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Abstract
We consider a free boundary problem in an exterior domain

⎧
⎪⎨

⎪⎩

Lu = g(u) in � \ K ,

u = 1 on ∂K ,

|∇u| = 0 on ∂�,

where K is a (given) convex and compact set in R
n (n ≥ 2), � = {u > 0} ⊃ K is

an unknown set, and L is either a fully nonlinear or the p-Laplace operator. Under
suitable assumptions on K and g, we prove the existence of a nonnegative quasi-
concave solution to the above problem. We also consider the cases when the set K is
contained in {xn = 0}, and obtain similar results.
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1 Introduction

1.1 Background

Let K be a (given) compact convex set in Rn , n ≥ 2, and L be a nonlinear elliptic dif-
ferential operator (specified below). For a given function g, we consider the following
obstacle type free boundary problem

⎧
⎪⎨

⎪⎩

Lu = g(u) in � \ K ,

u = 1 on ∂K ,

|∇u| = 0 on ∂�.

(1.1)

The assumptions on the right-hand side (r.h.s.) g are specified in (1.4) below. It is
noteworthy that g can be discontinuous and highly singular near 0, e.g., g(u) ≈ ua

with −1 < a < 0 when 0 < u ≈ 0.
We shall consider two kinds of nonlinear operators L:

• The fully nonlinear operator F(D2u) (see below for a defintion).
• The p-laplace operator �pu = div

(|∇u|p−2∇u
)
, 1 < p < ∞.

Free boundary problems with highly singular r.h.s. like ua , −1 < a < 0, were
studied by Alt-Phillips [2] for the Laplacian case. The problems with fully nonlinear
operator were treated by Araújo-Teixeira [3], and the p-Laplacian (with 2 ≤ p < ∞)
by Leitão-de Queiroz-Teixeira [18].

Themain objective of this paper is to prove the existence of a quasi-concave solution
for (1.1). Note that a function is called quasi-concave if it has convex super-level sets.

Convexity configurations in elliptic and parabolic PDEs have been extensively stud-
ied in the literature; e.g. [4], [6], [7], [9], [10], [13], [16], [21], [23]. In particular, the
second author and El Hajj [10] recently investigated the convexity problem concerning
the Laplace operator (with both obstacle-type and Bernoulli-type1 boundary condi-
tions). The present paper generalizes some of its results for the Laplacian to nonlinear
operators.

We also consider the case where the compact convex set K is contained in {xn = 0}
and the solution u is defined in R

n+ := {x = (x ′, xn) ∈ R
n : xn > 0}. In this case the

1 Bernoulli-type free boundary problems refer to the case when |∇u| = h(x), with given h > 0, and usually
h is constant, but can also have some concavity property.

123



Convexity for nonlinear elliptic free boundaries

problem is defined as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lu = g(u) in �,

u = 1 on K o,

u = 0 on ∂� \ K ,

|∇u| = 0 on (∂� \ K ) ∩ R
n+,

(1.2)

where � := {u > 0} ⊂ R
n+, and K o is understood as the interior of the set K relative

to {xn = 0}. As above, we aim to find a quasi-concave solution of (1.2). A similar
convexity problem was treated by Lindgren-Privat [21] for the Bernoulli-type free
boundary problem regarding the Laplace operator.

One last problem we deal with is the following: for a compact convex set K ⊂
{xn = 0}, we look for a nonnegative function u : Rn → R with � := {u > 0} ⊃ K
such that

⎧
⎪⎨

⎪⎩

Lu = g(u) in �,

u = 1 on K o,

|∇u| = 0 on ∂�.

(1.3)

1.2 Approach andmethodology

Our approach is based on quasi-concave rearrangements. In doing so, we first consider
the regularized problem, and prove the quasi-concavity of the regular solution, which
for definiteness we denote by v. The so called quasi-concave envelope v∗ of v is
defined as the smallest quasi-concave function greater than or equal to v. Equivalently,
the super-level sets of v∗ are the closed convex hulls of the corresponding super-level
sets of v. As v∗ ≥ v by definition, it is sufficient to prove v ≥ v∗ to obtain the
quasi-concavity of v.

This method was suggested by Kawohl [15] and was first employed by Colesanti–
Salani [6]. This technique was exploited in many problems, such as [4], [7], [10], etc.
We also refer those papers for properties of the quasi-concave envelopes.

In our framework, the highly singular r.h.s. makes the study of the existence of
quasi-concave solutions to (1.1)–(1.3) quite delicate, and substantially technical. To
circumvent this difficulty, we approximate the r.h.s. g by more regular functions. For
this purpose, we first consider regularized problems by replacing g by h (see (2.1) for
the condition on h as well as the definition of a function H in (2.2)).

1.3 Main results

To state our main results, we identify R
n−1 with {xn = 0} = R

n−1 × {0} ⊂ R
n , and

consider the following classes of sets

A := {K ⊂ R
n : K is a compact convex set with a nonempty interior},

Ã := {K ⊂ R
n−1 : K is compact convex with nonempty interior relative to R

n−1}.
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For the r.h.s. g : R → R, we fix −1 < a < 0, 0 < b < 1 and C1 > c1 > 0, and
assume

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

- g = 0 on (−∞, 0],
- g is nonnegative and continuous on (0,∞),

- c1tb ≤ g(t) ≤ C1ta for 0 < t < 1,

- g is bounded on [1,∞).

(1.4)

In (1.4), the range −1 < a < 0 can be relaxed to −1 < a < 1. This follows from the
simple observation that if g satisfies (1.4) with nonnegative a ∈ [0, 1), then it does so
with negative a ∈ (−1, 0). The lower bounded a > −1 is asked for theC1,α-regularity
of solutions to the above problems, see Appendix B.

To specify the fully nonlinear operator F(D2u), let S = S(n) be the space of n×n
symmetric matrices. For constants � ≥ λ > 0, we let M+

λ,�, M
−
λ,� be the extremal

Pucci operators

M+
λ,�(M) = �

∑

ei>0

ei + λ
∑

ei<0

ei , M−
λ,�(M) = λ

∑

ei>0

ei + �
∑

ei<0

ei ,

where ei ’s are eigenvalues of M ∈ S. We assume F : S → R satisfies

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

- F is uniformly elliptic, i.e., there are constants � ≥ λ > 0 such that

M−
λ,�(M − N ) ≤ F(M) − F(N ) ≤ M+

λ,�(M − N ) for every M, N ∈ S,

- F(0) = 0,

- F is concave,

- F is homogeneous of degree 1 : i.e., F(rM) = r F(M) ∀ r > 0, M ∈ S.

(1.5)

The main results in this paper are the following:

Theorem 1 Let K ∈ A and L be either the p-Laplacian or the fully nonlinear operator
F satisfying (1.5). Suppose g : R → R satisfies (1.4), and when L is p-Laplacian
assume 0 < b < min{1, p − 1}. Then there exists a nonnegative and quasi-concave
function u with bounded � = {u > 0} solving (1.1).

Since the level sets of quasi-concave functions are convex, the theorem implies
(after extending u = 1 in K ) that the super-level set {u ≥ l} is convex for every l > 0.

Theorem 2 Suppose K ∈ Ã and let g and L be as in Theorem 1. Then there is a
nonnegative quasi-concave solution u to (1.2) with bounded � = {u > 0}.

We remark that solutions to Eq. (1.2) (to be constructed in the proof of Theorem 2)
are not continuous on ∂K . This, however, does not affect the convexity of the super-
level sets for the solution in Theorem 2.

Theorem 3 Let K ∈ Ã and g, L be as above. Then there exists a nonnegative quasi-
concave solution u to (1.3) with compact support.
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Fig. 1 Related to Remark 1

When the operator L is p-laplace operator, we actually prove in Theorems 1–3
the existence of energy minimizers of the corresponding functionals, that become the
solutions of (1.1)–(1.3).

Remark 1 (Uniqueness) The uniqueness for solutions to the free boundary problem
studied in this paper in general, and without any geometric/convexity condition, fails.
For the convex regime (treated here) the uniqueness may well be true, but proving
uniqueness requires a far more advanced technical apparatus than used in this paper.
Indeed, one can easily see that uniqueness in the class of C1,Dini domains is true,
using the Lavrentiev Principle used in the proofs below. For example, for D, Dt0 and
D∗ as in Step 2 in Lemma 1, we cannot exclude the possibility of a point x0 ∈ D∗∩Dt0
such that D∗ has a singularity at x0, see Fig.1 (in the figure, the convex envelope D∗
of D is the triangle containing D).

It is however plausible that one can with some further study of the regularity of the
free boundary, as well as that of the solutions, obtain a general uniqueness theory in
the convex regime, or even in the starshaped regime.

As these technical issues are outside the scope of this paper, we only conjecture
what we believe to be true.

Conjecture 1 The solution to our free boundary problem, in the convex setting, is
unique.

It is noteworthy that the corresponding interior problem in general does not admit
a unique solution, even in the case when K is a ball. The existence of a solution with
convex level sets, is an open problem.

Conjecture 2 For the interior problem, i.e. when K ⊃ �, there exists a solution with
convex sub-level sets, i.e. convexity of {u < l}. It is probable that all solutions in the
interior case have this convexity property.

1.4 Notation

We denote the points of Rn by x = (x ′, xn), where x ′ = (x1, · · · , xn−1) ∈ R
n−1, and

identify R
n−1 with R

n−1 × {0}. By R
n±, we mean open half spaces {(x ′, xn) ∈ R

n :
±xn > 0}.
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We denote balls of radius r by

Br (x
0) := {x ∈ R

n : |x − x0| < r} : ball in Rn,

B±
r (x0) := Br (x

0) ∩ {±xn > 0} : half ball in Rn,

B ′
r (x

0) := Br (x
0) ∩ {xn = 0} : ball in Rn−1.

Given a function u : Rn → R, we will write

∂xi u = ∂u

∂xi
, ∂xi x j u = ∂2u

∂xi x j
, i, j = 1, · · · , n.

We denote the gradient of u by

∇u = Du = (∂xi u, · · · , ∂xn u).

We also indicate by D2u the Hessian of u, i.e., the n × n matrix with entries ∂xi x j u.
For a set A ⊂ R

n , we denote the distance function from A by

dA(x) := dist(x, A).

For −1 < a < 0, we fix the following constant throughout this paper

β := 2

1 − a
∈ (1, 2). (1.6)

2 Proof of Theorem 1

In this section we prove Theorem 1. We treat the fully nonlinear case in Sect. 2.1 and
the p-Laplacian case in Sect. 2.2. As mentioned above, in each case we first consider
the regularized problem. For this purpose, we define two functions h and H as follows:
let h : R → R be a function satisfying for some constant ε1 > 0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

- h = 0 on (−∞, 0],
- h is bounded, Lipschitz continuous and strictly positive on (0,∞),

- h(t) ≥ c1tb for 0 < t < 1 and h(t) = 1 for 0 < t < ε1,

- h ≤ g + 2 on (0,∞),

(2.1)

and define H : R → R by

H(t) :=
∫ t

−∞
h(s) ds. (2.2)

Notice that H is nonnegative and nondecreasing in R, and H = 0 on (−∞, 0).
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2.1 Fully nonlinear case

Here we deal with the fully nonlinear operator F(D2u), by first showing existence
with the regularized r.h.s.

Lemma 1 Let K ∈ A and h be a function satisfying (2.1). Then there exists a solution
v of the problem

{
F(D2v) = h(v) in Rn \ K ,

v = 1 on ∂K ,
(2.3)

which is compactly-supported, nonnegative and quasi-concave (after extending v = 1
on K).

Proof Step 1. For each j ∈ N, large enough so that 1/ j < ε1, we define a function
h j : R → R by

h j (t) :=

⎧
⎪⎨

⎪⎩

0, t ≤ 1/(2 j),

2 j t − 1, 1/(2 j) < t < 1/ j,

h(t), t ≥ 1/ j .

