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CONVEXITY AND TIGHTNESS FOR RESTRICTIONS OF
HAMILTONIAN FUNCTIONS TO FIXED POINT SETS OF

AN ANTISYMPLECTIC INVOLUTION
BY

J. J. DUISTERMAAT1

Abstract. The Kostant convexity theorem for real flag manifolds is generalized to a
Hamiltonian framework. More precisely, it is proved that if / is the momentum
mapping for a Hamiltonian torus action on a symplectic manifold M and Q is the
fixed point set of an antisymplectic involution of M leaving / invariant, then
/((?) — f(M) = a convex polytope. Also it is proved that the coordinate functions of
/are tight, using "half-turn" involutions of Q.

1. Introduction. Recently the theorem of Kostant [10], on convexity of certain
projections of complex flag manifolds, has been generalized to a Hamiltonian
framework by Guillemin and Sternberg [7], and, independently, by Atiyah [2].
However, Kostant proved his theorem for the real flag manifolds as well, and it is
the first purpose of this paper to show that also this real version has a generalization
in a Hamiltonian setting. More specifically, let M be a compact connected smooth
manifold of dimension 2«, provided with a symplectic form a. Let F be a torus
acting on M in a Hamiltonian way, with Hamiltonian functions fx, A'Et, and
momentum mapping/: M -» t*. Here t is the Lie algebra of T and t* its dual, see §2
for more details. Furthermore, let t be a smooth involution of M such that t*<j = -a
and such that/y ° t = fx for all X G t. (One can always arrange the latter condition
by passing to a suitable subtorus F0 of F, the new momentum mapping then being
equal to/followed by the natural projection t* -> t0.) Let Q be the fixed point set of
t, which we assume to be nonvoid. Then/(Ç}) =f(M), the convex hull of finitely
many points in t*. For a more detailed description of the extremal points of
f(Q) = f(M), see Theorem 2.5 and formula (2.32). The proof follows the pattern of
Guillemin and Sternberg [7], which in turn was inspired by Heckman [8].

If M is a Kahler manifold, then a more refined result is true in terms of gradient
flows, this will be discussed in §4.

Secondly, Atiyah [2], following Frankel [6], observed that the Hamiltonian func-
tions/^, X G t, are tight in the sense that the sum of the Betti numbers of M is equal
to the sum of the Betti numbers of the critical set oifx. In the case of isolated critical
points this implies that fx is a Morse function on M with the minimal number of
critical points. This too generalizes a known result for complex flag manifolds, but
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418 J. J. DUISTERMAAT

which actually is true for the real flag manifolds as well, due to Takeuchi and
Kobayashi [13], see also Ddstermaat, Kolk and Varadarajan [3, §4]. In §3 it will be
shown that also the tightness generalizes to our setting. The theorem is that
dim H*(Q; Z/2Z) = dim H*(CX; Z/2Z) if Cx is the critical set of the function
fx\Q,XGt.

Finally in §5 we describe how the real flag manifolds fit into the framework
described above.

It is a pleasure for me to thank Michael Atiyah for his suggestion, made to me at
the Arbeitstagung in Bonn in June 1981 (and in [2]), that the real flag manifolds
really should be treated as the fixed point set of an involution in a symplectic
manifold. I also thank John Millson, resp. Alan Weinstein for some discussions at
UCLA, resp. Berkeley, which stimulated me further.

2. Convexity. We recall that (M, a) is a compact connected symplectic manifold
with a Hamiltonian action of a torus Ton it. That is, there is a linear map Xv*fx
from the Lie algebra t of T to the space of smooth functions on M, such that

(2.1) For each X G t, the infintesimal action X of X on M is equal to the Hamilton
vector field of the function/^, and

(2.2) The functions fx, X G t, are in involution.
In formula, (2.1) reads

(2.1') XAo = -dfx,       let,
whereas assuming this, (2.2) is equivalent to

(2.2') XldfY = 0   for all X, Y G t,
that is, fY is constant along the F-orbits in M.

The mapping/: M -» t*, defined by

(2.3) (X,f(m)) = fx(m),       mGM,XGt,
is called the momentum mapping of the Hamiltonian F-action.

The next ingredient which we introduce is a smooth map t: M -» M which is an
involution of M, that is
(2.4) t o t = identity on M,
and which is antisymplectic, that is
(2.5) t*o =    a.

