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Abstract
We consider a free boundary problem in an exterior domain

Lu=gu) inQ2\K,
u=1 on ik,
[Vu| =0 ond,

where K is a (given) convex and compact setin R” (n > 2), Q = {u > 0} D K is
an unknown set, and L is either a fully nonlinear or the p-Laplace operator. Under
suitable assumptions on K and g, we prove the existence of a nonnegative quasi-
concave solution to the above problem. We also consider the cases when the set K is
contained in {x, = 0}, and obtain similar results.
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1 Introduction
1.1 Background

Let K be a (given) compact convex set in R”, n > 2, and L be a nonlinear elliptic dif-
ferential operator (specified below). For a given function g, we consider the following
obstacle type free boundary problem

Lu=gu) inQ\K,
u=1 ondkK, (1.1)
[Vu| =0 onaf.

The assumptions on the right-hand side (r.h.s.) g are specified in (1.4) below. It is
noteworthy that g can be discontinuous and highly singular near 0, e.g., g(u) ~ u?
with —1 <a <0Owhen0 < u = 0.

We shall consider two kinds of nonlinear operators L:

e The fully nonlinear operator F' (D?u) (see below for a defintion).
e The p-laplace operator A ,u = div (|Vu|p’2Vu), 1 <p<oo.

Free boundary problems with highly singular r.h.s. like u?, —1 < a < 0, were
studied by Alt-Phillips [2] for the Laplacian case. The problems with fully nonlinear
operator were treated by Araujo-Teixeira [3], and the p-Laplacian (with2 < p < o0)
by Leitdo-de Queiroz-Teixeira [18].

The main objective of this paper is to prove the existence of a quasi-concave solution
for (1.1). Note that a function is called quasi-concave if it has convex super-level sets.

Convexity configurations in elliptic and parabolic PDEs have been extensively stud-
ied in the literature; e.g. [4], [6], [7], [9], [10], [13], [16], [21], [23]. In particular, the
second author and El Hajj [10] recently investigated the convexity problem concerning
the Laplace operator (with both obstacle-type and Bernoulli-type! boundary condi-
tions). The present paper generalizes some of its results for the Laplacian to nonlinear
operators.

We also consider the case where the compact convex set K is contained in {x,, = 0}
and the solution u is defined in Ri = {x = (x/, x,) € R" : x, > 0}. In this case the

1 Bernoulli-type free boundary problems refer to the case when |Vu| = h(x), with given 2 > 0, and usually
h is constant, but can also have some concavity property.
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Convexity for nonlinear elliptic free boundaries

problem is defined as

Lu =g(u) in 2,

u=1 on K°,

u=~0 on o\ K,
[Vul=0 on @2\ K)NR"Y,

(1.2)

where Q := {u > 0} C R, and K° is understood as the interior of the set K relative
to {x, = 0}. As above, we aim to find a quasi-concave solution of (1.2). A similar
convexity problem was treated by Lindgren-Privat [21] for the Bernoulli-type free
boundary problem regarding the Laplace operator.

One last problem we deal with is the following: for a compact convex set K C
{x, = 0}, we look for a nonnegative function u : R" — R with Q :={u > 0} D K
such that

Lu=g(u) in 2,
u=1 on K°, (1.3)
|[Vu| =0 onoQ.

1.2 Approach and methodology

Our approach is based on quasi-concave rearrangements. In doing so, we first consider
the regularized problem, and prove the quasi-concavity of the regular solution, which
for definiteness we denote by v. The so called quasi-concave envelope v* of v is
defined as the smallest quasi-concave function greater than or equal to v. Equivalently,
the super-level sets of v* are the closed convex hulls of the corresponding super-level
sets of v. As v* > v by definition, it is sufficient to prove v > v* to obtain the
quasi-concavity of v.

This method was suggested by Kawohl [15] and was first employed by Colesanti—
Salani [6]. This technique was exploited in many problems, such as [4], [7], [10], etc.
We also refer those papers for properties of the quasi-concave envelopes.

In our framework, the highly singular r.h.s. makes the study of the existence of
quasi-concave solutions to (1.1)—(1.3) quite delicate, and substantially technical. To
circumvent this difficulty, we approximate the r.h.s. g by more regular functions. For
this purpose, we first consider regularized problems by replacing g by & (see (2.1) for
the condition on / as well as the definition of a function H in (2.2)).

1.3 Main results

To state our main results, we identify R*~! with {x, = 0} = R*~! x {0} ¢ R”, and
consider the following classes of sets

A:={K CR" : K is a compact convex set with a nonempty interior},

A= (KcR"!: Kis compact convex with nonempty interior relative to R 1.
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Fortherhs. g : R —- R, wefix -1 <a<0,0<b<landCy > c; > 0, and
assume

-g=0on (—o0, 0],

- g is nonnegative and continuous on (0, 00),
et <gt)y < Citfor0 <t < 1,

- g is bounded on [1, 00).

(1.4)

In (1.4), the range —1 < a < 0 can be relaxed to —1 < a < 1. This follows from the
simple observation that if g satisfies (1.4) with nonnegative a € [0, 1), then it does so
with negative a € (—1, 0). The lower bounded ¢ > —1 is asked for the C1-%-regularity
of solutions to the above problems, see Appendix B.

To specify the fully nonlinear operator F(D?u), let S = S(n) be the space of n x n
symmetric matrices. For constants A > A > 0, we let M;f A M; A be the extremal
Pucci operators

MIAM) =AY ei+rY e, M (M)=2) e+A) e

e;>0 e; <0 e;>0 e; <0

where ¢;’s are eigenvalues of M € S. We assume F' : § — R satisfies

- F is uniformly elliptic, i.e., there are constants A > A > 0 such that
M A(M —N) < F(M) = F(N) <M ,(M — N) forevery M, N € 5,
-F@0) =0,
- F is concave,
- F is homogeneous of degree 1 : i.e., F(rM) =rF(M)Vr >0, M € S.
(1.5)

The main results in this paper are the following:

Theorem 1 Let K € A and L be either the p-Laplacian or the fully nonlinear operator
F satisfying (1.5). Suppose g : R — R satisfies (1.4), and when L is p-Laplacian
assume 0 < b < min{l1, p — 1}. Then there exists a nonnegative and quasi-concave
function u with bounded Q2 = {u > 0} solving (1.1).

Since the level sets of quasi-concave functions are convex, the theorem implies
(after extending # = 1 in K) that the super-level set {# > [} is convex for every [ > 0.

Theorem 2 Suppose K € A and let g and L be as in Theorem 1. Then there is a
nonnegative quasi-concave solution u to (1.2) with bounded Q2 = {u > 0}.

We remark that solutions to Eq. (1.2) (to be constructed in the proof of Theorem 2)
are not continuous on d K. This, however, does not affect the convexity of the super-
level sets for the solution in Theorem 2.

Theorem 3 Let K € A and g, L be as above. Then there exists a nonnegative quasi-
concave solution u to (1.3) with compact support.
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Fig.1 Related to Remark 1

When the operator L is p-laplace operator, we actually prove in Theorems 1-3
the existence of energy minimizers of the corresponding functionals, that become the
solutions of (1.1)—(1.3).

