 6.4) in

the general case reads as follows:

Theorem 8.1 Let ω : B1 → R and ζ : B2 → R be such that ω and −ζ sat-

isfy (EXC), where B1 and B2 are nonempty (possibly unbounded) subsets of ZV

satisfying (B1). If B1 ∩ B2 6= ∅ or ζ•(p) − ω◦(p) 6= +∞ for some p ∈ RV , then

sup{ω(x) − ζ(x) | x ∈ B1 ∩ B2} = inf{ζ•(p) − ω◦(p) | p ∈ RV }.

2

In the Local Supermodularity Theorem, we have characterized the exchange-

ability (EXC) in terms of the supermodularity of the localization of the conjugate

function. A further investigation into the conjugacy between the exchangeability

and the sub/supermodularity can be found in [35].
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