We will assume that the Hamiltonian F-action and the involution t are related to
each other by the condition that the functions fx are r-invariant, that is

(2.6) T*fx=fx   for all X G t.
Assuming (2.5), this is equivalent to

(2.7) r*X=-X,       XGt,
in view of (2.1'). In turn, (2.7) is equivalent to

(2-8) TgT-'=g-\       gGF,

if g denotes the action of g on M. That is, t maps F-orbits to F-orbits, but at the
same time reverses the time on the orbits of the 1-parameter subgroups of F.
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FIXED POINT SETS OF AN ANTISYMPLECTIC INVOLUTION 419

If G is a compact group acting by smooth mappings on a manifold M, then
averaging over G of an arbitrary Riemannian metric on M leads to a G-invariant
Riemannian metric ß on M. If m is a fixed point for the G-action, then the
exponential map, centered at m, with respect to ß, intertwines the linear action of G
on TmM with the local action of G around m. That is, the G-action is linear
orthogonal on suitable local coordinates. In particular the fixed point set for the
action of any subset of G has finitely many components, each of which is a closed
smooth submanifold of M.

We assume that the fixed point set of t in M,

(2.9) Q = {m G M; t(«î) = m),
is nonvoid. It has finitely many smooth, compact, connected components. From
(2.5) we obtain that if m G Q, then both TmM = Ker(/)r(w) - /) and

(2.10) Pm = Ker(Dr(m) + I)

are isotropic subspaces for am. Because also

(2.11) TmM=TmQ®Pm,

the conclusion is that TmQ and Pm are Lagrange subspaces of TmM. That is, Q is a
Lagrange submanifold of M, and the Pm, m G Q, form a Lagrange subbundle of
TQM, complementary to TQ. In fact, Meyer [11] showed that there is an open
T-invariant neighborhood U of Q in M and a symplectic diffeomorphism $ from U
onto an open neighborhood V of the zero section in T*Q, such that $t<I> ' maps
P e (TqQ)* n F to -p, for all q G Q.

Another rigidity property of compact Lie group actions on a compact manifold M
is that there are only finitely many orbit types (Mostow [12], Yang [15]). In the case
of the action of a torus F this means that there are only finitely many possibilities
for the stabilizer groups

(2.12) Tm={gGT;g(m) = m),

as m ranges over M. This fact will be used both in the proof of the convexity and of
the tightness theorem mentioned in the introduction.

2.1. Lemma. Let m G Q, X G t. Then d(fx\Q)(m) = 0 implies that dfx(m) = 0,
which in turn is equivalent to the condition that m is a fixed point for the action of
exp tX, t G R.

Proof. TmQ = Ker(Dr(m) -/) = {« + Dt(w)(u); u G TmM). So using (2.6),
we get 0 = dfx(m)(u + Dr(m)(u)) = 2dfx(m)(u) for all u G TmM.

2.2. Proposition. Let m G Q, D(f\Q)(m) = 0. Then there exist smooth sym-
plectic local coordinates q,, p¡ for a neighborhood U of m (zero at m), such that, for
suitable « G t*,

(2.13) fx = fx(m)+ Î ",(*) • U,2+/>/)A
7=1
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420 J. J. DUISTERMAAT

a«¿ moreover

(2.14) 7:(q,p)^(q,-p)
in U. In particular U n Q = {p = 0}.

Proof. Although the proof is a combination of the by now standard arguments in
Meyer [11] and Guillemin-Sternberg [7, §4], we will give it in some detail for the
convenience of the reader. We begin with the result on the tangent level.

In view of Lemma 2.1, m is not only a fixed point for t, but also for the F-action.
Then the
(2.15) Xm = DX(m):TmM^TmM,       XGt,
form a commuting family of infinitesimally symplectic transformations, antisymmet-
ric with respect to ßm. In particular they are simultaneously diagonalizable over C
with purely imaginary eigenvalues. That is,

(2.16) F„,M®C = 2®FX,    Xm\Ex = X(X)- identity on Ex;
x

here Xm is extended to a complex linear endomorphism of Tm M ® C and X is real
linear: t -> C, taking only purely imaginary values. The complex conjugation maps
FA to E^ = F_x. Because the Xm are infintesimally symplectic, the spaces

(2.17) Ex,_x = (Ex + E_x)nTmM
are mutually am-orthogonal. Because they span TmM, they form a symplectic vector
space decomposition of TmM.