Remark 1 (Uniqueness) The uniqueness for solutions to the free boundary problem
studied in this paper in general, and without any geometric/convexity condition, fails.
For the convex regime (treated here) the uniqueness may well be true, but proving
uniqueness requires a far more advanced technical apparatus than used in this paper.
Indeed, one can easily see that uniqueness in the class of C"P" domains is true,
using the Lavrentiev Principle used in the proofs below. For example, for D, Dy, and
D* as in Step 2 in Lemma 1, we cannot exclude the possibility of a pointx° € D*N Dy,
such that D* has a singularity at x°, see Fig. 1 (in the figure, the convex envelope D*
of D is the triangle containing D).

It is however plausible that one can with some further study of the regularity of the
free boundary, as well as that of the solutions, obtain a general uniqueness theory in
the convex regime, or even in the starshaped regime.

As these technical issues are outside the scope of this paper, we only conjecture
what we believe to be true.

Conjecture 1 The solution to our free boundary problem, in the convex setting, is
unique.

It is noteworthy that the corresponding interior problem in general does not admit
a unique solution, even in the case when K is a ball. The existence of a solution with
convex level sets, is an open problem.

Conjecture 2 For the interior problem, i.e. when K DO S, there exists a solution with
convex sub-level sets, i.e. convexity of {u < l}. It is probable that all solutions in the
interior case have this convexity property.

1.4 Notation

We denote the points of R” by x = (x/, x,,), where x’ = (x1, --- , x,_1) € R"~!, and
identify R~ with R"~! x {0}. By R, we mean open half spaces {(x’, x,,) € R" :
+x, > 0}.
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We denote balls of radius r by
B(x") :={xeR":|x—x" <r}: balinR",
BX(x") := B,(x") N {£x, > 0} : half ball in R",
B (x% :=B,(x"N{x,=0}: ballinR""
Given a function # : R" — R, we will write

ou 9%u
P 8)C,')Cju

8)6,'

Oyt = i,j=1,---,n.

- Bxixj ’
We denote the gradient of u by
Vu = Du = (Oyu, -+, O, ut).

We also indicate by D?u the Hessian of u, i.e., the n x n matrix with entries 8xl.xju.
For a set A C R”, we denote the distance function from A by

da(x) :=dist(x, A).

For —1 < a < 0, we fix the following constant throughout this paper

Bi= 1 2 (1,2). (1.6)

—a

2 Proof of Theorem 1

In this section we prove Theorem 1. We treat the fully nonlinear case in Sect. 2.1 and
the p-Laplacian case in Sect. 2.2. As mentioned above, in each case we first consider
the regularized problem. For this purpose, we define two functions # and H as follows:
let h : R — R be a function satisfying for some constant ¢; > 0

-h =0on (—o0, 0],
- h is bounded, Lipschitz continuous and strictly positive on (0, 00),

b 2.1
-h() = cit?forO <t < land h(t) =1for0 <t < ¢y,
-h < g+2on (0, 00),
and define H : R — R by
t
H(t) ::/ h(s)ds. 2.2)
—0oQ0

Notice that H is nonnegative and nondecreasing in R, and H = 0 on (—o0, 0).
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2.1 Fully nonlinear case

Here we deal with the fully nonlinear operator F(D?u), by first showing existence
with the regularized r.h.s.

Lemma1 Let K € A and h be a function satisfying (2.1). Then there exists a solution
v of the problem

F(D%*v) = h(v) inR"\ K,

2.3
v=1 on K, 2.3)

which is compactly-supported, nonnegative and quasi-concave (after extending v = 1
on K).

Proof Step 1. For each j € N, large enough so that 1/j < &1, we define a function
h/ : R — R by

0, 1 <1/@2)),
R (1) :=42jt—1, 1/Qj) <t <1/], (2.4)
h(), t>1/j.

By the definition of /, and that 1/j < &1, each h/ is Lipschitz in R and i/ 7 h as
j — oo.

We claim that for some large constant Ry > 1, independent of j, with Bg, K
there exists a nonnegative solution v/ By R\ K — Rto

F(D*v/) = h/(v/) in Bag, \ K,
v =1 on 9K, (2.5)
v = 27 on dByg,,
with v/ = 5= in Bag, \ Bg,.
To find a solution to (2.5), we will follow the idea in the proof of Theorem 2.1 in

[24]. We first construct a subsolution to (2.5). Fix small constants p > O and 7 > 0
depending only on a, A, A, K, to be specified below, and define a subset of K

K':={xeK:dyg(x)>1} EK.

Note that K* isnotempty if t > 0issmall enough, and thatdg+ (x) > 7 forx € R"\K.
Recall the notation (1.6), 8 = L, and define

1—a
Flt+p—dg- (), T <dgr(x) <T+p,

(2.6)
0, dg=(x) > T+ p.

wy(x) =
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Then wy = 1 on 9K, and for {x € R"\K : © < dgr < T + p} we can compute

—1
Dzwu: ﬂ(ﬁpﬂ )(T—f—p—d[(r)ﬂiszKr ®VdKr—£(‘E+p dKT)ﬁ 1 szr,

and obtain

F(D*wy) =M, (D*w;)

_,3(/3 -D (T +p—dge)P2 M, (Vdg: @ Vdir)
o ,

— ﬂﬂ (t+p— dKr)ﬁil M}tA (Dzd[(r) .

Since the eigenvalues of Vdg: ® Vdgr are |Vdg<|2,0,---,0 and |Vdg:| > 1,
we have M; ) (Vdg+ ® Vdgr) > 1. Moreover, M , (D*dgr) < C(x, A, K, 7) in
{tr <dkgr < v+ p}(seee.g. Theorem 4.8 in [11]), and thus we have for small p > 0

cla, A\, A, T .
F(Dzwﬁ)>(p—)( +p0— dgo)P2 in{r <dgr <t +p}.

To prove F(Dzwu) > hj(UJﬁ) in {t < dgr < T + p}, we observe that in the set

{t <dgr <1+ p)
F(D*wy) > — (1 + p—dg)f 2 = =
pP p?

and

o — TEp—de)ft  pPUmO c(x+p—dg)f72pPUmO
F pha N c pP -

F(D*w,).

By using the above two estimates for F (Dzw;) from below, and that < o and ﬁ(,

—a)

are large when p is small, we obtain

1 c 1 .
2 wé - — J
F(D*wy) = 5 ( o+ —p2> 2 S Qg(wy) +4) = g(ws) +2 2 h' (wy)

for p > 0 small enough. Here, we used (1.4) in the second step and the inequalities
h) < h < g 4 2 in the last step.
We now define a continuous function

\.l—‘

)1/13

we(x), T <dgr(x) <T+p— ,0(2
\
7 dpr@) =T - p() ,

wn,j(x) =

=
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for which we have F(Dzwu) > hj(wﬁ) in{tr <dgr < t+p}, F <D2 (%)) =

0=~h/(4L), and & = max (ws, &) i — ll/ﬂ
= h/(z5). and 5; = 27 ) MT+P =035

This implies F(D?wy, ;) > h'(w; ;) in R" \ K. As we clearly have wy j = wy = 1

<d1<r<t+p}.