(2.4)

By the definition of h, and that 1/ j < ε1, each h j is Lipschitz in R and h j ↗ h as
j → ∞.
We claim that for some large constant R0 > 1, independent of j , with BR0 � K

there exists a nonnegative solution v j : B2R0 \ K → R to

⎧
⎪⎨

⎪⎩

F(D2v j ) = h j (v j ) in B2R0 \ K ,

v j = 1 on ∂K ,

v j = 1
2 j on ∂B2R0 ,

(2.5)

with v j = 1
2 j in B2R0 \ BR0 .

To find a solution to (2.5), we will follow the idea in the proof of Theorem 2.1 in
[24]. We first construct a subsolution to (2.5). Fix small constants ρ > 0 and τ > 0
depending only on a, λ, �, K , to be specified below, and define a subset of K

K τ := {x ∈ K : d∂K (x) ≥ τ } � K .

Note that K τ is not empty if τ > 0 is small enough, and thatdK τ (x) ≥ τ for x ∈ R
n\K .

Recall the notation (1.6), β = 2
1−a , and define

w�(x) :=
{

1
ρβ [τ + ρ − dK τ (x)]β , τ < dK τ (x) < τ + ρ,

0, dK τ (x) ≥ τ + ρ.
(2.6)
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Then w� = 1 on ∂K , and for {x ∈ R
n\K : τ < dK τ < τ + ρ} we can compute

D2w� = β(β − 1)

ρβ
(τ + ρ − dK τ )β−2 ∇dK τ ⊗ ∇dK τ − β

ρβ
(τ + ρ − dK τ )β−1 D2dK τ ,

and obtain

F(D2w�) ≥M−
λ,�(D2w�)

≥β(β − 1)

ρβ
(τ + ρ − dK τ )β−2 M−

λ,� (∇dK τ ⊗ ∇dK τ )

− β

ρβ
(τ + ρ − dK τ )β−1M+

λ,�

(
D2dK τ

)
.

Since the eigenvalues of ∇dK τ ⊗ ∇dK τ are |∇dK τ |2, 0, · · · , 0 and |∇dK τ | ≥ 1,
we have M−

λ,�(∇dK τ ⊗ ∇dK τ ) ≥ λ. Moreover, M+
λ,�(D2dK τ ) ≤ C(λ,�, K , τ ) in

{τ < dK τ < τ + ρ} (see e.g. Theorem 4.8 in [11]), and thus we have for small ρ > 0

F(D2w�) ≥ c(a, λ,�, τ)

ρβ
(τ + ρ − dK τ )β−2 in {τ < dK τ < τ + ρ}.

To prove F(D2w�) ≥ h j (w�) in {τ < dK τ < τ + ρ}, we observe that in the set
{τ < dK τ < τ + ρ}

F(D2w�) ≥ c

ρβ
(τ + ρ − dK τ )β−2 ≥ c

ρ2

and

wa
� = (τ + ρ − dK τ )βa

ρβa
= ρβ(1−a)

c
· c(τ + ρ − dK τ )β−2

ρβ
≤ ρβ(1−a)

c
F(D2w�).

By using the above two estimates for F(D2w�) from below, and that c
ρ2 and c

ρβ(1−a)

are large when ρ is small, we obtain

F(D2w�) ≥ 1

2

(
c

ρβ(1−a)
wa

� + c

ρ2

)

≥ 1

2
(2g(w�) + 4) = g(w�) + 2 ≥ h j (w�)

for ρ > 0 small enough. Here, we used (1.4) in the second step and the inequalities
h j ≤ h ≤ g + 2 in the last step.

We now define a continuous function

w�, j (x) :=

⎧
⎪⎨

⎪⎩

w�(x), τ < dK τ (x) < τ + ρ − ρ
(

1
2 j

)1/β
,

1
2 j , dK τ (x) ≥ τ + ρ − ρ

(
1
2 j

)1/β
,

123



Convexity for nonlinear elliptic free boundaries

for which we have F(D2w�) ≥ h j (w�) in {τ < dK τ < τ + ρ}, F
(
D2

(
1
2 j

))
=

0 = h j
(

1
2 j

)
, and 1

2 j = max
(
w�,

1
2 j

)
in

{

τ + ρ − ρ
(

1
2 j

)1/β
< dK τ < τ + ρ

}

.

This implies F(D2w�, j ) ≥ h j (w�, j ) in R
n \ K . As we clearly have w�, j = w� = 1

on ∂K = {dK τ = τ } and w�, j = 1
2 j in

{

dK τ ≥ τ + ρ − ρ
(

1
2 j

)1/β
}

, w�, j is a

subsolution of (2.5) with w�, j = 1
2 j in B2R0 \ BR0 for any R0 > 1.

Next, we construct a supersolution of (2.5). To this aim, we take an open ball Br0
such that r0 > 1 and Br0/2 ⊃ K . For a large constant R0 � r0 to be chosen later, we

consider a continuous function w
�
j : Rn\K → R defined by

w
�
j (x) :=

⎧
⎪⎪⎨

⎪⎪⎩

1, x ∈ Br0 \ K ,
(
1 − 1

2 j

) (
R0−|x |
R0−r0

)4 + 1
2 j , x ∈ BR0 \ Br0 ,

1
2 j , x ∈ R

n \ BR0 .

(2.7)

Note that w�
j is C

2 inRn \ Br0 , in particular, across ∂BR0 . A direct computation yields

D2w
�
j (x) = 4

(

1 − 1

2 j

)
(R0 − |x |)2
(R0 − r0)4

[(
R0 + 2|x |

|x |3
)

x ⊗ x +
( |x | − R0

|x |
)

I

]

,

x ∈ BR0 \ Br0 .

Thus,

F(D2w
�
j ) = F(0) = 0 on ∂BR0 ,

and for R0 � r0

F(D2w
�
j ) ≤ M+

λ,�(D2w
�
j ) ≤ C(n, λ,�)

R0
in BR0 \ Br0 .

Note that 1
2 j ≤ w

�
j ≤ 1 in BR0 \ Br0 . Since 1/2 ≤ h j (t) ≤ 1 for 1

2 j ≤ t ≤ ε1 and

h j (t) = h(t) for t > ε1, we have that inf[ 1
2 j ,1

] h j is bounded below by a positive

constant, independent of j . Thus we can find a large constant R0 > 0, independent
of j , such that F(D2w

�
j ) ≤ inf[ 1

2 j ,1
] h j ≤ h j (w

�
j ) in BR0 \ Br0 . Since h j ≥ 0, we

further have F(D2w
�
j ) ≤ h j (w

�
j ) inR

n \ Br0 . Moreover, we clearly have F(D2w
�
j ) =

0 ≤ h j (w
�
j ) in Br0\K . Thus, to prove that w�

j is a supersolution of (2.5), it is enough

to show F(D2w
�
j ) ≤ h j (w

�
j ) in BR0\Br0/2.

To this aim, we let w
�
j,1(x) := 1 and w

�
j,2(x) :=

(
1 − 1

2 j

) (
R0−|x |
R0−r0

)4 + 1
2 j for

x ∈ BR0 \ Br0/2. By taking R0 larger if necessary, but still independent of j , we can
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show that F(D2w
�
j,2) ≤ inf[ 1

2 j ,1
] h j in BR0 \ Br0/2 by arguing as we did for w

�
j

above. Since we also have F(D2w
�
j,1) = 0 ≤ inf[ 1

2 j ,1
] h j and w

�
j = min{w�

j,1, w
�
j,2}

in Br0 \ Br0/2, we infer that F(D2w
�
j ) ≤ inf[ 1

2 j ,1
] h j ≤ h j (w

�
j ) in BR0\Br0/2.

Now, we will use w�, j and w
�
j to find a solution to (2.5). We let μ j > 0 be such

that 2‖∇h j‖L∞((0,1)) < μ j , and construct a sequence of functions {w j
k }∞k=0 defined

in B2R0 \ K as follows: set w j
0 := w�, j (which is a Lipschitz function), and for k ≥ 0

let w j
k+1 be the unique solution of

⎧
⎪⎨

⎪⎩

F(D2w
j
k+1) − μ jw

j
k+1 + μ jw

j
k − h j (w

j
k ) = 0 in B2R0 \ K ,

w
j
k+1 = 1 on ∂K ,

w
j
k+1 = 1

2 j on ∂B2R0 .

Here, the existence of C1 viscosity solutions w
j
k+1 is a consequence of the standard

Perron’s method and the classical regularity theory. The uniqueness follows from the
comparison principle. Then, by following the argument in the proof of Theorem 2.1
in [24], we can show that

w�, j = w
j
0 ≤ w

j
1 ≤ · · · ≤ w

j
k ≤ w

j
k+1 ≤ · · · ≤ w

�
j ,

and that the limit v j (x) := limk→∞ w
j
k (x) exists and is a solution of (2.5).

Since h j (the r.h.s. of (2.5)) has uniform bound, independent of j , the limit v :=
lim j→∞ v j exists over a subsequence in B2R0 \ K and it satisfies F(D2v) = h(v)

in B2R0\K . Clearly, v is nonnegative and v = 0 in B2R0 \ BR0 . Moreover, since
F(D2v j ) = h j (v j ) ≥ 0 in B2R0\K and v j ≤ 1 on ∂(B2R0 \ K ), we have v j ≤ 1
in B2R0\K , by the maximum principle. Taking j → ∞ and extending v = 0 in
R
n\B2R0 , we get v ≤ 1 in R

n \ K . On the other hand, from v j ≥ w�, j ≥ w� in
B2R0\K and w� = 0 on R

n \ 2R0, we have v j ≥ w� in R
n \ K , and thus v ≥ w� in

R
n\K . In sum, we have w� ≤ v ≤ 1 inRn\K , and since w� = 1 on ∂K , we get v = 1

on ∂K . Therefore, v is a compactly-supported nonnegative solution to (2.3).
Step 2. To prove the quasi-concavity of v, let v∗ be the quasi-concave envelope of
v. Then, by Proposition 1 in Appendix A, v∗ is a subsolution to (2.3). Since v∗ is
a quasi-concave function, it suffices to show v∗ ≡ v. For this purpose, we use the
Lavrentiev Principle. Without loss of generality, we assume 0 ∈ K o and define for
t > 0

D := {x ∈ R
n : v(x) > 0}, D∗ := {v∗ > 0}

vt (x) := v(t x), Dt := {x : t x ∈ D} = {x : vt (x) > 0}.

Let

E := {0 < t < 1 : vt (x) ≥ v∗(x) for all x ∈ D∗}.
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The fact that v∗ ≤ ‖v‖L∞(Rn) = 1 in the bounded set D∗ and vt = 1 in t−1K :=
{x : t x ∈ K }, together with 0 ∈ K o, implies that vt ≥ v∗ in D∗ for t > 0 small
so that D∗ ⊂ t−1K . This gives E �= ∅. Now, towards a contradiction, we assume
t0 := sup E < 1.

We claim that there is a point x0 ∈ D∗ \ K such that vt0(x
0) = v∗(x0). Assume,

towards a contradiction, that vt0 > v∗ in D∗\K . Then vt0 > v∗ in a smaller compact
set D∗\(t−1

0 K )o. Since v∗ = 0 on ∂D∗ and vt0 = 1 in t−1
0 K , by continuity we can

find t1 ∈ (t0, 1) slightly larger than t0 such that vt1 ≥ v∗ in D∗ \ (t−1
1 K )o. As v∗ ≤ 1

in R
n and vt1 = 1 in t−1

1 K , we further have vt1 ≥ v∗ in D∗, which contradicts the
definition of t0.

Now we divide the proof into two cases

A : x0 ∈ (D∗ ∩ Dt0) \ K (or v∗(x0) = vt0(x
0) > 0),

B : x0 ∈ ∂D∗ ∩ ∂Dt0 (or v∗(x0) = vt0(x
0) = 0).