Now (2.7) implies that

(2.18) Dr(m)oXm = -XmoDT(m),

showing that Di(m) maps Fx to F_x, so it leaves Fx _x invariant. This reduces the
problem to the case that all Xm are real multiples of one infinitesimally symplectic
mapping J, the square of which we can take equal to —/. Moreover, J maps TmQ to
Pm and Pm to T„,Q. Now

(2.19) (u,v)=om(u,Jv),       u,vGTmQ,

defines a nondegenerate symmetric bilinear form on TmQ. We can write TmQ — Q*
® Qm - (Qm > Qm ) ~ 0, with (2.19) being positive, resp. negative definite, on Q^ ,
resp. Qm . The spaces Q* + J(Q„ ) and Q~ + J(Q~ ) are am-orthogonal to each
other, leading to a Z)T(«i)-invariant symplectic vector space decomposition. This
reduces the problem to the case that (2.19) is definite.

In the positive case, let e,,... ,en be an orthonormal basis of TmQ with respect to
(2.19). Then
(2.20) {o,p)^2(qJ-eJ-pJ-JeJ)

j
is a symplectic mapping, with respect to the symplectic form 2 dp¡ A dq, on
(q, p)-space. It intertwines J with the mapping (q, p)\->(p, — q), which, as a linear
vector field, is Hamiltonian with Hamilton function

(2.21) 2{qf+PJ)/2.j
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FIXED POINT SETS OF AN ANTISYMPLECTIC INVOLUTION 421

In the negative definite case we get (2.21) with a minus sign in front. This proves the
proposition on the tangent level.

For the local normal form we already know that there are local coordinates
linearizing t and the F-action, hence also the vector fields X, X Et. However, in
these coordinates the symplectic form a will in general not be equal to the constant
symplectic form am = 1j dp} A dqj. The proof is finished by applying the following
version (also known to Weinstein) of the equivariant Darboux lemma of Weinstein
[14].

2.3. Lemma. Let G be a compact group acting by diffeomorphisms on a symplectic
manifold (M,a), such that g*a = e(g) ■ a, e a continuous homomorphism: G —
{— 1, + 1}. Let m be a fixed point for the G-action, a' another smooth symplectic form
defined on a neighborhood of m, such that g*a' = e(g) ■ a' for all g G G, and a'm = am.
Then there exists a G-equivariant local diffeomorphism ty around m, such that
V(m) = m, D^(m) = I, and ^*a' = a.

Proof. Write a, = a + t ■ (a' — a), so that a0 = a,a^= a', g*a, = e(g) ■ a, for all
g G G, t G [0,1]. One attempts to find local diffeomorphisms %, G-equivariant,
depending smoothly on t, such that % = identity, and ^,(m) ~ m> D^,(m) = /,
if*ot = a for all t G [0,1]. Differentiating with respect to t one finds that the velocity
field v, has to satisfy the equations

(2.22) d{v,Aat)=a- a',    v,(m) = 0,    Dvt(m) = 0,
for all / G [0,1]. By the Poincaré lemma there is a smooth 1-form a such that
da = a — a', a(m) — 0, Da(m) = 0. Let v, be the unique vector field such that
v, Ja, = a. Then vt depends smoothly on t and satisfies (2.22). Each g*vt, g G G, will
again satisfy (2.22), because

e(g)-(o-o')=g*(o-o') = g*d{v,lol)

= dg*{v,Jo,) = d{g*v,Jg*ol)

= d(g*v,Je(g) ■ a,) = e(g) ■ d(g*v,Ao,).

So averaging over G we get a smooth G-invariant vector field vt, depending smoothly
on t, and satisfying (2.22). Integrating it we get a G-equivariant 1-parameter family
of local diffeomorphisms %, such that ^t(m) = m, D^t(m) = I> and ' >-» ̂ *<J, is
constant, hence equal to a. Taking if = SP,, the lemma is proved.

Ignoring the F-action in Proposition 2.2, we have, locally, recovered the theorem
of Meyer mentioned before. Moreover, the set

(2.23) C={mGQ;D(f\Q)(m) = 0}
is equal to F n Q, where F is the fixed point set of the F-action in M. Each
connected component Ck of C, which in the local coordinates of Proposition 2.2
reads as

(2.24) {(q, p); p = 0 and q}. = 0 whenever «,■ ¥= 0},

is a Lagrange submanifold of some connected component FJ(k) of F, the connected
components F of F being symplectic submanifolds of M. F is r-invariant if it meets
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Q, and then the Ck with j(k) =j are the connected components of the fixed point
set for the involution t in F.