1/p
on 0K = {dx- = v} and wy; = ZLjin {dKr zr+p—p(2ij) } wg,j is a

subsolution of (2.5) with w; ; = % in Byg, \ Bg, for any Ry > 1.
Next, we construct a supersolution of (2.5). To this aim, we take an open ball B,
such that o > 1 and B,,/2 D K. For a large constant Ry >> ry to be chosen later, we

consider a continuous function wj : R"\K — R defined by

1, x € B\ K,
w' (x) = (l—i) (RO*'X‘)4+L x € Br,\ By .7
J ’ 2j Ro—ro 2j° Ro ro» :
zlj, x € R"\ Bg,.

Note that wj is CZinR" \ By, in particular, across d Bg,. A direct computation yields

s e (v 1Y (Ro— X)) [ Ro+ 2l ] = Ro
ij(x)_4(1 2]) (Ro— ro)? [( L >x®x+< N )I}

X € BRO\B_i’O'

Thus,
F(D*w’) = F(0) =0 on dBg,,
and for Ry > rg

C@n, 2, A)
F(D*w?) < M}, (D*w) < R

0

in B, \ By,

Note that % < wj < 1in Bg, \ By, Since 1/2 < hi(t) < 1 for 2‘—/ <1t <e and

hi(t) = h(r) fort > &, we have that inf[ . 1} h' is bounded below by a positive
27

constant, independent of j. Thus we can find a large constant Ry > 0, independent

of j, such that F(D?*w%) < inf[ 1 hi < hi(w?) in Bg, \ By,. Since h/ > 0, we

l.

2j
further have F (Dzwg,) <hl (w?) in R” \B_ro. Moreover, we clearly have F (Dzwg) =
0< h/(wg.) in By,\K. Thus, to prove that w’

; is a supersolution of (2.5), it is enough
to show F(D?w?) < hJ (%) in Br,\Br, 2.

4
To this aim, we let wggl(x) := 1 and w?ﬁz(x) = (1 - %) (ﬁ%:ki)l) + % for

X € Bgy \ Byy2. By taking Ry larger if necessary, but still independent of j, we can
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show that F(Dzwg ,) < inf[ |

]hf in Bg, \ By,/2 by arguing as we did for w?

above. Since we also have F(Dzwg PD=0=< inf[ . 1] hJ and w? = min{wf. I w? 5}
, = , ,

in B, \ Byy/2, we infer that F(Dzwﬁ) < inf[ ] hi < h (wf}) in Bro\Brg/2.

1
271

Now, we will use wy, ; and wﬁ to find a solution to (2.5). We let u/ > 0 be such
that 2||VA/ || Lo((0,1)) < w’, and construct a sequence of functions {w,{ J oo defined
in Bog, \ K as follows: set w(]) := wy, ; (which is a Lipschitz function), and for k > 0

let w,ﬂ 1 be the unique solution of

F(D*wj ) — ! wiy +p/wi —h/(w)) =0 in Byg, \ K,
w,{H =1 ondk,

i1
Wigt = 37 on dBag,.

Here, the existence of C! viscosity solutions w,{ 41 1s a consequence of the standard
Perron’s method and the classical regularity theory. The uniqueness follows from the
comparison principle. Then, by following the argument in the proof of Theorem 2.1
in [24], we can show that

) J J J
wﬁ,j—wofwlE"'kafwk+1§"'<w

and that the limit v/ (x) := limg_, oo wy (x) exists and is a solution of (2.5).

Since i/ (the r.h.s. of (2.5)) has uniform bound, independent of j, the limit v :=

lim; _, v/ exists over a subsequence in Bog, \ K and it satisfies F(D%*v) = h(v)
in Bog,\K. Clearly, v is nonnegative and v = 0 in Bag, \B_R0~ Moreover, since
F(D*v/) = h/(v/) > 0in Byg,\K and v/ < 1 on d(Bag, \ K), we have v/ < 1
in Bog,\K, by the maximum principle. Taking j — oo and extending v = 0 in
R™\Bzg,, we get v < 1 in R" \ K. On the other hand, from vl > wy j > wy in
Brgy\K and wy = 0 on R" \ 2Ry, we have v/ > wy in R" \ K, and thus v > wy in
R™"\K.Insum, we have w; < v < 1inR"\K, and since ws = 1 on 9K, we getv = 1
on d K. Therefore, v is a compactly-supported nonnegative solution to (2.3).
Step 2. To prove the quasi-concavity of v, let v* be the quasi-concave envelope of
v. Then, by Proposition 1 in Appendix A, v* is a subsolution to (2.3). Since v* is
a quasi-concave function, it suffices to show v* = v. For this purpose, we use the
Lavrentiev Principle. Without loss of generality, we assume 0 € K° and define for
t>0

D:={xeR":v(x) >0}, D":={v">0}
v(x):=v(tx), D;:={x:tx € D} ={x:v(x) > 0}.

Let

E:={0<t<1:v(x)>v"x)forall x € D*}.
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The fact that v* < |[v||fecrry = 1 in the bounded set D* and v, = 1 in 7K =
{x : tx € K}, together with 0 € K°, implies that v, > v* in D* for t > 0 small
so that D* C r~!K. This gives E # (). Now, towards a contradiction, we assume
to:=supE < 1.

We claim that there is a point x% € D*\ K such that Vg (x9) = v*(x9). Assume,
towards a contradiction, that v;, > v* in D*\ K. Then v, > v* in a smaller compact
set ﬁ\(to_lK)o. Since v* = 0 on dD* and v, = 1in tO_IK, by continuity we can
find #; € (fo, 1) slightly larger than 7o such that v;, > v* in D* \ (tl_lK)o. Asv* <1
inR" and v, = lint 'k , we further have v, > v* in 'D*, which contradicts the
definition of #g.

Now we divide the proof into two cases

A: e NDY\K (or v*(x%) = v, (x%) > 0),
B: x"eaD*naD, (or v*(x%) = v,(x") = 0).

In Case A, we have h(v*(xo)) = h(vy (xo)) > tgh(vto (xo)) > 0, and by continuity,
h(v*) > tgh(vto) in a neighborhood of x°, say in Bp(xo). This gives F(D?*v*) >
h(v*) > 1§ h(vyy) = F(D?vy,) there. Therefore, M, (D?(v;, — v*)) < F(D?v;) —
F(D*v*) < 0 in B,(x"), and (by the definition of 79) v, — v* > 0 in B,(x").
Since vy, — v* attains a local minimum at x, the strong minimium principle implies
v, —v* =01in Bp(xo). This contradicts J\/E):A(Dz(vt0 — %)) <O0.

Next, we consider the case B, i.e., x° € dD* N dDy,. Note that D* C D, and
v, = v* in D*. By continuity, v* < v, < e1in B, (xo) N D* for some small p > 0,
where €1 is as in (2.1). Since 2(v*) = h(v;) = 1 in Bp(xo) N D*, we can proceed as
in case A to get M; 5 (D*(vsy — v*)) < 0'in B, (x") N D*. This implies vy, > v* in
B, (xO) N D*, otherwise vy, — v* has a local minimum and we can argue as in case A
to reach a contradiction.