In Case A, we have h(v∗(x0)) = h(vt0(x
0)) > t20h(vt0(x

0)) > 0, and by continuity,
h(v∗) > t20h(vt0) in a neighborhood of x0, say in Bρ(x0). This gives F(D2v∗) ≥
h(v∗) > t20 h(vt0) = F(D2vt0) there. Therefore,M

−
λ,�(D2(vt0 − v∗)) ≤ F(D2vt0) −

F(D2v∗) < 0 in Bρ(x0), and (by the definition of t0) vt0 − v∗ ≥ 0 in Bρ(x0).
Since vt0 − v∗ attains a local minimum at x0, the strong minimium principle implies
vt0 − v∗ ≡ 0 in Bρ(x0). This contradicts M−

λ,�(D2(vt0 − v∗)) < 0.
Next, we consider the case B, i.e., x0 ∈ ∂D∗ ∩ ∂Dt0 . Note that D∗ ⊂ Dt0 and

vt0 ≥ v∗ in D∗. By continuity, v∗ ≤ vt0 ≤ ε1 in Bρ(x0) ∩ D∗ for some small ρ > 0,
where ε1 is as in (2.1). Since h(v∗) = h(vt0) = 1 in Bρ(x0) ∩ D∗, we can proceed as
in case A to get M−

λ,�(D2(vt0 − v∗)) < 0 in Bρ(x0) ∩ D∗. This implies vt0 > v∗ in
Bρ(x0) ∩ D∗, otherwise vt0 − v∗ has a local minimum and we can argue as in case A
to reach a contradiction.

We claim that for any small η > 0, we can construct a cone Cx0 ⊂ R
n with vertex

x0 and its Lipschitz norm less than η such that Cx0 ∩ Bρ(x0) ⊂ D∗ for some ρ > 0.
Indeed, the point x0 ∈ ∂D∗ can be written as a convex combination of x1, · · · , xk ,
with k ≤ n, such that xi ∈ ∂D, 1 ≤ i ≤ k, and there exists a hyperplane � supporting
∂D∗ at x0 and ∂D at xi , 1 ≤ i ≤ k, see e.g., [4]. Without loss of generality, we may
assume en = (0, · · · , 0, 1) is normal to � and points towards ∂D∗ at x0 and ∂D at
xi , 1 ≤ i ≤ k. Note that from (2.1), near each point xi , the function v can be seen as
a solution of

F(D2v) = χ{v>0} and v ≥ 0 in D ∩ Br (x
i ).

By the result of [17], the free boundary ∂D is C1 near the point xi , thus we can
construct a cone Cxi , with direction en and its Lipschitz norm less than η, such that
Cxi ∩ Bρ(xi ) ⊂ D ⊂ D∗ for small ρ > 0. Since D∗ is convex and x0 is a convex
combination of x1, · · · , xk , we can find the desired coneCx0 satisfyingCx0∩Bρ(x0) ⊂
D∗.
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Now we let w� be a solution of
⎧
⎪⎨

⎪⎩

M−
λ,�(D2w�) = 0 in Cx0 ∩ Bρ(x0),

w� = 0 on ∂Cx0 ∩ Bρ(x0),

w� = vt0 − v∗ on Cx0 ∩ ∂Bρ(x0).

Then the comparison principle yields w� ≤ vt0 − v∗ in Cx0 ∩ Bρ(x0). Thus, for any
fixed 0 < α < 1, supBr (x0)∩Cx0

(vt0 − v∗) ≥ supBr (x0)∩Cx0
w� ≥ cr1+α for small

r > 0 by Lemma 3.5 in [1].
On the other hand, since F(D2vt0(x)) = t20 F(D2v(t0x)) = t20h(v(t0x)) in

Bρ(x0)∩Dt0 and h is bounded, vt0 isC
1,γ for all α < γ < 1, thus supBr (x0)∩Cx0

(vt0 −
v∗) ≤ supBr (x0)∩Cx0

vt0 ≤ Cr1+γ for small r > 0. This is a contradiction. ��
Using the preceding lemma and the regularity result in Appendix B, we prove

Theorem 1 for the case the operator L is the fully nonlinear operator F .

Proof of Theorem 1 for the fully nonlinear case Step 1. For each large i ∈ N (such that
(1/2)i < ε1), we consider a function gi : R → R such that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

gi = 0 on (−∞, 0],
gi is strictly positive, bounded and Lipschitz continuous on (0,∞),

gi (t) = 1, 0 < t ≤ (1/2)i ,

gi ≤ g + 2 on (0,∞),

gi → g uniformly on every compact subset of (0,∞).

(2.8)

For each regularized problem of (1.1)

{
F(D2ui ) = gi (ui ) in Rn \ K ,

ui = 1 on ∂K ,

let ui be the solution constructed in Lemma 1, which is compactly-supported, non-
negative and quasi-concave.

By Theorem 4 in Appendix B, for every bounded open set D � R
n \ K , ui is

uniformly C1,β−1
loc (D) for large i with

sup
Br (x)∩D

ui ≤ C
(
rβ + ui (x)

)
for any x ∈ D,

for some constant C > 0, independent of i . This, combined with 0 ≤ ui ≤ 1 in
R
n\K , implies that over a subsequence u := limi→∞ ui exists in R

n \ K , and u is
quasi-concave and satisfies F(D2u) = g(u) in {u > 0} and |∇u| = 0 on ∂{u > 0}.
Step 2. To prove u = 1 on ∂K , we let w� be as in (2.6). In view of the end of Step 1 in
the proof of Lemma 1, we have w� ≤ ui in Rn\K . This holds for every i since in the
construction of w� in (2.6) two constants τ and ρ depend only on a, λ, �, K . Thus we
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get w� ≤ u in R
n\K . This, along with u ≤ 1 in R

n\K and w� = 1 on ∂K , implies
u = 1 on ∂K .
Step 3. It remains to show� = {u > 0} ⊂ R

n\K is bounded. Towards a contradiction
we assume� is unbounded. If the component of� enclosing K is bounded, then there
is nothing to prove. Thus we may assume it is unbounded, and for simplicity further
assume � is an unbounded connected set. We observe that the solution u constructed
above satisfies u ≤ 1, and thus F(D2u) = g(u) ≥ c1ub in �. Now we use the idea
in Lemma 4.1 in [12] to prove the non-degeneracy of u. Let w := u1−b in �, and
compute

D2w = (1 − b)u−bD2u − b

1 − b
· ∇w ⊗ ∇w

w
.

Then it follows that

F(D2w) ≥ F((1 − b)u−bD2u) + M−
λ,�

(
b

1 − b
· ∇w ⊗ ∇w

w

)

≥ c1(1 − b) − b�

1 − b

|∇w|2
w

.

For a point x0 ∈ � we set hx0(x) := w(x) − c̃|x − x0|2 for a small constant c̃ > 0,
independent of x0, to be determined later. Then

M+
λ,�(D2hx0 ) ≥ F(D2w) − F(D2(c̃|x − x0|2)) ≥ F(D2w) − cM+

λ,�(D2(c̃|x − x0|2))

≥ c1(1 − b) −
(

b�

1 − b

) |∇w|2
w

− 2c̃n�.

This yields that in � = {u > 0} = {w > 0}

M+
λ,�(D2hx0) + b�

1 − b

[∇(w + c̃|x − x0|2)
w

∇hx0 − 4c

w
hx0

]

≥ c1(1 − b) − 2c̃�

(

n + 2b

1 − b

)

≥ 0,

provided c̃ is small enough. Now, for every R > 0, we choose a point x0 ∈ �, so that

BR(x0) ⊂ R
n \K . Note that ∇(w+c̃|x−x0|2)

w
and 4c

w
may not be bounded in�∩BR(x0),

which does not allow us to apply the maximum principle. To rectify this, we consider
a subset {x ∈ � : w(x) > δ} of �, with a constant δ ∈ (0, 1), where the above two
quotients are bounded. If δ > 0 is small enough, then the connected component of
{w > δ} containing x0, say A, satisfies A ∩ ∂BR(x0) �= ∅. For the sake of simplicity
we assume A = {w > δ}, i.e., {w > δ} is connected. Now, if δ < 1

2w(x0), then we
have hx0(x

0) = w(x0) and hx0 = δ − c̃|x − x0|2 < 1
2w(x0) on ∂{w > δ} ∩ BR(x0),

thus sup{w>δ}∩∂BR(x0) hx0 ≥ w(x0) > 0 by the maximum principle applied in {w >
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δ}∩BR(x0). This implies sup�∩BR(x0) w ≥ sup{w>δ}∩∂BR(x0) w ≥ c̃R2 for any R > 0,
which contradicts w = u1−b ≤ 1. ��

2.2 p-Laplacian case

In this subsection we prove Theorem 1, for the case when L is the p-Laplacian �pu.
Similar to the proof of fully nonlinear version, we first consider (in the following
lemma) the problem with g replaced by h (see (2.1)), and use it to prove Theorem 1.

Lemma 2 Let K ∈ A, and let H be as in (2.2), i.e. H ′ = h. Then there exists a
minimizer of

JH (w,Rn \ K ) :=
∫

Rn\K
(|∇w|p + pH(w)

)

over KK := {w ∈ W 1,p(Rn \ K ) : w = 1 on ∂K }, that is compactly-supported,
nonnegative and quasi-concave.

Remark 2 To prove Lemma 2, we first prove the existence of a minimizer of the func-
tional J ε

H (·,Rn \ K ), 0 < ε < 1, as in (2.9) with desired properties. In (2.9), the

extra term−ε p/2 is needed, as
(
ε + |∇w|2)p/2 + pH(w) ≥ ε p/2 and the integrand is

taken inRn \ K with infinite measure. An alternative way of removing−ε p/2 is taking
the integral in BR0 with large R0 > 0, as we will prove the non-degeneracy and the
boundedness of the support in Step 3 in the lemma below.

We consider the regularization J ε
H for the functional JH due to the following rea-

son: an energy minimizer vε of J ε
H solves an equation involving a uniformly elliptic

operator, while a minimizer for JH satisfies an equation concerning the p-Laplacian.
We will derive the quasi-concavity of vε by adopting the approach for the Fully non-
linear operator in the previous section, which utilizes the strong comparison principle
and the regularity of the free boundary. However, these properties are not known for
the p-Laplace case.

Proof Step 1. For small ε ∈ (0, 1), we minimize the energy functional

J ε
H (w,Rn \ K ) :=

∫

Rn\K

((
ε + |∇w|2

)p/2 − ε p/2 + pH(w)

)

, (2.9)

over KK . Note that J ε
H (w,Rn\K ) < ∞ whenever w ∈ KK has a compact support.

A minimizer vε exists due to the semi-continuity of J ε, and it is a solution of

{
div

[(
ε + |∇vε|2)

p
2 −1 ∇vε

]
= h(vε) in Rn \ K ,

vε = 1 on ∂K .
(2.10)

The first equation in (2.10) is equivalent to

ai j (∇vε)vε
xi x j = h(vε) in Rn \ K ,
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where ai j (z) = (
ε + |z|2)p/2−2 [

(p − 2)zi z j + δi j
(
ε + |z|2)]. Note that for every

ξ ∈ R
n and z ∈ R

n ,

μ1

(
ε + |z|2

)p/2−1 |ξ |2 ≤ ai j (z)ξiξ j ≤ μ2

(
ε + |z|2

)p/2−1 |ξ |2, (2.11)

where μ1 = min(p − 1, 1), μ2 = max(p − 1, 1) (see e.g. [19]).
Since H(t) = 0 for t ≤ 0, we have J ε

H (max{vε, 0},Rn\K ) ≤ J ε
H (vε,Rn\K ).