We now want to prove that f(Q) is equal to the convex hull of f(C), which
consists of only finitely many points because/is obviously constant on each Ck. As
in Guillemin-Sternberg [7, §5], the first step is

2.4. Lemma. For each let, the function fx \ Q has a unique local maximal value.

Proof. Fix A'et. Let m G Q be a critical point oí fx\ Q. From Lemma 2.1 we
know that m is a fixed point for the action of exp tX, t G R. Replacing, in this proof,
F by the closure of (exp (I, í e R} in T, we get that D(f\ Q)(m) = 0. A glance at
(2.13) and the local characterization of Q shows that m is a local maximum iorfx\ Q
if and only if m is a local maximum for fx, both conditions being equivalent to
(¿¡(X) =£ 0 for ally. A Morse theoretic argument gives that the set of points in M
where/y has a local maximum is connected, see Atiyah [2] and Guillemin-Sternberg
[7]. So fx on M has only one local maximal value, and therefore the same must hold
torfx\Q.

Now, let ¿ G t* be a boundary point of f(Q), and let m G Q be such that
/( m ) = ¿. Then

(2.25) tm={XEt;d{fx\Q)(m) = 0)
is nonzero, otherwise D(f\Q)(m) would be surjective, contradicting that £ is a
boundary point. In view of Lemma 2.1 we may replace F by the subtorus exp tm,
fixing m, and apply Proposition 2.2. Write

(2.26) Y«=2V»/'        &J>0'
7=1

for the convex cone in t* generated by the vectors a, of (2.13), with t replaced by tTO.
Then (2.13) shows that there is a neighborhood U of m in Q and a neighborhood V
of TTm(i) in t* , such that

(2.27) *JLfW))=VCl{*m(i) + ym).
Here irm is the projection: t* — t* obtained by restriction of linear forms to tm. This
implies of course that

(2-28) f(U)C¿ + «~\ym).
Note that Ker7rm = Im D(f\ Q)(m). The fact that there are only finitely many

possibilities for the Tm in (2.12), and that t„, is equal to the Lie algebra of Tm, leads
to Im D(f\ Q)(m') D Im D(f\ Q)(m) for all m' in a neighborhood of m, so (2.27)
can actually be strengthened to

(2.29) f(U)=WCi(i + 9?(ym))

for some neighborhood W oi £ in t*.
Because £ is a boundary point of f(Q), we see from (2.13) and (2.29) that y„, ̂  t* ,

so the dual cone

(2-30) 8m = {X G t„,; 0j(X) < 0 for ally'}
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must contain nonzero X. However, X G tm means in view of (2.28) that (X, f(U)) <
(X, £), that is, (X, |) is a local maximal value for fx\ Q. Since Lemma 2.4 implies
that local maximal values are global maximal values, (A", f(Q))< (X, £) for all
X G 8m. That is, (2.28) can be strengthened to

(2.31) /(Ö)ce + 7r-'(yj.
In particular, since 8m ¥= {0}, each boundary point of/(g) is on the boundary of a

half-space containing f(Q), so f(Q) is convex. Because f(Q) is compact, it is equal to
the convex hull of its extremal points. But (2.29) shows that £ can only be extremal if
tm = t, that is m G C, and ym is a proper cone in t*. Also, (2.13) shows that ym is
constant, say equal to y(Ck), if m runs along a connected component Ck of C. Since
a nonvoid compact convex set is equal to the intersection of the half-spaces
containing it and supported at the extremal points, the local description in (2.29),
(2.31) of/(g) leads to

(2.32) f(Q)= H (f(Ck) + y(Ck)).
y( Q ) a proper cone

Working on M and ignoring the involution r, the above arguments also lead to

(2.33) f(M)= Pi {fiFj)+y(Fj)),
y(Fj) a proper cone

where the F are the connected components of F, the fixed point set of the F-action
on M, and y(Fj) is the convex cone in t* generated by the oj. G t* as in (2.13), in the
analogue of Proposition 2.2. disregarding the involution t. Now each Ck was
contained in an FJ{k), of course f(Ck) = f(Fj(k)). However, (2.13) shows that also
y(Ck) = y(FJlk)). So comparing (2.32) and (2.33) we get f(Q) D f(M). Because the
other inclusion is trivial, we have proved

2.5. Theorem. f(Q) = f(M), and is equal to the convex hull of the finitely many
values f(m) of fat points m G Q such that

(2.34) D(f\ Q)(m) = 0 and the convex cone ym generated by the u¡ G t* in (2.13) is
proper.