We claim that for any small > 0, we can construct a cone €0 C R” with vertex
x¥ and its Lipschitz norm less than 7 such that CoNB, (x% ¢ D* for some p > 0.
Indeed, the point x? € 8 D* can be written as a convex combination of x!, - - . , x,
with k < n, suchthatx’ € 3D, 1 < i < k, and there exists a hyperplane IT supporting
aD*atx%and 9D at x, 1 <i <k, see e.g., [4]. Without loss of generality, we may
assume e, = (0, ---,0, 1) is normal to IT and points towards d D* at x% and 8D at
x', 1 <i < k. Note that from (2.1), near each point x', the function v can be seen as
a solution of

F(D?*v) = xv=0) and v >0 in DN B, (x").

By the result of [17], the free boundary 0D is C I hear the point xt, thus we can
construct a cone C,;, with direction e, and its Lipschitz norm less than 7, such that
C.inN Bp(xi) C D c D* for small p > 0. Since D* is convex and x” is a convex
combinationof x!, - - . , x¥, we can find the desired cone C o satistying € .oN B, (xo) C

D*.
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Now we let w* be a solution of

M A (D*w*) =0 in €N B, (x),
w* =0 on 3C,0 ﬂBp(xO),
w* = v, — v* on G0 N E)Bp(xo).

Then the comparison principle yields w* < v, — v*in Co N B, (xY). Thus, for any
fixed 0 < o < 1, SUPg, (x0)ne€ (v — V) > SUPg, (x0)ne, w* > cr'™® for small
r > 0 by Lemma 3.5 in [1].

On the other hand, since F(D?vy(x)) = t3F(D*v(tox)) = 13h(v(tox)) in
B, (x")N Dy, and 1 is bounded, vy, is C!7 foralla < y < 1, thus SUP, (x0)n€ g (vgy —

V) < SUPg, (x0)ne o Vi = Cr'*7 for small r > 0. This is a contradiction. O

Using the preceding lemma and the regularity result in Appendix B, we prove
Theorem 1 for the case the operator L is the fully nonlinear operator F.

Proof of Theorem 1 for the fully nonlinear case Step 1. For each large i € N (such that
(1/2)' < 1), we consider a function g’ : R — R such that

g' =0on (—o0, 0],

g' is strictly positive, bounded and Lipschitz continuous on (0, oc),

gdy=1, 0<t<(1/2), (2.8)
g <g+2on(0,00),

g' — g uniformly on every compact subset of (0, 00).

For each regularized problem of (1.1)

F(D*u') = g'(u’) inR"\ K,
ut =1 ondkK,
let u’ be the solution constructed in Lemma 1, which is compactly-supported, non-
negative and quasi-concave. '
By Theorem 4 in Appendix B, for every bounded open set D € R" \ K, u' is
uniformly C,;”~" (D) for large i with

sup ul <C (r’3 + ui(x)> forany x € D,
B.(x)ND

for some constant C > 0, independent of i. This, combined with 0 < ut < lin
R"\ K, implies that over a subsequence u := lim;_, u' exists in R” \ K, and u is
quasi-concave and satisfies F(D?*u) = g(u) in {u > 0} and |Vu| = 0 on {u > 0}.

Step 2. To prove u = 1 on 0K, we let wy be as in (2.6). In view of the end of Step I in
the proof of Lemma 1, we have wy < u' in R"\ K. This holds for every i since in the
construction of wy in (2.6) two constants T and p depend only ona, A, A, K. Thus we
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get wy < u in R"\K. This, along with # < 1 in R*\K and wz = 1 on 9K, implies
u=1ondkK.

Step 3. It remains to show Q = {u > 0} C R"\K is bounded. Towards a contradiction
we assume €2 is unbounded. If the component of 2 enclosing K is bounded, then there
is nothing to prove. Thus we may assume it is unbounded, and for simplicity further
assume €2 is an unbounded connected set. We observe that the solution u constructed
above satisfies # < 1, and thus F(Dzu) =gu) > club in . Now we use the idea
in Lemma 4.1 in [12] to prove the non-degeneracy of u. Let w := u'~” in , and
compute

b Vw ® Vw

D*w = (1 —bu"’D*u —
1-b w

Then it follows that

F(D*w) > F((1 - byu~" D) + M, ( b Yue W)

1-b w

> el —b) bA |Vw|?

ci(l —b) — —— .
=l 1-b w

For a point x* € Q we set ho(x) == w(x) —clx — x9|2 for a small constant & > 0,

independent of x°, to be determined later. Then

M A (Do) = F(D?*w) — F(D*@x —x°1%) = F(D*w) — e (D*@x —x°%)

2
> (1 —b) — (b—A> Vwl™ _ ana.
1-b
This yields thatin Q = {u > 0} = {w > 0}
bA [V(w+élx —x%?) 4c
M;A(Dzhxo) —+ 1—b [ ” tho — ;hx()

N 2b
261(1—b)—26A<n+m> >0,

provided ¢ is small enough. Now, for every R > 0, we choose a point x* € €, so that
Br(x®) ¢ R"\ K. Note that %’Holz) and % may not be bounded in 2N Bg (x9),
which does not allow us to apply the maximum principle. To rectify this, we consider
a subset {x € Q : w(x) > §} of 2, with a constant § € (0, 1), where the above two
quotients are bounded. If § > 0 is small enough, then the connected component of
{w > 8} containing x°, say A, satisfies A N dBg(x") # . For the sake of simplicity
we assume A = {w > 6}, i.e., {w > 8} is connected. Now, if § < %w(xo), then we
have /0 (x%) = w(x%) and h,0 = 8 — &|x — x°? < %w(xo) on d{w > 8} N Br(x?),
thus sup,,~ 5109 B (x0) Ax0 = w(x%) > 0 by the maximum principle applied in {w >
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8}NBg(x). This implies SUPQABR(x0) W = SUP{y=8)naBr(x0) W = ¢R?*forany R > 0,

which contradicts w = u!=? < 1. O

2.2 p-Laplacian case

In this subsection we prove Theorem 1, for the case when L is the p-Laplacian A ,u.
Similar to the proof of fully nonlinear version, we first consider (in the following
lemma) the problem with g replaced by 4 (see (2.1)), and use it to prove Theorem 1.

Lemma2 Let K € A, and let H be as in (2.2), i.e. H = h. Then there exists a
minimizer of

Jg(w,R"\ K) := f (|Vw|p + pH(w))
RA\K

over Kg = {w € WP(R" \ K) : w = 10ondK}, that is compactly-supported,
nonnegative and quasi-concave.

Remark 2 To prove Lemma 2, we first prove the existence of a minimizer of the func-
tional Jj;(-,R" \ K), 0 < & < 1, as in (2.9) with desired properties. In (2.9), the

extra term —P/? is needed, as (8 + |Vu)|2)p/2 + pH(w) > ¢P/? and the integrand is
taken in R" \ K with infinite measure. An alternative way of removing —eP/ 2 s taking
the integral in Br, with large Ry > 0, as we will prove the non-degeneracy and the
boundedness of the support in Step 3 in the lemma below.