Moreover, max{vε, 0} ∈ KK and the strict inequality J ε
H (max{vε, 0},Rn\K ) <

J ε
H (vε,Rn\K ) holds when the set {vε < 0} is nonempty. This implies that vε ≥ 0 in

R
n\K . Similarly, we can show that vε ≤ 1 in Rn\K as well.
Next, we claim that vε has compact support. Suppose this fails, and that {vε > 0}

is unbounded, and hence for each R > 0 we have a point x0 ∈ {vε > 0} such that
BR(x0) ⊂ R

n\K̃ . Notice that {vε > 0} can have exactly one component as vε is an
energy minimizer of J ε

H (·,Rn \ K ). That is, {vε > 0} is a connected unbounded set.
We then fix a compact set K̃ ⊃ K strictly larger than K . Since 0 ≤ vε ≤ 1 in Rn \ K ,
Lemma 1 in [5] gives sup

Rn\K̃ |∇vε| < ∞. Thus, in view of (2.11), the linear operator

Ivε defined by Ivε ((bi j )n×n) = ai j (∇vε)bi j is uniformly elliptic inRn \ K̃ . We define

ṽε(x) := vε(x) − vε(x0) − δ|x − x0|2, x ∈ BR(x0),

for a constant δ > 0, independent of R, to be determined later. From the assumption
(2.1) on h, we can infer that h(vε) ≥ c2χ{vε>0} for some c2 > 0. Then we have in
{vε > 0} ∩ BR(x0)

Ivε (D2ṽε) = Ivε (D2vε) − Ivε (D2(δ|x − x0|2)) ≥ c2 − δ

n∑

i=1

aii (∇vε) > 0,

where the last inequality follows provided δ > 0 is small enough, independent of
R. This is possible since |∇vε| is bounded in R

n \ K̃ . The maximum principle
tells us sup∂({vε>0}∩BR(x0)) ṽε ≥ ṽε(x0) = 0. On BR(x0) ∩ ∂{vε > 0}, we have
ṽε = −vε(x0) − δ|x − x0|2 < 0, thus sup{vε>0}∩∂BR(x0) ṽε ≥ 0, which in turn gives
sup{vε>0}∩∂BR(x0) vε ≥ δR2. This implies that R, chosen as above, is universally
bounded, and hence so is the set {vε > 0}.

Next, we prove that vε is quasi-concave. Note that Ivε (0) = 0 and Ivε is concave,
homogeneous of degree 1, and uniformly elliptic in R

n away from K . Moreover,
the quasi-concave envelope of vε, denoted by (vε)∗, satisfies (see Proposition 2 in
Appendix A)

{
Ivε (D2(vε)∗) ≥ h((vε)∗) in Rn \ K ,

(vε)∗ = 1 on ∂K .
(2.12)

With these properties of vε and (vε)∗ at hand, the quasi-concavity of vε can be obtained
by repeating the argument in Step 2 in the proof of Lemma 1.
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Step 2.We claim that a limit function of vε (over a subsequence) is the desired function
in Lemma 2. Indeed, by the result of [5] and for some 0 < α < 1, {vε}0<ε<1 are
uniformly C1,α in every compact subset of Rn \ K . Thus, there exists a function v

such that over a subsequence vε, ∇vε converge uniformly to v, ∇v, respectively, on
compact subsets of Rn \ K . Clearly, v is nonnegative and quasi-concave in Rn \ K .

To show that v is a minimizer of JH (w,Rn\K ) = ∫

Rn\K (|∇w|p + pH(w)) in
KK , let w ∈ KK be given. If w has a compact support, then we have for every R > 0
large

JH (v, BR \ K ) ≤ lim inf
ε→0

J ε
H (vε, BR \ K ) ≤ lim inf

ε→0
J ε
H (vε,Rn \ K )

≤ lim inf
ε→0

J ε
H (w,Rn \ K ) = JH (w,Rn \ K ). (2.13)

Here, in the first inequality we applied Fatou’s lemma and in the last step we used
(
ε + |∇w|2)p/2 − ε p/2 + pH(w) ≤

[(
1 + |∇w|2)p/2 + pH(w)

]
χ{supp(w)} and

applied the dominated convergence theorem. Taking R → ∞ in (2.13) and applying
the monotone convergence theorem give JH (v,Rn\K ) ≤ JH (w,Rn\K ). In addition,
for each 0 < ε < 1, we have 0 ≤ vε ≤ 1 and

∫

BR\K
|∇vε|p ≤ J ε

H (vε, BR \ K ) +
∫

BR\K
ε p/2 ≤ J ε

H (w, BR \ K ) +
∫

BR\K
ε p/2

≤
∫

BR\K

((
1 + |∇w|2

)p/2 + 1

)

,

thus vε is uniformly bounded in W 1,p(BR \ K ). This implies up to a subsequence
vε → v weakly in W 1,p(BR \ K ), and thus v = 1 on ∂K . Therefore, v ∈ KK .

We now consider the general case w ∈ KK without the compact support assump-
tion. For m ∈ N, let φm : Rn → [0, 1] be a cut-off function defined by

φm(x) :=

⎧
⎪⎨

⎪⎩

1, |x | ≤ m,

m + 1 − |x |, m < |x | < m + 1,

0, |x | ≥ m + 1.

Then wm := wφm ∈ KK has a compact support and satisfies

∫

Rn\K
|∇wm |p =

∫

Bm+1\K
|φm∇w + w∇φm |p

≤
∫

Bm\K
|∇w|p + C(p)

∫

Bm+1\Bm

(|∇w|p + |w|p)

≤
∫

Rn\K
|∇w|p + C(p)

∫

Bm+1\Bm

(|∇w|p + |w|p) .
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Moreover, as wm ≤ w and H is nondecreasing, H(wm) ≤ H(w). Thus,

JH (v,Rn \ K ) ≤ JH (wm ,Rn \ K ) ≤ JH (w,Rn \ K ) + C(p)
∫

Bm+1\Bm
(|∇w|p + |w|p) .

Takingm → ∞ and usingw ∈ W 1,p(Rn\K ), we obtain JH (v,Rn\K ) ≤ JH (w,Rn\
K ), and conclude that v is an energy minimizer of JH (·,Rn\K ).
Step 3.We claim that v is compactly supported. As before, we assume to the contrary
{v > 0} is an unbounded connected set. Note that as 0 ≤ v ≤ 1, �pv = h(v) ≥ c1vb

in {v > 0}. Now we will use the idea in Lemma 4.1 in [12] to prove the following
version of non-degeneracy property of v: there exists a constant c0 > 0, depending
only on n, p, b, c1, such that for any R > 0

sup
BR(x0)∩{v>0}

v ≥ c0R
p

p−1−b for some x0 ∈ R
n \ K . (2.14)

To prove (2.14), for α := 1 − b
p−1 ∈ (0, 1) let v̄ := vα . For a point x0 ∈ {v > 0}, set

qx0(x) := c̄|x − x0| p
p−1 with a small constant c̄ > 0, depending only on n, p, b, c1,

to be determined later. Using �pv ≥ c1vb in {v > 0} and |∇v̄| = αvα−1|∇v|, we can
compute

�pv̄ = α p−1v(α−1)(p−1)�pv + α p−1(α − 1)(p − 1)v(α−1)(p−1)−1|∇v|p

≥ α p−1c1 + (α − 1)(p − 1)

αv̄
|∇v̄|p.

From �pqx0 = c̄n
(

p
p−1

)p−1
and |∇qx0 |p = c̄ p−1

(
p

p−1

)p
qx0 , we further have

�p v̄ − �pqx0 ≥ α p−1c1 − c̄n

(
p

p − 1

)p−1

+ (α − 1)(p − 1)

αv̄
|∇v̄|p

= α p−1c1 − c̄n

(
p

p − 1

)p−1

+ (α − 1)(p − 1)

αv̄

(|∇v̄|p − |∇qx0 |p
)

+
(α − 1)(p − 1)c̄ p−1

(
p

p−1

)p

αv̄
qx0

= α p−1c1 − c̄n

(
p

p − 1

)p−1

+ (α − 1)(p − 1)

αv̄

(|∇v̄|p − |∇qx0 |p
)

+
(α − 1)(p − 1)c̄ p−1

(
p

p−1

)p

αv̄
(qx0 − v̄)

+
(α − 1)(p − 1)c̄ p−1

(
p

p−1

)p

α
.
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Since the function t �→ t p is convex in [0,∞), we have |∇v̄|p − |∇qx0 |p ≤
p|∇v̄|p−1|∇(v̄ − qx0)|. Now, letting hx0 := v̄ − qx0 , we see that

�p v̄ − �pqx0 + (1 − α)(p − 1)p|∇v̄|p−1|p−1

αv̄
|∇hx0 |

−
(1 − α)(p − 1)c̄ p−1

(
p

p−1

)p

αv̄
hx0

≥ α p−1c1 − c̄n

(
P

p − 1

)p−1

−
(1 − α)(p − 1)c̄ p−1

(
p

p−1

)p

α
> 0,

(2.15)

where the last step follows if c̄ is small enough. Note that�pv̄−�pqx0 can be written
as (see e.g. the proof of Lemma 4.7 in [1])

�p v̄ − �pqx0 = div(A(x)∇hx0),

where the matrix A(x) = (ai j (x))n×n is given by

ai j (x) =
∫ 1

0
|∇v̄(x)t + ∇qx0(x)(1 − t)|p−2mt

i j dt,

with

mt
i j = δi j + (p − 2)

(∂i v̄t + ∂i qx0(1 − t))(∂ j v̄t + ∂ j qx0(1 − t))

|∇v̄(x)t + ∇qx0(x)(1 − t)|2 .

It is also shown in [1] that for some constant μ = μ(p) > 0

μ−1a(x)|ξ |2 ≤ ai j (x)ξiξ j ≤ μa(x)|ξ |2 for any ξ ∈ R
n,

where

a(x) =
∫ 1

0
|∇v̄(x)t + ∇qx0(x)(1 − t)|p−2 dt .

To prove (2.14), let R > 0 be given, and as before let x0 ∈ {v > 0} such that
BR(x0) ⊂ R

n\K and ∇v(x0) �= 0. This is possible since {v > 0} is unbounded and,
for �pv ≥ c1vb > 0, v cannot be a constant function in any open set in {v > 0}.
Moreover, as ∇qx0 �= 0 in R

n \ {x0}, we infer |∇v̄| + |∇qx0 | > 0 in {v > 0}. Next,
as we did in Step 3 in Theorem 1 for the fully nonlinear case, we can assume that
there is a small constant δ > 0 with connected {v̄ > δ} such that δ < 1

2 v̄(x0) and
{v̄ > δ} ∩ ∂BR(x0) �= ∅. We then have by (2.15)

123



Convexity for nonlinear elliptic free boundaries

div(A∇hx0) + (1 − α)(p − 1)p|∇v̄|p−1|p−1

αv̄
|∇hx0 |

−
(1 − α)(p − 1)c̄ p−1

(
p

p−1

)p

αv̄
hx0 > 0

and the two quotients (1−α)(p−1)p|∇v̄|p−1|p−1

αv̄
and

(1−α)(p−1)c̄ p−1
(

p
p−1

)p

αv̄
are uniformly

bounded in {v̄ > δ} ∩ BR(x0). Furthermore, as |∇v̄| + |∇qx0 | is uniformly bounded
below and above by positive constants in {v̄ > δ} ∩ BR(x0), so is a(x) there, and
thus A = (ai j )n×n is uniformly elliptic in {v̄ > δ} ∩ BR(x0). Hence, we can apply
the maximum principle to obtain sup∂({v̄>δ}∩BR(x0)) hx0 ≥ hx0(x

0) = v̄(x0). Since

hx0 ≤ v̄ = δ < 1
2 v̄(x0) on BR(x0) ∩ ∂{v̄ > δ}, we infer that sup{v̄>δ}∩∂BR(x0) hx0 ≥

v̄(x0) > 0. As qx0 = c̄R
p

p−1 on ∂BR(x0), we further have sup{v>0}∩BR(x0) v̄ ≥
sup{v̄>δ}∩∂BR(x0) v̄ ≥ c̄R

p
p−1 . This gives (2.14), and contradicts 0 ≤ v ≤ 1 in R

n\K ,
unless R can not be chosen too large, which is the desired conclusion. ��

Now we prove the existence of a solution to (1.1) when the operator L is p-
Laplacian. In fact, for G(t) := ∫ t

−∞ g(s) ds, we find an energy minimizer of

JG(u,Rn \ K ) :=
∫

Rn

(|∇u|p + PG(u)
)

overKK , which is compactly-supported, nonnegative and quasi-concave. Clearly, this
minimizer solves (1.1).