Moreover, if m' G M, Df(m') = 0 and the corresponding cone ym. is proper, then there
exists m G Q such that (2.34) holds, and f(m') = f(m), ym, — ym.

Remark. The proof shows that the same statements are true if Q is replaced by
any connected component Q0 of Q.

3. Tightness. We make the same assumptions as in §2, namely that (M,a) is a
compact symplectic manifold with on it a Hamiltonian action of a torus F, with
Hamilton functions fx, let. Also, t is a smooth involution of M such that
r*a = -a, T*fx = fx for all X G t. In this section we prove

3.1. Theorem. Let Cx be the critical set of fx \Q,X Gt. Then

(3.1) dim H*(Q; Z/2Z) = dim H*(CX; Z/2Z).
We begin the proof with a reduction to the case of a circle action. By restricting to

the closure of {exp tX; t G R} in T, we may assume that {exp tX; t G R} is dense in
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T. In view of Lemma 2.1 we have now Cx — F D Q, where F is the fixed point set of
the action of F on M. Because there are only finitely many possibilities for the
stabilizer groups Tm in (2.12), it follows that the collection of Y G t such that
CY = Cx is open and dense in t. Because the set of Y, such that t \-* exp;7 is
periodic, is dense in t, we may assume that 11-» exp tX is periodic, and multiplying X
by a suitable factor we get exp X = 1. All this without changing the critical set.

Now (2.8) implies that t maps F-orbits to F-orbits, reversing the time order on
them. In particular the F-orbits through m G Q are T-invariant, and

(3.2) T(exptX(m)) = exp - tX(m).

But then i(exp{X(m)) = exp — \X(m) = exp{-X(m), that is

3.2. Lemma, exp {-X maps Q to itself,2 and thereby defines a smooth involution of Q.

Examples (see the remark below) show that the fixed point set in Q of exp{-X,
which contains Cx, is not necessarily equal to Cx (assuming that the minimal period
is equal to 1 ). For this reason we now define, by induction over k G N,

(3-3) ß(o) = 0,   Ôw={/nGÔ(*-,);exp2-**(/») = m}.
By induction over k one proves

3.3. Lemma, exp 2~kX is an involution of Q,k- ■). The Q(k)form a decreasing family
of subspaces of Q. Q{k) has finitely many connected components, each of which is a
smooth compact submanifold of Q(k_]), resp. of Q. There exists an N G N such that

The last statement follows because such decreasing sequences of submanifolds
must stabilize, that is, there is an N G N such that Q(k) = Q(N) for all k > N. But
m G Q{k)foT all k implies that X(m) = 0, hence dlx(m) = 0, or m G Cx.

It is known (Floyd [4 or 5, §4]) that if B is the fixed point set of a periodic
transformation of prime period p in a compact manifold A, then

dim H*(A; Z/pZ) > dim H*(B; Z/pZ).
Lemma 3.3 therefore implies

(3.4)    dim H*(Q; Z/2Z) 3= dim H*(Q0)\ Z/2Z) 3= • •• s* dim H*(CX; Z/2Z).

But the opposite inequality dim H*(Q; R) < dim H*(CX; R), valid for general
coefficient rings R, follows from the Bott-Morse inequalities. This proves Theorem
3.1. The idea to conclude tightness by exhibiting the critical set as the fixed point set
for a periodic map has been introduced by Frankel [6] in a Kahler framework.

Remark. If m is an isolated fixed point for exp \X: Q -* Q, then this "half-turn"
is the Cartan involution around m with respect to any invariant Riemannian metric.
Suppose now that the isometry group of the connected component Q0 of Q acts
transitively, as is the case for the real flag manifolds; see §5. Then the existence of
isolated fixed points for the half-turn on Q0 makes Q0 into a Riemannian symmetric

2 Note that Q is not invariant under the -V-flow. In fact X( m ) G Pm where P„, is the space complemen-
tary to T„,Q, defined in (2.10).
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space. For symmetric real flag manifolds the tightness of fx\Q was proved in
Takeuchi [16, pp. 167-168] by identifying the critical set with the fixed point set of a
Cartan involution. Conversely, if Q0 is a real flag manifold which is not a symmetric
space, and if fx \ Q0 has isolated critical points (as generically is the case), then the
fixed point set of exp {X in Q cannot be equal to Cx.