We consider the regularization J§, for the functional Jy due to the following rea-
son: an energy minimizer v¢ of Jg, solves an equation involving a uniformly elliptic
operator, while a minimizer for Jy satisfies an equation concerning the p-Laplacian.
We will derive the quasi-concavity of v¢ by adopting the approach for the Fully non-
linear operator in the previous section, which utilizes the strong comparison principle
and the regularity of the free boundary. However, these properties are not known for
the p-Laplace case.

Proof Step 1. For small ¢ € (0, 1), we minimize the energy functional

Ji(w,R"\ K) ::/

/2
((s + |Vw|2)p —ePl? pH(w)) : (2.9)
R”\K

over K. Note that J;, (w, R"\K) < oo whenever w € K has a compact support.
A minimizer v® exists due to the semi-continuity of J¢, and it is a solution of

div [(e +voe2)2 ! WS] — h(v*) inR"\ K,
vé =1 on oK.

)4
2

(2.10)

The first equation in (2.10) is equivalent to
a’ (Vvs)vfcl_xj =h(*)inR"\ K,
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where a'/(z) = (8 + |z|2)p/2_2 [(p —2)zizj + 6ij (8 + |z|2)]. Note that for every
£ eR"and z € R",

p/2—1

/2—1 .
i (e +122)" IR sl @gEs < (s +122)7 6P @)

where ;1 = min(p — 1, 1), o = max(p — 1, 1) (see e.g. [19]).

Since H(t) = 0 for r < 0, we have J;,(max{v®, 0}, R"\K) < Jj,(v*, R"\K).
Moreover, max{v®,0} € Kg and the strict inequality Jj, (max{v®, 0}, R"\K) <
J5 (v®, R"\K) holds when the set {v® < 0} is nonempty. This implies that v* > 0 in
R\ K. Similarly, we can show that v* < 1 in R*\ K as well.

Next, we claim that v® has compact support. Suppose this fails, and that {v® > 0}
is unbounded, and hence for each R > 0 we have a point x0 € {v¥ > 0} such that
Br(x%) C R”\IE’ . Notice that {v® > 0} can have exactly one component as v¢ is an
energy minimizer of Jj, (-, R" \ K). That is, {v® > 0} is a connected unbounded set.
We then fix a compact set K>K strictly larger than K. Since 0 < v® < 1inR"\ K,
Lemma 1 in [5] gives SUPRm\ g |Vvé| < o0o. Thus, in view of (2.11), the linear operator

L defined by Lye ((bij)nxn) = a'l (Vv®)b;; is uniformly elliptic in R" \ K. We define
72 (x) = v°(x) — v (x") — 8lx — x°%, x € Br(x"),

for a constant § > 0, independent of R, to be determined later. From the assumption
(2.1) on h, we can infer that h(v®) > ¢ x>0y for some ¢ > 0. Then we have in
{v¥ > 0} N Br(x9)

n
Le (D*5°) = I,e(D*0°) — Le (D*(81x — x°17)) = ca = 8 ) _a" (VoF) > 0,

i=1

where the last inequality follows provided § > 0 is small enough, independent of
R. This is possible since |Vv?| is bounded in R” \ K. The maximum principle
tells us sup,((ye=0jnBe(x0)) V° = 3¢ (x%) = 0. On Br(x®) N 3{v® > 0}, we have
3¢ = —v°(x%) — 8|x — x°? < 0, thus SUPyye = 0)n9 Br(x0) V° = 0, which in turn gives
SUP{ye=0}n9 Br(x0) V° = 8R?. This implies that R, chosen as above, is universally
bounded, and hence so is the set {v® > 0}.

Next, we prove that v® is quasi-concave. Note that 7, (0) = 0 and I, is concave,
homogeneous of degree 1, and uniformly elliptic in R” away from K. Moreover,
the quasi-concave envelope of v®, denoted by (v®)*, satisfies (see Proposition 2 in
Appendix A)

L (D*(v9)*) > h((v9)*) inR"\ K,

Wo* =1 on K. 212)

With these properties of v¢ and (v®)* at hand, the quasi-concavity of v® can be obtained
by repeating the argument in Step 2 in the proof of Lemma 1.
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Step 2. We claim that a limit function of v (over a subsequence) is the desired function
in Lemma 2. Indeed, by the result of [5] and for some 0 < « < 1, {v¥}p<c<| are
uniformly C!-¢ in every compact subset of R” \ K. Thus, there exists a function v
such that over a subsequence v?, Vv® converge uniformly to v, Vv, respectively, on
compact subsets of R” \ K. Clearly, v is nonnegative and quasi-concave in R” \ K.

To show that v is a minimizer of Jy(w, R"\K) = fR,,\K (|Vwl|? 4+ pH (w)) in
Kk, letw € K be given. If w has a compact support, then we have for every R > 0
large

Ju(v, Bg \ K) < liminf J§ (%, Bg \ K) < liminf J§(v*, R" \ K)
e—0 £—0

§limi(1)1fJf,(w,R"\K)=JH(w,R"\K). (2.13)
E—>

Here, in the first inequality we applied Fatou’s lemma and in the last step we used
(e + |Vw?)"? = P2 + pH(w) < [(1 + V) +pH(w)] X{supp(uy) and
applied the dominated convergence theorem. Taking R — oo in (2.13) and applying

the monotone convergence theorem give Jy (v, R"\K) < Jy(w, R"\K). In addition,
foreach0 < & < 1, we have 0 < v® <1 and

P < Jj(w, Br \ K) +/ el/?

/ VPP < J,@(vs,BR\KHf
BR\K BR\K

Br\K
2\ P/2
< (14 1vwl)™ +1),
Br\K

thus v® is uniformly bounded in W!?(Bg \ K). This implies up to a subsequence
v® — v weakly in Wl*p(BR \ K), and thus v = 1 on 9 K. Therefore, v € Kg.

We now consider the general case w € K without the compact support assump-
tion. For m € N, let ¢, : R* — [0, 1] be a cut-off function defined by

L, x| < m,
Gm(x):=1m+1—|x|, m<|x|<m+1,
0, x| >m+ 1.

Then wy, := we, € Kk has a compact support and satisfies

/ Vwnl? = / GV + Wby |
R”\K Bm+1\K

s[ |Vw|P+C(p)/ (IVwl? + w]?)
B \K Bin+1\Bm

5/ IVwl? + C(p) (IVwl? + [w]?).
Rn\K Bm+l\Bm
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Moreover, as w,, < w and H is nondecreasing, H(w,,) < H(w). Thus,

T, R"\ K) < Jg(wm, R"\ K) < JH(w,R"\K)—kC(p)/B 5 (IVwl? + |w|P).
m+1\Dm

Takingm — oo andusingw € W7 (R"\K), we obtain Jy (v, R"\ K) < Jy (w, R"\
K), and conclude that v is an energy minimizer of Jg (-, R"\K).