Proof of Theorem 1 for p-Laplacian case For functions gi satisfying (2.8), we define
Gi (t) := ∫ t

−∞ gi (s) ds, −∞ < t < ∞. By Lemma 2, there is a minimizer ui of

JGi (w,Rn \ K ) =
∫

Rn\K

(
|∇w|p + pGi (w)

)

over KK = {w ∈ W 1,p(Rn \ K ) : w = 1 on ∂K }, which is compactly-supported,
nonnegative and quasi-concave. We can use the regularity results in Appendix B (The-
orem 5 for 2 ≤ p < ∞ and Theorem 6 for 1 < p < 2) to see that {ui } are uniformly
C1,α in compact subsets of Rn \ K . Thus, over a subsequence, ui → u in Rn \ K for
some function u. Clearly, u is nonnegative and quasi-concave.

To show that u = 1 on ∂K , we take a bounded and compactly-supported function
w in KK . As 0 ≤ gi ≤ g + 2, we have

∫

Rn\K
|∇ui |p ≤ JGi (ui ,Rn \ K ) ≤ JGi (w,Rn \ K )

≤
∫

(suppw)\K
(|∇w|p + p(G(w) + 2w)

)
< ∞.
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Since 0 ≤ ui ≤ 1 by the maximum principle, we have that for any R > 0 {ui } is
uniformly bounded in W 1,p(BR \ K ), and infer u = limi→∞ ui = 1 on ∂K .

By Fatou’s lemma, it is easy to see that u is an energyminimizer of JG(u,Rn\K ) =∫

Rn\K (|∇u|p + pG(u)) over KK . Thus, it satisfies �pu = g(u) in {u > 0}\K .

Moreover, the nonnegativity and theC1,α-regularity of u inRn\K imply that |∇u| = 0
on ∂{u > 0}.

Finally, the compact support of {u > 0} can be obtained in a similar way as we did
in Step 3 in the proof of Lemma 2, where the compact support of a solution v of (2.3)
is proved. ��

3 Proof of Theorem 2

In this section, we prove Theorem 2. As in the previous sections, we first consider its
regularized version, Lemma 3-4, and then use them to obtain Theorem 2.

3.1 Fully nonlinear case

Lemma 3 Let K ∈ Ã and h : R → R be a function satisfying (2.1). Then, there exists
a solution of the problem

⎧
⎪⎨

⎪⎩

F(D2v) = h(v) in Rn+,

v = 1 on K o,

v = 0 on R
n−1 \ K ,

(3.1)

which is compactly-supported, nonnegative and quasi-concave.

Proof The proof follows the argument used in the proof of Lemma 1.
Step 1. For a large constant R0 > 0 and functions h j as in (2.4), we find solutions
v j : B+

2R0
→ [0, 1] of

⎧
⎪⎨

⎪⎩

F(D2v j ) = h j (v j ) in B+
2R0

,

v j = 1 on K o,

v j = 1
2 j on (B ′

2R0
\ K ) ∪ (∂B2R0)

+,

(3.2)

with v j = 1
2 j in B+

2R0
\ B+

R0
. We let τm = 1/m, m ∈ N, and define subsets of K by

K τm := {x ∈ K : d∂
Rn−1K (x) ≥ τm},

where ∂Rn−1K is the boundary of K relative to R
n−1. Note that K τm �= ∅ when m is

large, say m ≥ M for some M ∈ N. We then consider its translation

K̃ τm := K τm − τmxn = {x − τmxn : x ∈ K τm } ⊂ {xn = −τm}.
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For small ρm > 0, to be determined later, we define a function wm
� : Rn+ → [0,∞)

by

wm
� (x) :=

{
1

ρ
β
m

[
τm + ρm − dK̃ τm (x)

]β
, τm < dK̃ τm (x) < τm + ρm,

0, dK̃ τm (x) ≥ τm + ρm .
(3.3)

Note that wm
� is an analogue of (2.6), and wm

� = 1 on K τm . Since dK̃ τm (x) ≥ √
2τm

for every x ∈ R
n−1\K , we have wm

� = 0 on R
n−1 \ K , provided ρm < (

√
2 − 1)τm .

In view of Step 1 in the proof of Lemma 1, we can see that F(D2wm
� ) ≥ h j (wm

� ) in
{τm < dK̃ τm < τm + ρm} ∩ R

n+ if ρm > 0 is small enough, depending only on a, λ,
�, τm , K . Defining a function wm

�, j : Rn+ → [1/(2 j),∞) by

wm
�, j (x) :=

⎧
⎪⎨

⎪⎩

wm
� (x), τm < dK̃ τm (x) < τm + ρm − ρm

(
1
2 j

)1/β
,

1
2 j , dK̃ τm (x) ≥ τm + ρm − ρm

(
1
2 j

)1/β

and arguing as in the Lemma 1, we can show that wm
�, j solves for any R0 > 1

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F(D2wm
�, j ) ≥ h j (wm

�, j ) in B+
2R0

,

wm
�, j = 1 on K τm ,

1
2 j ≤ wm

�, j ≤ 1 on K \ K τm ,

wm
�, j = 1

2 j on (B ′
2R0

\ K ) ∪ (∂B2R0)
+,

with wm
�, j = 1

2 j in B+
2R0

\B+
2R0

. As K τm ↗ K o, the function w�, j : R
n+ → [0, 1]

defined by

w�, j := sup
m≥M

wm
�, j

becomes a subsolution of (3.2), with w�, j = 1
2 j in B+

2R0
\B+

R0
, for any R0 > 1.

Next, we construct a supersolution of (3.2). Let w�
j be as in (2.7) with K ⊂ R

n−1.

In view of the proof of Lemma 1, for large R0, w
�
j restricted to B+

2R0
satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F(D2w
�
j ) ≤ h j (w

�
j ) in B+

2R0
,

w
�
j = 1 on K ,

1
2 j ≤ w

�
j ≤ 1 on B ′

2R0
\ K ,

w
�
j = 1

2 j on (∂B2R0)
+,

with w
�
j = 1

2 j in B+
2R0

\B+
R0
. Notice that w

�
j may not be a supersolution of (3.2) as it

may be strictly greater than 1
2 j on B ′

2R0
\K . To rectify this, let w�

j : B+
2R0

→ R be a
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solution of

⎧
⎪⎨

⎪⎩

F(D2w�
j ) = 0 in B+

2R0
,

w�
j = 1 on K ,

w�
j = 1

2 j on (B ′
2R0

\ K ) ∪ (∂B2R0)
+.

Note that 0 ≤ w�
j ≤ 1 in B+

2R0
by maximum/minimum principle, and set w̃

�
j :=

min{w�
j , w

�
j } in B+

2R0
. Then it is easy to see that w̃�

j is a supersolution of (3.2).

Now, to find a solution of (3.2) by using w�, j and w̃
�
j constructed above, we take

a constant μ j > 0 such that 2|∇h j | ≤ μ j . We then make a sequence of functions
{w j

k }∞k=0 defined in B+
2R0

as follows: let w
j
0 = w�, j , and for k ≥ 0 let w

j
k+1 be the

unique solution to

⎧
⎪⎨

⎪⎩

F(D2w
j
k+1) − μw

j
k+1 + μw

j
k − h j (w

j
k ) = 0 in B+

2R0
,

w
j
k+1 = 1 on K ,

w
j
k+1 = 1

2 j on (∂B+
2R0

) \ K .

By using the argument in [24], we can see that

w�, j = w
j
0 ≤ w

j
1 ≤ · · · ≤ w

j
k ≤ w

j
k+1 ≤ · · · ≤ w̃

�
j .

Then, the limit function v j (x) := limk→∞ w
j
k (x) satisfies (3.2). Moreover, since h j

is uniformly bounded, up to a subsequence v := lim j→∞ v j exists in B+
2R0

and it

clearly satisfies F(D2v) = h(v) in B+
2R0

and v = 0 in B+
2R0

\B+
R0
. For the boundary

value of v on B ′
R0
, we note that w� ≤ v j in B+

2R0
. In addition, we let v� : B+

2R0
→ R

be a solution to

⎧
⎪⎨

⎪⎩

F(D2v�) = 0 in B+
2R0

,

v� = 1 on K ∪ (∂B2R0)
+.

v� = 0 on B ′
2R0

\ K .

Then, for each j , F(D2v�) ≤ F(D2v j ) in B+
2R0

and v� ≥ v j on ∂(B+
2R0

), thus v� ≥ v j

in B+
2R0

by comparison principle. In sum we have w� ≤ v j ≤ v�, v� = v� = 1 on
K o and v� = v� = 0 on B ′

2R0
\K . This yields v = 1 on K o and v = 0 on B ′

2R0
\ K .

Extending v = 0 inRn+\B+
2R0

, v becomes a compactly-supported nonnegative solution
of (3.1).
Step 2.Our next objective is to show the quasi-concavity of v. Since the quasi-concave
envelope v∗ (of v) is a subsolution of (3.1) by Proposition 1 in Appendix A, it suffices
to show that v ≡ v∗. As in Lemma 1, we will use Lavrentiev Principle. We assume
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without loss of generality that 0 ∈ K and denote for t > 0

D := {x ∈ R
n+ : v(x) > 0}, D∗ := {x ∈ R

n+ : v∗(x) > 0},
vt (x) := v(t x), Dt := {x ∈ R

n+ : t x ∈ D} = {x ∈ R
n+ : vt (x) > 0}. (3.4)

Let also

E := {0 < t < 1 : vt (x) ≥ v∗(x) for all x ∈ D∗}.

We first claim that E is a nonempty set. Indeed, the assumption that K has a nonempty
(n − 1)-dimensional interior gives that it contains a thin ball B ′

ρ0
= Bρ0 ∩ R

n−1 for
some ρ0 > 0. We then clearly have vt ≥ v∗ on D∗ ∩R

n−1 for small t > 0. To extend
the inequality vt ≥ v∗ to D∗ for small t > 0, we observe that F(D2v∗) ≥ h(v∗) > 0
in the positivity set of v∗, in particular near K . Thus, by the strongmaximum principle,
v∗ < 1 in R

n+ near K . Moreover, by applying the maximum principle to v, we get
v ≤ 1 in R

n+, thus v∗ ≤ 1 in R
n+. This gives v∗ = v = 1 on K o. Now, as the flat

boundary ∂(Rn+) = R
n−1 satisfies the interior sphere condition uniformly on K o,

Hopf’s Lemma tells us that there is a positive constant c1 > 0 such that for every
x0 ∈ K o

lim sup
R
n+�x→x0

v∗(x) − v∗(x0)
|x − x0| < −c1.

This implies that v∗(x) ≤ 1 − c1xn in [0, s) × K o for some c1 > 0 and s > 0.
On the other hand, for ρ0 > 0 small so that B ′

ρ0
� K o, since ∂xnv is continuous in

B+
ρ0

∪ B ′
ρ0

(and hence bounded there), we obtain that v(x) ≥ 1−c2xn in B+
ρ0

∪ B ′
ρ0

for
some c2 > 0. This, combined with the above estimate v∗ ≤ 1− c1xn near K , implies
that vt ≥ v∗ in D∗ for small t > 0. Therefore, E �= ∅.