4. Gradient flows. If ß is a Riemannian metric on M which is T- and r-invariant,
then the gradient vector fields of the functions/y, X G t, are also F- and r-invariant.
In particular they are tangent to the fixed point set Q of t, the gradient flows leaving
Q invariant. The formula ß(u, v) = a(u, Jv) defines a tensor field J on M which is
F-invariant and T-anti-invariant, and grad fx is equal to J times the Hamiltonian
vector field X of the function fx.

If J is an integrable almost complex structure, that is if M is a complex analytic
manifold with complex structure equal to J, then ß + i a is a Kahler metric on M.
The F-action consists of the holomorphic mappings, whereas the involution t is
anti-holomorphic, making Q into a " real subspace" of M in a strong sense. Because
the automorphism group of a compact complex manifold is a complex Lie group, the
action of F extends to a holomorphic action of the complexification Tc of F. Its Lie
algebra t ® C can be written as t © a where a = it. The exponential map is taken to
be injective on a, making A = exp a into a vector subgroup of Tc, and (/, a) h» t ■ a
is a diffeomorphism from TX A onto Tc. Now grad fx = J ■ X — i^X, so the
gradient vector fields together make up the infinitesimal action of A. In particular
the gradient flows commute with each other, in fact this is the only additional
assumption which will be used in the sequel.

4.1. Theorem. Let Y be an A-orbit in M and Fj,j— \,...,p, the components of the
common critical points of the functions fx, let, which intersect the closure Y of Y in
M. Then f(Y) is equal to the convex poly tope P with extremal points equal to
Cj = f(Fj), j = I,...,p. For each open face <p of P the inverse image f~\<p) in Y
consists of a simple A-orbit, and f induces a homeomorphism of Y onto P.

This is Theorem 2 of Atiyah [2]. That theorem was phrased in terms of F(-orbits in
M, but using the invariance of/under the F-action, one readily translates it into the
above statement. Because Q is A -invariant we can apply Theorem 4.1 to the A -orbits
in Q. Then Theorem 4.1 is a generalization of the corresponding statement for the
real flag manifolds, due to Heckman [8, Chapter 2, Theorem 3]. The following result
shows that Theorem 4.1 can be regarded as a refinement of Theorem 2.5 in the case
of commuting gradient flows.

4.2. Proposition. For all m' in an open dense subset Q' of Q, the set off(m) such
that m G Q, D(f\ Q)(m) = 0, and m is in the closure of the A-orbit through m', is
equal to the set of extremal points off(Q).

Proof. Without loss of generality we may assume that f(Q) = f(M) has a
nonempty interior, that is
(4.1) Qreg = {m G Q; D(f\ Q)(m) is surjective}
is nonvoid.
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Recall that/(C20) = f(M) for any connected component Q0 of Q. Now m G o¿eg
means that there exists X G t, X ¥= 0, such that «7 is a critical point for fx. For the
description of the critical set Cx of fx\ Q0 we may, as in the proof of Theorem 3.1,
assume that /1-» exp tX is periodic on M with minimal positive period equal to 1
when starting on Q0. Replacing F for the moment by the circle {exp tX\ t G R}, we
read off from (2.13) that

(4.2) Cx = {q; q} = 0 if «,(X) * 0},    locally.

Here aXX) — 2m • k¡, kj G Z, and not all kj are even, noting that the half-turn
exp {X of Lemma 3.2 is a nontrivial involution of Q0. If codimC^ = 1, locally, then
only one of the aXX) is nonzero, hence odd. The half-turn maps qj to —q¡, so one
side of Cx to the other. There are only finitely many C^'s composing Q0 \ QT0eg.
Therefore, writing

(4.3) Fl/2= {gGF;g2(m)=mforallmGÖ0},

we get that Qr0eg/Ti/2 is connected. (This argument is reminiscent of the transitivity
of the action of the Weyl group on the set of Weyl chambers.)