Step 3. We claim that v is compactly supported. As before, we assume to the contrary
{v > 0} is an unbounded connected set. Note thatas 0 < v < 1, Ay, = h(v) > clvb
in {v > 0}. Now we will use the idea in Lemma 4.1 in [12] to prove the following
version of non-degeneracy property of v: there exists a constant ¢y > 0, depending
only on n, p, b, c1, such that for any R > 0

sup v >coR 715 for some x° eR"\ K. (2.14)
Br (x9N {v>0}

To prove (2.14), fora := 1 — % € (0, 1) let o := v*. For a point x° € {v > 0}, set

N _ .
g0 (x) :=clx — x0| »=T with a small constant ¢ > 0, depending only on n, p, b, c1,
to be determined later. Using A v > civ? in {v>0}and V3| = av®"!|Vu|, we can
compute

App = aP @ DPDA Ly 4 @P e — 1)(p — D@ DD gy P

piey 4 @D =D
av

%

o |Vo|P.

p—1 P
From A ,q.0 = ¢n (#) and |Vgq,o|P = ¢P~! (%) g0, we further have

IVol?

P )’” L @=bp-1

- 71 -
Apv — Apgo > af cl—cn<p_1 -

p=l —D(p—1
= otp*ICI —¢n ( ) + w (|V{,|P _ |qu0|l7)
p—1 av

@=Dp =1 (32)"

+ av 00
p—1 _ —
=al ¢ _En( li ) +W(|Vﬁ|l’_|v%o|p)
(@—D(p—Der— (-2)
+ av (p 1) (g0 — V)
L0 ()’
o

@ Springer



S.Jeon, H. Shahgholian

Since the function ¢t +— ¢? is convex in [0, 00), we have |Vv|P — |Vgqo|P <
pIVO|P~! V(D — g,0)|. Now, letting /1,0 := v — q,0, We see that

(1 —a)(p— Dp|VaPtp-!

Apb — Apgro + = Vhol
P
(1 —a)(p— D! (7)
_ — 0 (2.15)
1 1 1 ~p—1 P P

| ) p \»! U—-a)p—-1c =1

>aP e —cn - >0,
p—1 o

where the last step follows if ¢ is small enough. Note that A ,v — A ,¢,0 can be written
as (see e.g. the proof of Lemma 4.7 in [1])

Apv — Apgro = div(A(x)Vh,o),

where the matrix A(x) = (a;;(x))nxn is given by

1
ajj(x) = /0 [VU(x)t + Vgo(x)(1 — t)|p_2m§j dt,

with

(30t + 3ig 0 (1 — ) (3;0t + 0jg,0(1 — 1))
IVo(x)1 + Vo) (1 —1)]2

mfj =6+ (p—2)

It is also shown in [1] that for some constant © = u(p) > 0

wla()|EP < aij(x)&E; < pa(x)|E)* forany £ € R,

where
1
a(x) =f VBt + Vg () (1 = 0P 2 dr.
0

To prove (2.14), let R > 0 be given, and as before let x° € {v > 0} such that
Br(x%) ¢ R"\K and Vu(x®) # 0. This is possible since {v > 0} is unbounded and,
for Ayv > c1v? > 0, v cannot be a constant function in any open set in {v > 0}.
Moreover, as Vg0 # 0in R" \ {x9}, we infer |VD| + IVg,0o| > 0in {v > 0}. Next,
as we did in Step 3 in Theorem 1 for the fully nonlinear case, we can assume that
there is a small constant § > 0 with connected {v > §} such that § < %f)(xo) and
(0> 8} NdBR(x") # @. We then have by (2.15)
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(1 —a)(p — Dp|Vo|P~tp-!

div(AVh.,o) + ! Vho]
oy
. P
(1 =a)(p = D! (5)
- - ho >0
av
st (e (p=nar(527)"
and the two quotients == l)plvvll W and ( l) are uniformly

av
bounded in {? > 8§} N Br(x?). Furthermore as |Vv| 4 |Vg,o| is uniformly bounded

below and above by positive constants in {# > 8} N Br(x?), so is a(x) there, and
thus A = (a;j)nxn is uniformly elliptic in {v > 8} N Bg (x%). Hence, we can apply
the maximum principle to obtain supy (s snBg(x0)) 150 = Ao (x%) = 9(x?). Since
ho <9 =238 < 50(x% on Br(x®) N {0 > 8}, we infer that sup;;_ 515 5, (x0) 1x0 >

_P_
v(x% > 0. As g0 = ERp—l on 9Bg(x"), we further have sup(,gjnp,0) ¥ =

SUP (5> 519 B (x0) U = GR7T. This gives (2.14), and contradicts 0 < v < 1 in R"\K,
unless R can not be chosen too large, which is the desired conclusion. O

Now we prove the existence of a solution to (1.1) when the operator L is p-
Laplacian. In fact, for G(¢) := fi oo &(s) ds, we find an energy minimizer of

Jou, R"\ K) :=f (IVul? + PG(u))

n

over X g, which is compactly-supported, nonnegative and quasi-concave. Clearly, this
minimizer solves (1.1).

Proof of Theorem 1 for p-Laplacian case For functions g satisfying (2.8), we define
Gi@) = f o8& i(s)ds, —0o < t < 00. By Lemma 2, there is a minimizer u' of

Jgi(w,R"\ K) = f <|Vw|p + pGi(w)>
RI‘[\K

over Ky = {w € WHP(R" \ K) : w = 1 on dK}, which is compactly-supported,
nonnegative and quasi-concave. We can use the regularity results in Appendix B (The-
orem 5 for 2 < p < oo and Theorem 6 for | < p < 2) to see that {u'} are uniformly
€1 in compact subsets of R” \ K. Thus, over a subsequence, u’ — u in R" \ K for
some function u. Clearly, u is nonnegative and quasi-concave.

To show that u = 1 on 0K, we take a bounded and compactly-supported function
winKg.As0 < gi < g + 2, we have

/ IVu'|P < Jgi(u',R" \ K) < Jgi(w, R" \ K)
R K
< / (|Vw|p + p(G(w) —|—2w)) < 0.
(supp w)\K
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Since 0 < u’ < 1 by the maximum principle, we have that for any R > 0 {u'} is
uniformly bounded in WP (Bg \ K), and infer u = lim;_, oo u' =1ondkK.

By Fatou’s lemma, it is easy to see that u is an energy minimizer of Jg (u, R*"\K) =
fR,,\K (IVul? + pG(u)) over K. Thus, it satisfies Ap,u = g(u) in {u > O}\K.

Moreover, the nonnegativity and the C 1-%-regularity of u in R”\ K imply that |Vu| = 0
on d{u > 0}.

Finally, the compact support of {u# > 0} can be obtained in a similar way as we did
in Step 3 in the proof of Lemma 2, where the compact support of a solution v of (2.3)
is proved. O

3 Proof of Theorem 2

In this section, we prove Theorem 2. As in the previous sections, we first consider its
regularized version, Lemma 3-4, and then use them to obtain Theorem 2.

3.1 Fully nonlinear case

Lemma3 LerK € Aandh : R — R be a function satisfying (2.1). Then, there exists
a solution of the problem

F(D*v) = h(v) inR",
v=1 on K°, (3.1
v=20 on R"! \ K,

which is compactly-supported, nonnegative and quasi-concave.