Notice that the quasi-concavity of v follows once we show sup E = 1. Towards
a contradiction suppose t0 := sup E ∈ (0, 1). Then we claim that there is a point
x0 ∈ D∗ ∩ R

n+ such that vt0(x
0) = v∗(x0). Indeed, if we assume to the contrary that

the claim is not true, then vt0 > v∗ in D∗ ∩ R
n+. By the definition of t0, for each

t ∈ (t0, 1) the set {x ∈ D∗ : vt (x) < v∗(x)} is nonempty. For such t , we take a
connected component At of {x ∈ D∗ : vt (x) < v∗(x)}. Since D∗ is bounded, we
can find a sequence {t j } ⊂ (t0, 1) such that t j ↘ t0 and At j converges to a nonempty
set, say A, in D∗. As vt0 = v∗ in A, the assumption vt0 > v∗ in D∗ ∩ R

n+ yields
A ⊂ R

n−1. From the observation

v∗ =
{
1 on K o,

0 on R
n−1 \ K

and vt0 =
{
1 on t−1

0 K o,

0 on R
n−1 \ t−1

0 K ,

and we infer that either A ⊂ R
n−1 \ t−1

0 K or A ⊂ K o.
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If A ⊂ R
n−1 \ t−1

0 K , then using that h(s) = 1 for 0 < s < ε1, we have for t > t0
close to t0

F(D2vt ) = t2h(vt ) < h(vt ) = 1 = h(v∗) ≤ F(D2v∗) in At .

Then

⎧
⎪⎨

⎪⎩

M+
λ,�(D2(v∗ − vt )) ≥ F(D2v∗) − F(D2vt ) > 0 in At ,

v∗ − vt > 0 in At ,

v∗ − vt = 0 on ∂At .

This is a contradiction by the maximum principle.
Next, we consider the case when A ⊂ K o. From the continuity and the positivity

of h on (0,∞), there is a constant δ ∈ (0, 1) such that if s1, s2 ∈ (1 − δ, 1), then
h(s1)
h(s2)

≥
(
t0+1
2

)2
. Thus, for t > t0 close to t0

F(D2vt ) = t2h(vt ) ≤ t2
(

2

t0 + 1

)2

h(v∗) < h(v∗) ≤ F(D2v∗) in At .

As in the previous case, this yields a contradiction, and the claim is proved.
Now, we have x0 ∈ D∗ ∩ R

n+ with vt0(x
0) = v∗(x0), thus we can split our proof

into the following two cases

A. x0 ∈ (D∗ ∩ Dt0) \ Rn−1,

B. x0 ∈ (∂D∗ ∩ ∂Dt0) \ Rn−1.

In each case, we can argue as we did in Lemma 1 to get a contradiction. This completes
the proof. ��
Proof of Theorem 2 for the Fully nonlinear case Step 1. For the proof, we follow the
argument in the proof of Theorem1,with the help of Lemma3. Let gi be as in (2.8), and
apply Lemma 3 to obtain a compactly-supported, nonnegative quasi-concave solution
ui to

⎧
⎪⎨

⎪⎩

F(D2ui ) = gi (ui ) in Rn+,

ui = 1 on K o,

ui = 0 on R
n−1 \ K .

Repeating the argument in the proof of Theorem 1, we have over a subsequence
u := limi→∞ ui exists in R

n+.
It is easy to see that u is quasi-concave, F(D2u) = g(u) in {u > 0} and |∇u| = 0

on ∂{u > 0} ∩ R
n+. Moreover, each ui constructed in Lemma 3 satisfies 0 ≤ ui ≤ 1

in R
n+, which gives 0 ≤ u ≤ 1 in R

n+. As in Step 3 in the proof of Theorem 1 for the
case L = F , we can prove the non-degeneracy property of u, which combined with
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0 ≤ u ≤ 1 implies the boundedness of {u > 0}. Thus, it remains to show u = 1 on
K o and u = 0 on Rn−1\K .
Step 2. To show that u = 1 on K o, for each m ∈ N, let wm

� be as in (3.3). In view of

Step 1 in the proof of Lemma 3, wm
� ≤ ui in R

n+ for m ≥ M . This holds for every i
since τm = 1/m and ρm in (3.3) as well as M depend only on a, λ, �, K . We then
have wm

� ≤ u in Rn+ for m ≥ M , which along with u ≤ 1 in Rn+ and wm
� = 1 on K τm

gives u = 1 on K τm . Taking m → ∞, we get u = 1 on K o.
Finally, to prove u = 0 on R

n−1\K , we fix R > 0 large so that B ′
R ⊃ K , and let

u�
R : B+

R → R be a solution of

⎧
⎪⎨

⎪⎩

F(D2u�
R) = 0 in B+

R ,

u�
R = 1 on K ∪ (∂(B+

R ))+,

u�
R = 0 on B ′

R \ K .

Then, applying the comparison principle yields ui ≤ u�
R in B+

R . Taking i → ∞, we
get u ≤ u�

R in B+
R , and thus u = 0 on B ′

R\K . Letting R → ∞, we obtain u = 0 on
R
n−1\K . This completes the proof. ��

3.2 p-Laplacian case

Lemma 4 Suppose K ∈ Ã and let H be as in (2.2). Then there is an energy minimizer
of

JH (w,Rn+) :=
∫

R
n+

(|∇w|p + pH(w)
)

over K̃K := {w ∈ W 1,p(Rn+) : w = 1 on K , w = 0 on R
n−1\K }, which is

compactly-supported, nonnegative and quasi-concave.

Proof The lemma can be proven by following the lines in the proof of Lemma 2 and
Lemma 3. We thus only give a sketch of the proof.

For small ε > 0, let vε be a minimizer of

J ε
H (w,Rn+) =

∫

R
n+

(
(ε + |∇w|2)p/2 − ε p/2 + pH(w)

)

over K̃K . Then vε solves

⎧
⎪⎪⎨

⎪⎪⎩

div
[
(ε + |∇vε|2) p

2 −1∇vε
]

= h(vε) in Rn+,

vε = 1 on K ,

vε = 0 on R
n−1 \ K .

(3.5)
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The first equation in (3.5) is equivalent to

ai j (∇vε)vε
xi x j = h(vε) in Rn+,

where ai j (z) = (
ε + |z|2)p/2−2 [

(p − 2)zi z j + δi j
(
ε + |z|2)]. Here, ai j satisfies the

ellipticity (2.11). Moreover, the fact that max{vε, 0} and min{vε, 1} are contained in
K̃K implies 0 ≤ vε ≤ 1.

To show that vε has a compact support,we suppose towards a contradiction {vε > 0}
is an unbounded connected set. By Lemma 1 in [5], we have sup{x1>1} |∇vε| < ∞, and
thus the operator Ivε , defined by Ivε ((bi j )n×n) = ai j (∇vε)bi j , is uniformly elliptic
in {x1 > 1}. Then, we can find a small constant δ > 0 such that for any R > 1 and
x0 ∈ {vε > 0} with BR(x0) � {xn > 1},

sup
{vε>0}∩∂BR(x0)

vε ≥ δR2.

This non-degeneracy property of vε contradicts its bound 0 ≤ vε ≤ 1, and proves that
vε has a compact support.

Next, we show that vε is quasi-concave by following the argument in Step 2 in the
proof of Lemma 3. Indeed, Proposition 2 in Appendix A tells us its quasi-concave
envelope (vε)∗ is a subsolution of

⎧
⎪⎨

⎪⎩

Ivε (D2(vε)∗) = h((vε)∗) in Rn+,

(vε)∗ = 1 on K ,

(vε)∗ = 0 on R
n−1 \ K .

(3.6)

Assume 0 ∈ K and for t > 0 define (in analogy with (3.4))

Dε := {x ∈ R
n+ : vε(x) > 0}, (Dε)∗ := {x ∈ R

n+ : (vε)∗ > 0},
vε
t (x) := vε(t x), Dε

t := {x ∈ R
n+ : t x ∈ Dε} = {x ∈ R

n+ : vε
t > 0},

and

Eε := {0 < t < 1 : vε
t ≥ (vε)∗ in (Dε)∗}.

Note that the subsolution (vε)∗ of (3.6) satisfies Hopf’s Lemma at every x0 ∈ K .

Besides, for ρ0 > 0 small so that B ′
2ρ0

⊂ K , ∂xnv
ε is continuous in B+

ρ0 , hence
bounded there. As we have seen in Lemma 3, this implies vε

t ≥ (vε)∗ in (Dε)∗ for
small t ∈ (0, 1), and thus Eε �= ∅. Now, as it is sufficient to prove sup Eε = 1 for the
quasi-concavity of vε, we assume to the contrary sup Eε = t0 ∈ (0, 1). Then, using
that Ivε is elliptic in Rn+ and uniformly elliptic in every compact subset in Rn+, we can
argue as in Lemma 3 to get a contradiction.

Due to the result of [5], we have for some 0 < α < 1 that {vε}0<ε<1 are uniformly
C1,α in compact subsets ofRn+, thus vε → v inC1

loc(R
n+) for some function v. Clearly,
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v is nonnegative and quasi-concave in R
n+. Moreover, we can proceed as in Step 2-3

in the proof of Lemma 2 to prove that v ∈ K̃K is a minimizer of JH (·,Rn+) over K̃K

and v has a compact support. This finishes the proof. ��
Proof of Theorem 2 for the p-Laplacian case The proof is similar to the proof of The-
orem 1, thus we only give an idea of the proof. For gi and Gi as before, we apply
Lemma 4 to find a minimizer ui of

JGi (w,Rn+) =
∫

R
n+

(
|∇w|p + pGi (w)

)

over K̃K , which is compactly-supported, nonnegative and quasi-concave. Then, The-
orem 5–6 imply that up to a subsequence ui → u in C1

loc(R
n+) for some function

u ∈ C1,α
loc (Rn+). Clearly, u is nonnegative and quasi-concave, and satisfies |∇u| = 0

on (∂� \ K ) ∩ R
n+, where � = {u > 0}. In addition, we can argue as in the proof of

Theorem 1 for the p-Laplacian case to prove that u = 1 on K , u = 0 on Rn−1\K and
u is an energyminimizer in K̃K . Finally, we can show as before, using non-degeneracy
of u, that u has a compact support. This completes the proof. ��

4 Proof of Theorem 3

The purpose of this section is to prove Theorem 3. It can be regarded as a corollary
to Theorem 1 and Theorem 2, as its proof simply follows from the argument and the
results in those two preceding theorems.

Lemma 5 Let K ∈ Ã and suppose h : R → R satisfies (2.1). Then there is a solution
of

{
F(D2v) = h(v) in Rn \ K ,

v = 1 on K o,
(4.1)

which is a compactly-supported, nonnegative and quasi-concave.

Proof Step 1.Let h j be as in (2.4) and R > 0 be a large constant.We first find solutions
v j : B2R0\K → R of

⎧
⎪⎨

⎪⎩

F(D2v j ) = h j (v j ) in B2R0 \ K ,

h j = 1 on K o,

v j = 1
2 j in B2R0 \ BR0 .

(4.2)

Let w be a solution of (3.1) obtained in Lemma 3, and consider its even reflection
w� : Rn → R defined by

w�(x) :=
{

w�(x), xn ≥ 0,

w�(x ′,−xn), xn < 0.
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If R0 > 0 is large so that BR0 ⊃ suppw�, then it is easy to see that w�, j :=
max

{
w�,

1
2 j

}
is a subsolution of (4.2). Besides, the function w

�
j as in (2.7) (with

K ⊂ R
n−1) is a supersolution of (4.2). With those w�, j and w

�
j at hand, we can repeat

the argument in Lemma 1 to get a solution v j of (4.2) and prove that v := lim j→∞ v j

exists over a subsequence and, after extending v = 0 in Rn\B2R0 , v solves (4.1).
Step 2. We proceed as in Step 2 in the proof of Lemma 1 up to the definition

E := sup{0 < t < 1 : vt > v∗ in D∗}.

Since K is contained in the thin space R
n−1, as we did in Step 2 in Lemma 3 we

can apply Hopf’s Lemma to v∗ and use ∂xnv is bounded in a small ball Bρ0 to get
E �= ∅. Now we assume towards a contradiction t0 := sup E < 1. We then claim that
vt0(x

0) = v∗(x0) for some point x0 ∈ D∗ \ K . Indeed, if the claim is not true, then
vt0 > v∗ in D∗\K . Since {x ∈ D∗ : vt (x) < v∗(x)} is nonempty for every t0 < t < 1,
if we take a connected component At of {x ∈ D∗ : vt < v∗}, then At converges to a
nonempty set A ⊂ D∗ as t → t0. Since vt0 ≤ v∗ in A and vt0 > v∗ in D∗ \ K , we
have A ⊂ K . Again, we argue as in Step 2 in Lemma 3 to get a contradiction, and
prove the claim.