In particular, since/is F-invariant,/(C}¿eg) is connected. It is open; and dense in
/(on) — f(M), because (?¿eg is dense in QQ, Q0\QT0eg being equal to the union of
finitely many closed submanifolds of codimension 3= 1 of Q0.

Since there are only finitely many possibilities for the/(7), Y an A -orbit in Q0,
one has that for each m' G Q0 there is a neighborhood U of m' in Q0 such that
f(A ■ m") D f(A ■ m') for all m" G U. Let Q'0 be the set of m' G Q0 such that
f(A • m") = f(A ■ m') for all m" G Q0, m" near m'. Then Q'0 is open and dense in
Q0. Each connected component R of Q'0 is A -invariant, and f(R) = f(A ■ m') for
each m' G R. We shall show that/(F) = f(Q0) = f(M), thus completing the proof
of the proposition in view of Theorem 4.1. Indeed, if m G ß0eg then / is a
diffeomorphism from A ■ m to an open subset of t*, so f(m) £ 3/(F). Because R
meets the open dense subset <2¿eg of Q0, the open set f(QT0eg) meets /(R)mt. Since
07(F) G/(Q¿eg) = 0, it follows that/(F)int contains the connected set/(g¿eg). But
this implies that/(F) = f(Q0).

Choose Xet. The stable (or unstable) manifolds of the gradient vector field of fx
define a decomposition of M and of Q. These are cell decompositions if fx is a Morse
function rather than only Bott-Morse. The stable manifolds in Q are the connected
components of the intersections with Q of the stable manifolds in M. In the case of
the flag manifolds, and fx a Morse function, the closures of the stable manifolds in M
are complex algebraic varieties, defining cycles (the Schubert cycles) which form a
basis for the homology of M. The closures of the stable manifolds in Q are real
algebraic varieties, defining cycles modulo 2 which form a basis for the homology
mod 2 of Q. Also, two critical points in Q are connected by a gradient curve in M
only if they are connected by a gradient curve in Q. See [3, §4]. Finally it is known
that the image under / of both the real and the complex Schubert cycles are convex
polytopes, see Heckman [8, Chapter 2, Corollary 2], and Atiyah [2, §4].

It might be interesting to investigate which of these properties generalize to the
present setting.
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5. Flag manifolds. For any connected Lie group U with Lie algebra u, Kirillov [9]3
introduced a symplectic form on each orbit of the coadjoint action of U in u*, as
follows. For £ G u*, the coadjoint orbit 0 of £ can be identified with U/Uç, where

(5.1) í/í={gG[/;(Adg)*(£) = £},

is the stabilizer of £ in U, which has Lie algebra

(5.2) u{={Jíeu;(adX)'(í) = 0}.

The symplectic form on Ff 6 s u/u£ is defined by

(5.3) o((X,Y) = £([X,Y]),       Íjeu/Uf,

and it is then shown that Oj extends to a unique (/-invariant simplectic form a on 0.
The action of U on 0 is Hamiltonian (though nonabelian, see Abraham and Marsden
[1] for the definitions in this general case), and the momentum mapping is equal to
the inclusion mapping: 0 -» u*. If F is a torus in U, then its action on 8 is
Hamiltonian with momentum mapping equal to the projection: u* -» t*, restricted
to0.

Up to coverings, these are the only symplectic manifolds with transitive Hamilto-
nian group actions. If U is compact, then the theorem of Atiyah [2] and Guillemin
and Sternberg [7] gives that the projection of the coadjoint orbit of £ in u* to §*,
§ = the Lie algebra of a maximal torus in U, is equal to the convex hull of the Weyl
group orbit of £. As we shall see below, these coadjoint orbits are the complex flag
manifolds and the convexity theorem is Kostant's for the complex case. Note that
because the center of U is contained in U^, one may assume here that U has trivial
center.

Now we turn to a description of the real flag manifolds, see also [3, §2]. Let G be a
real connected semisimple Lie group with trivial center, and let G = KA N be its
Iwasawa decomposition. We may think of G = Ad G as a matrix group, then K, A,
N are the groups of respectively the orthogonal, diagonal with positive eigenvalues,
upper triangular unipotent elements of G. Let g, f, a be the Lie algebras of G, K, A
respectively. For any H G a, the Ad TX-orbit of H in q (actually contained in a
sphere in the orthogonal complement of f ) can be identified with K/K„, where

(5.4) KH= {k GK; Aàk(H) = //}

is the centralizer of H in K. The functions

(5.5) fH,H(k)= (H', Ad k(H)),       kGK/KH,    //,//'G a

(the bilinear form here is the Killing form), can be considered as testing the
orthogonal projection of Ad K(H) to a by linear forms on a.