Proof The proof follows the argument used in the proof of Lemma 1.
Stgp 1. For a large constant Ry > 0 and functions A/ as in (2.4), we find solutions
vl BZ+R0 — [0, 1] of

F(D*/) = h/(v/) in B,

v/ =1 on K°, 3.2)
v/ =1 on (Byg, \ K) U (@Bagy)™,

with v/ = % in B;RO \B_IJQO. We let 7, = 1/m, m € N, and define subsets of K by
K" :={xeK: dy 1k (X) = T},

where dgq—1 K is the boundary of K relative to R"~!. Note that K™ % ¢ when m is
large, say m > M for some M € N. We then consider its translation

Ko := K™ — txp = {Xx — Txn : x € K™} C {x, = —Ti}.
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For small p,, > 0, to be determined later, we define a function wg" : R’i — [0, 00)
by

1 B
5 |t om — Aoy (X) |7, T < dgo, (X) < Ty + Pm,
wé"(x) — Pﬁz[m Pm R ] m R m T Pm (3.3)

0, d[grm (x) = T + pm-

Note that wg’ is an analogue of (2.6), and wé” = lon K™. Since d., (x) > V2t
for every x € R"_I\K, we have wj’i” =0onR"! \ K, provided p,, < (\/5 — D1y
In view of Step I in the proof of Lemma 1, we can see that F(Dzwg”) > hf(wg’) in
{tm < dgu, < T+ pm} NRYif p, > 0 is small enough, depending only on a, A,
A, Ty, K. Defining a function wg"j (R — [1/(2)), 00) by

1/8
WX, T < gy (V) < T+ om—pm (35)

wi; (=1 [ \1/8
2 dgon (X) Z Tn + Pm = Pm (5>

and arguing as in the Lemma 1, we can show that w%" j solves for any Ry > 1

F(Dngfj) > hI(w';) in B>

w;nj =1 on K%,
l m T)?l
wy'; = o5 on (B \ K) U (dBagy)™,

with wf', = 5= in By \Bjp . As K™ /7 K°, the function wy ; : R} — [0, 1]
defined by

P m
Wy, j = SUp Wy,
m>M

becomes a subsolution of (3.2), with wy ; = % in B;‘RO \B_}“O, for any Ry > 1.

Next, we construct a supersolution of (3.2). Let w? be as in (2.7) with K ¢ R"~ 1,
In view of the proof of Lemma 1, for large Ry, wﬁ restricted to B;RO satisfies

2, Findy in BT
F(D wj)fh (wj) 1nBZRO,

w?: on K,
1 ft /
Z_J'usw{'fl 0nB2RO\K,

with w? =L in B; RO\B;{). Notice that w” may not be a supersolution of (3.2) as it

2j J
may be strictly greater than % on B} R, \K- To rectify this, let w; : B2+ Ry R be a
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solution of

2.0, 3 +
F(D w]) —0 m BzR()’
w* =1 on K,
zlj on (Byp, \ K) U (3B2g))™.

<O~

w

f=9

Note that 0 < w; < lin B;RO by maximum/minimum principle, and set w Go=
min{wi, w;} in B;r Ro- Then it is easy to see that uﬁg is a supersolution of (3.2).

Now, to find a solution of (3.2) by using wy ; and ﬁ)ﬁ constructed above, we take
a constant w’/ > 0 such that 2|Vh/| < ,uf We then make a sequence of functions

{wk Yo defined in B+R as follows: let wo = wy,j, and for k > O let wk+1 be the
unique solution to

F(D*wj ) — pw]yy + pwj —h'(wy) =0 in By,
w,iH =1 on K,

w,iﬂzzij on (3B ) \ K.

By using the argument in [24], we can see that

IA

w Sw'l < o

Sy <. .. J
W j =Wy S W <+ S W 1 =

\..SI

Then, the limit function v/ (x) := lim_ o0 w,{ (x) satisfies (3.2). Moreover, since h/
is uniformly bounded, up to a subsequence v := lim;_, v/ exists in B;RO and it
clearly satisfies F (D*v) = h(v) in BZ‘RO and v = 0 in B;' RO\B;{). For the boundary

value of v on B}, , we note that wy < v/ in B, . In addition, we let v* : B}, — R
) 0 0 0
be a solution to

F(D*v*) =0 in B,

2Ry’
=1 on K U (0Bag,)™".
*=0 on BéRO \ K.

Then, foreach j, F(D?v*) < F(D*v/)in B; and v* > v/ on d(BSy ,)» thus v* > v/
in B;RO by comparison principle. In sum we have wy < v/ < v, v, =v"=1on
K°and vy = v* = 0 on By, \K. This yields v = 1 on K°® and v = O on By, \ K.

Extendingv = Oin IR:’_\BZJr Ry V becomes a compactly-supported nonnegative solution
of (3.1).

Step 2. Our next objective is to show the quasi-concavity of v. Since the quasi-concave
envelope v* (of v) is a subsolution of (3.1) by Proposition 1 in Appendix A, it suffices
to show that v = v*. As in Lemma 1, we will use Lavrentiev Principle. We assume

@ Springer



Convexity for nonlinear elliptic free boundaries

without loss of generality that 0 € K and denote for ¢ > 0

D::{xe@:v(x)>0}, D* = {x EMZU*(X)>O},

_ __ (3.4)
vy (x) == v(tx), D;:={x eRY :tx e D} = {x e R : v;(x) > 0O}.

Let also
E:={0<t<1:v(x)>v*)forallx € D*}.

We first claim that E is a nonempty set. Indeed, the assumption that K has a nonempty
(n — 1)-dimensional interior gives that it contains a thin ball B;O = By N R"! for
some py > 0. We then clearly have v, > v* on D* N R~ for small > 0. To extend
the inequality v, > v* to D* for small > 0, we observe that F(D*v*) > h(v*) > 0
in the positivity set of v*, in particular near K . Thus, by the strong maximum principle,
v* < 1in R, near K. Moreover, by applying the maximum principle to v, we get
v < lin R, thus v* < 1in R}. This gives v* = v = 1 on K°. Now, as the flat
boundary H(R’i) = R"! gatisfies the interior sphere condition uniformly on K°,
Hopf’s Lemma tells us that there is a positive constant ¢; > 0 such that for every
x0 e K°

v (x) — v*(x%)

lim sup X — 0]

R 5x—x0

< —cj.

This implies that v*(x) < 1 — ¢1x, in [0, s) x K° for some ¢; > 0 and s > 0.

On the other hand, for pg > 0 small so that B, € K°, since dy, v is continuous in
B;B U B;)O (and hence bounded there), we obtain that v(x) > 1 —cyx, in B;O U Bl’)o for
some ¢ > 0. This, combined with the above estimate v* < 1 — ¢yx, near K, implies
that v, > v* in D* for small ¢ > 0. Therefore, E # .