Now we can divide the proof into two cases

A. x0 ∈ (D∗ ∩ Dt0) \ K ,

B. x0 ∈ ∂D∗ ∩ ∂Dt0 ,

and repeat the argument in Step 2 in Lemma 1 to arrive at a contradiction and get
E = 1. This completes the proof. ��
Lemma 6 Let K , H be as in Lemma 4. Then there exists a minimizer of

JH (w,Rn) :=
∫

Rn

(|∇w|p + pH(w)
)

over K̂K := {w ∈ W 1,p(Rn) : w = 1 on K }, which is compactly-supported, nonneg-
ative and quasi-concave.

Proof The proof can be obtained by repeating the argument in Lemma 2, thus we
briefly sketch the proof.

For 0 < ε < 1, let vε be an energy minimizer of

J ε
H (w,Rn) :=

∫

Rn

((
ε + |∇w|2

)p/2 − ε p/2 + pH(w)

)

over K̂K . Clearly, vε solves

{
div

[(
ε + |∇vε|2)p/2−1 ∇vε

]
= h(vε) in Rn \ K ,

vε = 1 on K .
(4.3)
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Fix a compact set K̃ ⊂ R
n strictly larger than K . Then sup

Rn\K̃ |∇vε| < ∞, thus

the first equation in (4.3) is an uniformly elliptic equation in R
n \ K̃ . With this at

hand, we can argue as in Lemma 2 to prove that vε has a compact support. Besides,
the quasi-concavity of vε can be derived by following the line of the proof for the
corresponding result in Lemma 4. Finally, we can proceed as in Step 2-3 in Lemma 2
to complete the proof. ��

We finish this section with a formal proof of our last main result.

Proof of Theorem 3 With Lemma 5 and Lemma 6 at hand, the proof follows from
repeating the argument in Theorem 2. ��
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Appendix A. Property of quasi-concave envelopes

In this appendix, we show that quasi-concave envelopes of regularized problems are
subsolutions. They follow from applying the results and proofs in [4] to our settings.
The fully nonlinear case is treated in Proposition 1, and the p-Laplacian one can be
found in Proposition 2.

Proposition 1 If v is a solution of (2.3), then its quasi-concave envelope v∗ is a sub-
solution of (2.3). Similarly, if v is a solution to (3.1), then v∗ is a subsolution for
(3.1).

Proof Proposition 1 follows by applying Theorem 3.1 in [4]. Indeed, when v is a
solution to (2.3), the theorem can be rephrased in our favor as the following: if v is a
solution of F̃(v, D2v) = 0 in D\K , where F̃(v, A) := F(A)−h(v) and D = {v > 0},
then the quasi-concave envelope v∗ is a subsolution to F̃(v, D2v) = 0, provided the
conditions (C1) − (C5) below is satisfied

(C1) F̃(v, A) is proper (i.e., F̃(s, A) ≤ F̃(t, A) whenever s ≥ t),

(C2) D \ K is a convex ring (i.e., D and K are convex),
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(C3) F̃ is continuous and degenerate elliptic in (0, 1) × S(n)

(i.e., F̃(v, A) ≥ F̃(v, B)when A ≥ B),

(C4) For some α ∈ R and for any fixed t ∈ (t0, t1), the function �t,α(q, A)

:= qα F̃(t,
A

q3
) is concave in (0,∞) × S(n),

(C5) |∇v| > 0 in D \ K .

In fact, (C1)− (C5) are assumed throughout theorems in [4], and one can see from
the proof of Thoerem 3.1 in [4] that it still holds without (C1) − (C2). Moreover,
the condition (C3) simply follows from the properties of F and h. For (C4), we take
α = 3 and see �t,3(q, A) = q3 F̃(t, A

q3
) = F(A)−h(t)q3 is concave as F is concave

and h(t) ≥ 0.
Now we will show that the theorem is still true without the condition (C5) with

small modifications in its proof, since our function v is a solution and hence admits
the maximum principle. To see where (C5) is used in [4], let x̄ ∈ D\K such that
v∗(x̄) > v(x̄) and let t = v∗(x̄). Then for D(t) := {x : v(x) ≥ t} there exist
λi ∈ (0, 1) and xi ∈ ∂D(t), 1 ≤ i ≤ n, with �n

i=1λi = 1 such that

x̄ = �n
i=1λi x

i and v∗(x̄) = v(xi ) = t .

Here, the condition |∇v| > 0 is used in Theorem 3.1 in [4] to have the following:

(P1) t ∈ (0, 1),

(P2) x̄ ∈ ∂D∗(t), where D∗(t) = {x : v∗(x) ≥ t},
(P3) |∇v(xi )| > 0, 1 ≤ i ≤ n.

We claim that all of these three properties hold for the solution v of (2.3) without the
assumption |∇v| > 0.

Indeed, (P1) follows from the definition D = {v > 0} and the fact that v cannot
have a local maximum in D \ K , for F(D2v) = f (v) > 0 in D\K .

(P2) and (P3) can be obtained by applying Proposition 1 and Proposition 2 in [13],
respectively. Indeed, these propositions require the following nondegeneracy property:
If the level set D(t), for infD\K v < t < supD\K v, has a supporting hyperplane
passing through some point x ∈ D(t), then ∇v(x) �= 0. This property holds for our
solution v, since the supporting hyperplane guarantees that {v < t} satisfies interior
sphere condition at x and thus Hopf’s Lemma can be applied.

Next, we consider the second case when v is a solution of (3.1). Recall that condi-
tions (C1) − (C2) are not essential. Moreover, (C3) − (C4) and (P1) − (P3) can be
justified by the similar way as in the first case. This completes the proof. ��
Proposition 2 If vε is a solution of (2.10), then its quasi-concave envelope (vε)∗ is a
subsolution of (2.12). Similarly, if vε solves (3.5), then (vε)∗ is a subsolution of (3.6).

Proof We only consider the case when vε is a solution of (2.10), as the other case can
be treated in a similar way.
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Since the operator Ivε (B) = ai j (∇vε)bi j , defined in the proof of Lemma 2, satisfies
condition (1.5) in every compact subset of Rn \ K , we can prove that (vε)∗ is a
subsolution by repeating the proof of Proposition 1. We only need to check condition
(C4) in Proposition 1 holds for Fvε . To prove it, let Ĩvε (t, B) := ai j (∇vε)bi j − h(t),
B = (bi j )n×n , t ∈ (0, 1), and define �t,α := qα Ĩvε (t, B

q3
) for some α ∈ R. If we

take α = 3, then �t,3(q, B) = q3
[
ai j (∇vε)

bi j
q3

− h(t)
]

= ai j (∇vε)bi j − h(t)q3 is a

concave function, as desired. ��

Appendix B. Regularity of solutions andminimizers

In this sectionweestablish the localC1,α-regularity of solutions and energyminimizers
in Lemmas 1–6. We first obtain the regularity result when the operator L is the fully
nonlinear operator F .

Theorem 4 For fixed−1 < a < 0 and C1 > 0, let ĝ : R → R be a function satisfying
ĝ = 0 on (−∞, 0] and 0 ≤ ĝ(t) ≤ C1ta for 0 < t < ∞. Let � ⊂ R

n be a bounded
open set and β := 2

1−a ∈ (1, 2). If u is a nonnegative solution of

F(D2u) = ĝ(u) in �,

then u ∈ C1,β−1
loc (�). Moreover, for every �′ � �

sup
Br (x)∩�′

u ≤ C(rβ + u(x)) for any x ∈ A, r > 0,

where C > 0 is a constant depending only on n, a, λ, �, �′, but independent of u.

Proof The proof follows the line of [3]. Let v(x) := u(x)1/β , x ∈ {u > 0}. Using
F(D2u) = ĝ(u) and following the computation (11)-(16) in [3], we can get in {u > 0}

F

(

D2v + 1 + a

1 − a
v−1 · ∇v ⊗ ∇v

)

= f v−1,

where f (x) = ( 1−a
2

)
(u(x))−a ĝ(u(x)). Note that f (x) ≤ ( 1−a

2

)
(u(x))−aC1u(x)a =

(1−a)C1
2 , i.e., f is bounded in {u > 0}. With the above equation for v and the bounded-

ness of f at hand, we can proceed as in [3], in particular Proposition 1 and Theorem 3,
to obtain Theorem 4. ��

Next, we derive the C1,α-regularity of energy minimizers concerning p-Laplacian
operators treated in this paper. First, we make use of [18] to get the result when
2 ≤ p < ∞.

Theorem 5 For fixed −1 < a < 0 and C1 > 0, let ĝ : R → R be a function
satisfying ĝ = 0 on (−∞, 0] and 0 ≤ ĝ ≤ C1ta for 0 < t < ∞, and Ĝ(t) :=
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∫ t
−∞ ĝ(s) ds, −∞ < t < ∞. Let � � R

n be a bounded open set, 2 ≤ p < ∞ and
ϕ ∈ W 1,p(�) ∩ L∞(�). If u is a nonnegative energy minimizer of

JĜ(u,�) =
∫

�

(
|∇u|p + Ĝ(u)

)

among all competitors v ∈ W 1,p
0 (�) + ϕ, then u ∈ C1,α(�) for some 0 < α < 1,

depending only on n, p, a. Moreover, for every �′ � �, there exists a constant C > 0
depending only on �′, n, p, a, ‖ϕ‖∞ such that

‖u‖C1,α(�′) ≤ C .

Proof The proof of the theorem can be obtained by repeating the proof of the cor-
responding result in [18], whose consequence involves the C1,α-estimates of the
nonnegative minimizer v of

JĜa
(v,�) =

∫

�

(
|∇v|p + Ĝa(v)

)
,

where Ĝa(v) = ∫ t
−∞ ĝa(s) ds, ĝa(s) = C1saχ{s>0}. Indeed, in the proof for the

regularity of v in [18], the definition of Ĝa is used only twice to have for any j ∈ N

and BR � �

∫

A j

(
Ĝa(v j ) − Ĝa(v)

)
≤ 0 and

∫

BR

(
Ĝa(v

�
R) − Ĝa(v)

)
≤ C

∫

BR

|v�
R − v|γ ,

where A j := {v > j}, v j := min{v, j}, γ := 1+a ∈ (0, 1), and v�
R is the p-harmonic

replacement of u in BR , i.e., v�
R is the solution of the Dirichlet problem

{
�pv

�
R = 0 in BR,

v�
R = v on ∂BR .

It is easy to see that the energy minimizer u of JĜ(·,�) in our case also satisfies

∫

A j

(
G(u j ) − G(u)

) ≤ 0 and
∫

BR

(
G(u�

R) − G(u)
) ≤ C

∫

BR

|u�
R − u|γ ,

where u�
R is the p-harmonic replacement of u in BR . In fact, the first inequality simply

follows from the fact that t �→ Ĝ(t) is nondecreasing and u j ≤ u. For the second one,
we assume u�

R > u (otherwise, Ĝ(u�
R)− Ĝ(u) ≤ 0, and there is nothing to prove) and

use Lemma 2.5 in [18] to have

Ĝ(u�
R) − Ĝ(u) =

∫ u�
R

u
ĝ(s) ds ≤

∫ h

u
C1s

a ds ≤ C1

γ
((u�

R)γ − uγ ) ≤ C1

γ
(u�

R − u)γ .
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This completes the proof. ��
In the remainder of this section, we consider the case 1 < p < 2 and prove an

analogous regularity result with Theorem 5. We expect that similar results already
exist in the literature, but it looks like that they are scattered and we were not able to
find them. Thus, we give a complete proof of it.We start by proving aHölder regularity
with some degree δ = δ(n, p) ∈ (0, 1), following the line of [8].