This orthogonal projection is actually the infintesimal version of the Iwasawa
projection it: G -* a defined by
(5.6) x G K ■ expw(x) • N,       xGG.

3 The fact that the form is closed and the relation with general homogeneous symplectic manifolds were
observed later by Kostant and Souriau.
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This projection will be applied to the F-orbit

(5.7) {k-ex.pH-k~l;k G K) =K/KH

of exp H in G. The full convexity theorem of Kostant now states that both the
Iwasawa projection of (5.7), and its infinitesimal version applied to Ad K(H), have
their image equal to the convex hull of the Weyl group orbit of H in a. We shall only
discuss the functions fWH in (5.5), noting that Heckman [8] showed that the
convexity theorem for the Iwasawa projection can be proved from its infinitesimal
version by a homotopy argument.

As we shall show below, K/KH is a connected component of Q and fH, H = fx\Q,
where Q, fx are as in §§2, 3. The symplectic manifold M is equal to a complex flag
manifold t//i/{ as above, for a suitable ¡J, resp. £, and X is related to //' by a linear
isomorphism. This then puts the infinitesimal version of Kostant's convexity theo-
rem in the framework of Theorem 2.5. Moreover, in Takeuchi and Kobayashi [13]
and [3, §4], it is proved that for generic H',fH,H is a tight Morse function on K/KH.
So Theorem 3.1 provides a new proof for this, and extends the tightness to arbitrary
H' G a.

Let Gc be the complexification of G, with Iwasawa decomposition

(5.8) GC=UBV
(we are clearly running out of letters). Here U is the maximal compact subgroup of
Gc, which in fact is another real form of Gc. If r is the complex conjugation of Gc
around G, then G is the connected component of 1 of the fixed point set of t in Gc.
Moreover, we can arrange that U is r-invariant and K is the connected component of
1 of the fixed point set of t in U. Similarly B, resp. V, are T-invariant and A, resp. N,
are the fixed point sets of t in B, resp. V. Of these groups only V is complex, in
general. In fact, the complexification C of B is a Cartan subgroup of Gc, S = C n U
is a maximal torus in u, its Lie algebra § is equal to i. b if b denotes the Lie algebra
of B.

For H G b, U/UH -» GC/UHBV, where UHBV turns out to be a complex closed
subgroup of Gc. It contains CV, which is a maximal solvable subgroup of Gc, called
a Borel subgroup. The Borel subgroups of Gc are all conjugate to each other. The
subgroups Fc of Gc containing a Borel subgroup are called the parabolic subgroups.
They are also characterized as those for which Gc/Pc is a complex projective variety.
The Gc/Pc are the complex flag manifolds. Since up to conjugacy each parabolic
subgroup of Gc is of the form U„BV for some H G b, this exhibits the U/UH as the
general complex flag manifolds.

Now UH = {/j as in (5.1), if we define £ G §* by

(5.9) £(Z) = (///, Z>,       ZG%.

This identifies the coadjoint orbits of compact connected Lie groups with the
complex flag manifolds.

If // G a C b, then UHBV is equal to the complexification of F = K„AN, which
therefore is called a real parabolic subgroup of G. As a corollary, K/KH -> G/P has
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U/UH -> Gc/Pc as its complexfication. Conversely, K/KH is equal to the connected
component of 1 • KH of the fixed point set of t in U/UH. The K/KH are called the
real flag manifolds. For the classical groups they can be identified with spaces of
flags of linear subspaces of a vector space, isotropic with respect to the bilinear form
(not necessarily symmetric or nondegenerate) of which G is taken as the isometry
group. In particular all (isotropic) Grassmann manifolds are included in the list of
examples.

Since t leaves the elements of a fixed, and maps £ = iH to iH = -iH = -£, we see
from (5.3) that t is antisymplectic. On the other hand, taking for T C S the torus in
U generated by t = i a C ib = §, we get that F acts in a Hamiltonian way on U/UH,
with Hamilton function fx of X, X G t, equal tofH,H, taking //' = -iX. In particular
fx is r-invariant.
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