Lemma 7 For 1 < p < 2, let ĝ, Ĝ be as in Theorem 5, � � R
n be a bounded open

set, and ϕ ∈ W 1,p(�)∩L∞(�) be a nonnegative function. If u is an energy minimizer
of

JĜ(u,�) =
∫

�

(
|∇u|p + Ĝ(u)

)

among all competitors v ∈ W 1,p
0 (�) + ϕ, then u ∈ C0,δ(�), for δ = p2

2n+p2
∈ (0, 1).

Moreover, for every �′ � �, there exists a constant C > 0 depending only on �′, n,
p, a, ‖ϕ‖∞ such that

‖u‖C0,δ(�′) ≤ C .

Proof Note that max{u, 0} ∈ W 1,p
0 (�) + ϕ is a valid competitor for u, and that

JĜ(max{u, 0},�) ≤ JĜ(u,�) as ĝ(t) = 0 for (−∞, 0]. Moreover, the strict inequal-
ity JĜ(max{u, 0},�) < JĜ(u,�) holds when {u < 0} is nonempty. Thus, we should

have u ≥ 0. Similarly, min{u, ‖ϕ‖∞} ∈ W 1,p
0 (�) + ϕ, and JĜ(min{u, ‖ϕ‖∞},�) <

JĜ(u,�) if {u > ‖ϕ‖∞} �= ∅. Therefore, 0 ≤ u ≤ ‖ϕ‖∞. In the proof, universal
constant C may vary, but will depend only on n, p, a, and ‖ϕ‖∞.

We follow the argument in Sect. 3 in [8] (in particular, Lemma 3.1). For any (small)
ball Br (x0) � �, let u�

r be the p-harmonic replacement of u in Br (x0). Without
loss of generality, we may assume x0 = 0 and use JĜ(u, Br ) ≤ JĜ(u�

r , Br ) and
‖u�

r‖L∞(Br ) ≤ ‖u‖L∞(Br ) ≤ ‖ϕ‖∞ to have

∫

Br

(|∇u|p − |∇u�
r |p

) ≤ JĜ(u, Br ) − JĜ(u�
r , Br ) +

∫

Br
(Ĝ(u�

r ) − Ĝ(u))

≤
∫

Br
Ĝ(u�

r ) ≤ Crn,
(B.1)

where in the last inequality we used Ĝ(u�
r ) = ∫ u�

r−∞ ĝ(s) ds ≤ C(u�
r )

1+a ≤ C‖ϕ‖1+a∞ .
The following inequalities are obtained in the beginning of Sect. 3 in [8], only using
that u�

r is p-harmonic replacement of u and 1 < p < 2:

∫

Br

(|∇u|p − |∇u�
r |p

) ≥ c
∫

Br
|∇(u − u�

r )|2
(|∇u| + |∇u�

r |
)p−2

,

∫

Br
|∇(u − u�

r )|p ≤
(∫

Br
|∇(u − u�

r )|2(|∇u| + |∇u�
r |)p−2

)p/2
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(∫

Br

(|∇u| + |∇u�
r |

)p
)1−p/2

.

Combining these two inequalities with
∫

Br
|∇u�

r |p ≤ ∫

Br
|∇u|p and (B.1) gives

∫

Br
|∇(u − u�

r )|p ≤ C

(∫

Br
(|∇u|p − |∇u�

r |p)
)p/2 (∫

Br
|∇u|p

)1−p/2

≤ Crnp/2
(∫

Br
|∇u|p

)1−p/2

. (B.2)

Moreover, using again the fact that h is the p-harmonic replacement of u and applying
Theorem 1 in [22] (with ε = 0), we get

sup
Br/2

|∇u�
r | ≤

(
C

rn

∫

Br
|∇u�

r |p
)1/p

≤
(

Cr−n
∫

Br
|∇u|p

)1/p

. (B.3)

Now, for small ε > 0 to be chosen below, we have for 0 < r ≤ r0(ε) with rε ≤ 1/2

∫

Br1+ε

|∇u|p ≤ C

(∫

Br1+ε

|∇(u − u�
r )|p +

∫

Br1+ε

|∇u�
r |p

)

≤ C
∫

Br
|∇(u − u�

r )|p + Cr (1+ε)n‖∇u�
r‖p

L∞(Br/2)

≤ Crnp/2
(∫

Br
|∇u|p

)1−p/2

+ Crεn
∫

Br
|∇u|p, (B.4)

where the last step follows from (B.2) and (B.3). Since u is a p-subsolution (�pu =
ĝ(u) ≥ 0), we can apply Caccioppoli inequality (see e.g. Lemma 2.9 in [20], whose
proof works for p-subsolutions as well) to obtain

∫

Br
|∇u|p ≤ C

r p

∫

B2r
u p ≤ Crn−p. (B.5)

This, combined with (B.4), yields (by letting ρ = r1+ε)

∫

Bρ

|∇u|p ≤ C

(

ρ
n−p+p2/2

1+ε + ρ
n−p+εn

1+ε

)

.

Taking ε = p2

2n so that p2/2 = εn, we obtain that for δ = p2

2n+p2

∫

Bρ

|∇u|p ≤ Cρn−p+pδ. (B.6)
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As this estimate holds for any center x0 and any small radius ρ, by applying Morrey
space embedding theorem, we can obtain u ∈ C0,δ(�) and ‖u‖C0,δ(�′) ≤ C for every
�′ � �. ��

Now we use bootstrapping to improve the Hölder-continuity result in Lemma 7 to
almost Lipschitz regularity.

Lemma 8 For 1 < p < 2, let ĝ, Ĝ u, ϕ be as in Lemma 7. Then u ∈ C0,σ (�) for
every 0 < σ < 1. Moreover, for any�′ � �, there exists a constant C > 0 depending
only on �′, n, p, a, ‖ϕ‖∞ such that

‖u‖C0,σ (�′) ≤ C .

Proof For Br � � and small ε > 0 to be specified below, we have by (B.4)

∫

Br1+ε

|∇u|p ≤ Crnp/2
(∫

Br
|∇u|p

)1−p/2

+ Crεn
∫

Br
|∇u|p.

Instead of (B.5), we use the improved estimate (B.6),
∫

Br
|∇u|p ≤ Crn−p+pδ , to have

for ρ = r1+ε

∫

Bρ

|∇u|p ≤ Cρ
n−p+p(δ+p/2−pδ/2)

1+ε + Cρ
n−p+εn+pδ

1+ε .

We take ε = p2

2n (1 − δ) so that the two terms on the right-hand side have the same
power, and obtain

∫

Bρ

|∇u|p ≤ Crn−p+pδ′
, δ′ := δ + p/2(1 − δ)(1 + p/n(1 − δ))

1 + p2

2n (1 − δ)
.

By iteration, we can find a sequence of positive numbers δ1, δ2, · · · such that δ1 = δ,
δk < δk+1 ≤ δk + p/2(1−δk )(1+p/n(1−δk))

1+ p2
2n (1−δk )

for k ≥ 1, and
∫

Bρ
|∇u|2 ≤ Ckρ

n−p+pδk for

0 < ρ < ρk as long as δk < 1. Note that if 0 < δk < σ for some σ ∈ (0, 1), then

p/2(1 − δk)(1 + p/n(1 − δk))

1 + p2

2n (1 − δk)
≥ p/2(1 − σ)(1 + p/n(1 − σ))

1 + p2

2n

.

This implies that we can make δk+1 − δk greater than a universal positive constant,
independent of k, as long as δk < 1. Thus, for any σ ∈ (0, 1) we can find m ∈ N such
that σ < δm < 1 and

∫

Bρ

|∇u|p ≤ Cρn−p+pδm ≤ Cρn−p+pσ .

As we have seen in Lemma 7, this Morrey-type estimate implies the C0,σ -regularity.
��
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Finally, we prove the C1,α-regularity of energy minimizers with the help of
Lemma 8 and [18].

Theorem 6 Let 1 < p < 2 and let ĝ, Ĝ, u, ϕ be as the above lemmas. Then there
exists a constant α ∈ (0, 1), depending only on p and a such that u ∈ C1,α(�).
Furthermore, for every �′ � �, there exists a constant C > 0, depending only on �′,
n, p, a, ‖ϕ‖∞, such that

‖u‖C1,α(�′) ≤ C .

Proof Fix a small ball Br (x0) � �, and let u�
r be the p-harmonic replacement of u in

Br (x0). For simplicity we assume x0 = 0 and use Lemma 4.1 in [18] (which holds
for 1 < p < 2 as well) to have

∫

Bρ

|∇u − 〈∇u〉ρ |p ≤ C
(ρ

r

)n+pαp
∫

Br
|∇u − 〈∇u〉r |p

+ C
∫

Br
|∇(u − u�

r )|p, 0 < ρ < r .

Here, αp ∈ (0, 1) is some constant depending on p, and 〈∇u〉s = 1
|Bs |

∫

Bs
∇u, 0 <

s ≤ r , is the mean value in Bs . Suppose we have

∫

Br
|∇(u − u�

r )|p ≤ Crn+pα (B.7)

for some constant α ∈ (0, αp), depending only on a and p. Then

∫

Bρ

|∇u − 〈∇u〉ρ |p ≤ C
(ρ

r

)n+pαp
∫

Br
|∇u − 〈∇u〉r |p + Crn+pα, 0 < ρ < r .

By applying Lemma 3.4 in [14], we obtain

∫

Bρ

|∇u − 〈∇u〉ρ |p ≤ Cρn+pα,

and thus ∇u ∈ C0,α by Campanato space embedding theorem.
Nowweprove (B.7) and close the argument. To this aim,we recall thefirst inequality

in (B.2):

∫

Br
|∇(u − u�

r )|p ≤ C

(∫

Br
(|∇u|p − |∇u�

r |p)
)p/2 (∫

Br
|∇u|p

)1−p/2

. (B.8)

We also observe that for γ := 1 + a ∈ (0, 1)

∫

Br

(|∇u|p − |∇u�
r |p

) ≤
∫

Br
(Ĝ(u�

r ) − Ĝ(u)) dx =
∫

Br

∫ u�
r (x)

u(x)
ĝ(s) dsdx
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≤
∫

Br∩{u�
r>u}

∫ u�
r (x)

u(x)
C1s

a dsdx ≤ C
∫

Br∩{u�
r>u}

(
(u�

r )
γ − uγ

)

≤ C
∫

Br∩{u�
r>u}

|u�
r − u|γ ≤ C

∫

Br
|u�

r − u|γ ,

where we used Lemma 2.5 in [18] in the second to last step. By applying Poincaré
inequality together with Hölder’s inequality, we further have

∫

Br

(|∇u|p − |∇u�
r |p

) ≤ C |Br |1+
γ
n − γ

p

(∫

Br
|∇(u − u�

r )|p
)γ /p

= Crn+γ− nγ
p

(∫

Br
|∇(u − u�

r )|p
)γ /p

.

Combining this with (B.8) and writing A := ∫

Br
|∇(u − u�

r )|p, we infer that

A ≤ C
(
rn+γ− nγ

p Aγ /p
)p/2

(∫

Br
|∇u|p

)1−p/2

.

Recall that we have proved in Lemma 8 that for any ε ∈ (0, 1)

∫

Br
|∇u|p ≤ Crn−p+p(1−ε) = Crn−pε, 0 < r < rε.

Inserting this into the equation above gives

A ≤ C
(
rn+γ− nγ

p Aγ /p
)p/2

r (n−pε)(1−p/2),

which can be simplified as

A ≤ Cr
n+p

(
γ−ε(2−p)

2−γ

)

.

Now, we take ε = γ
2(2−p) , and get

A ≤ Crn+pα, α = γ

2(2 − γ )
.

Redefining α = min
{

γ
2(2−γ )

, αp

}
if necessary, we obtain (B.7) and completes the

proof. ��
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