Notice that the quasi-concavity of v follows once we show sup £ = 1. Towards
a contradiction suppose fy := sup E € (0, 1). Then we claim that there is a point
x% e D*n R’ such that vy, (x9) = v*(x0). Indeed, if we assume to the contrary that
the claim is not true, then v, > v* in D* N R . By the definition of £, for each
t € (tg, 1) the set {x € D* : v (x) < v*(x)} is nonempty. For such ¢, we take a
connected component A; of {x € D* : v, (x) < v*(x)}. Since D* is bounded, we
can find a sequence {7;} C (fo, 1) such thatz; \ 7o and A;; converges to a nonempty
set, say A, in D*. As v, = v* in A, the assumption v;, > v* in D* N R’ yields
A C R*~!. From the observation

1 onK°,

. 1 onto_lKO,
) on R\ K

0 onR*! \tO_IK,

*

v and v, = {

and we infer that either A C R"~!\ 7' K or A C K°.

@ Springer



S.Jeon, H. Shahgholian

If A c R! \tO_IK, then using that 4(s) = 1 for 0 < s < g1, we have fort > f
close to g

F(D*v,) = t2h(v;) < h(v,) = 1 = h(v*) < F(D*v*) in A,.
Then

M A (D*(v* — ) = F(D**) — F(D*v) > 0 in A,
v —v, >0 in A,
U*—U;zo OnaA;.

This is a contradiction by the maximum principle.
Next, we consider the case when A C K°. From the continuity and the positivity
of h on (0, 00), there is a constant § € (0, 1) such that if 51,52 € (1 —§, 1), then

, 2
% > (%) . Thus, for ¢ > f; close to fg

7 \2
F(D*v,) = t?h(v,) < 1* <m> h(v*) < h(v*) < F(D*v*) in A,.
0
As in the previous case, this yields a contradiction, and the claim is proved.
Now, we have x* € D* N R’ with vy, (x9) = v*(x), thus we can split our proof
into the following two cases

A.x" e (D*N Dy \ R,
B.x" e 3D*NaD,) \ R

In each case, we can argue as we did in Lemma 1 to get a contradiction. This completes
the proof. O

Proof of Theorem 2 for the Fully nonlinear case Step 1. For the proof, we follow the
argument in the proof of Theorem 1, with the help of Lemma 3. Let g’ be asin (2.8), and
apply Lemma 3 to obtain a compactly-supported, nonnegative quasi-concave solution
u' to

F(D*u') = g'(u') inR%,
u =1 on K°,
ul' =0 onR* 1\ K.

Repeating the argument in the proof of Theorem 1, we have over a subsequence
u = lim;_ o ' exists in RY.

It is easy to see that u is quasi-concave, F(D?*u) = g(u) in {u > 0} and |Vu| =0
ondf{u > 0} N Rﬁ. Moreover, each u! constructed in Lemma 3 satisfies 0 < u! < 1
in R’} , which gives 0 < u < 1in R’,. As in Step 3 in the proof of Theorem 1 for the
case L = F, we can prove the non-degeneracy property of u, which combined with
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0 < u < 1 implies the boundedness of {# > 0}. Thus, it remains to show # = 1 on
K°andu = 0on R"" I\ K.
Step 2. To show that u = 1 on K°, for each m € N, let w%” be as in (3.3). In view of

Step 1 in the proof of Lemma 3, wé" < u'in R’}r for m > M. This holds for every i
since 1, = 1/m and p,, in (3.3) as well as M depend only on a, A, A, K. We then
have wgl <uin R’} form > M, which along withu < 1 in R’} and wi’i" =1lon K™
gives u = 1 on K™ Taking m — oo, we getu = 1 on K°.

Finally, to prove # = 0 on R"“1\ K, we fix R > 0 large so that B D K, and let
Wh: B; — R be a solution of

F(D?u%) =0 in B},
wh =1 on K U@(BiNT,
up =0 on B \ K.

Then, applying the comparison principle yields u’ < u% in B};. Taking i — co, we
getu < ”?e in B;{, and thus u = 0 on B;Q\K. Letting R — oo, we obtain u = 0 on
R*~!\ K. This completes the proof. O

3.2 p-Laplacian case
Lemma 4 Suppose K € A and let H be as in (2.2). Then there is an energy minimizer

of

Ju(w,RY) = / (IVw|? + pH (w))

RY

over Kx = {fw e Wl’p(Rﬁ’r) cw = lonK, w = 00onR"I\K}, which is
compactly-supported, nonnegative and quasi-concave.

Proof The lemma can be proven by following the lines in the proof of Lemma 2 and

Lemma 3. We thus only give a sketch of the proof.
For small ¢ > 0, let v® be a minimizer of

Jh(w, RY) = /R (e + 1V = e 4 pHw))

+

over K. Then v¢ solves
div [(s n |Vuf|2)’%—lw] = h(v®) inR",

v =1 on K, (3.5)
e =0 onR"1\ K.
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The first equation in (3.5) is equivalent to

a¥ (Vooyg, = h(°) inRY,

where a'/ (z) = (e + |z|2)p/272 [(p — 2)zizj + 8ij (¢ + 12I?)]. Here, @/ satisfies the
ellipticity (2.11). Moreover, the fact that max{v®, 0} and min{v®, 1} are contained in
fJNCK implies 0 < v® < 1.

To show that v¥ has a compact support, we suppose towards a contradiction {v® > 0}
is an unbounded connected set. By Lemma 1 in [5], we have supy, . 1y [Vv*®| < 00, and
thus the operator /¢, defined by Iye ((bij)nxn) = @'/ (Vv®)b;j, is uniformly elliptic
in {x; > 1}. Then, we can find a small constant § > 0O such that for any R > 1 and
x0 € (v > 0} with Br(x°) € {x,, > 1},

sup ve > SR2.
{ve>0}NIBR (x0)

This non-degeneracy property of v® contradicts its bound 0 < v® < 1, and proves that
v® has a compact support.

Next, we show that v? is quasi-concave by following the argument in Step 2 in the
proof of Lemma 3. Indeed, Proposition 2 in Appendix A tells us its quasi-concave
envelope (v®)* is a subsolution of

L (D*(v9)*) = h((v®)*) inRZ,
WH* =1 on K, 3.6)
W5)* =0 onR"1\ K.

Assume 0 € K and for # > 0 define (in analogy with (3.4))

D®:={x e R} :v°(x) > 0}, (D)*:={x e R} : (v*)* > 0O},

vi (x) :=v%(tx), Dj :={x e]RTjr:tx eDY={x¢ M: vi > 0},
and
E* :={0<t<1:v0>)"in(D%*}.

Note that the subsolution (v®)* of (3.6) satisfies Hopf’s Lemma at everﬂ0 € K.

Besides, for pg > 0 small so that Bé 00 C K, 9y,v® is continuous in Bj,[), hence
bounded there. As we have seen in Lemma 3, this implies v{ > (v®)* in (D®)* for
small r € (0, 1), and thus E® # (. Now, as it is sufficient to prove sup E® = 1 for the
quasi-concavity of v?, we assume to the contrary sup E® = fy € (0, 1). Then, using
that ¢ is elliptic in R’} and uniformly elliptic in every compact subset in R’ , we can
argue as in Lemma 3 to get a contradiction.

Due to the result of [5], we have for some 0 < o < 1 that {v®}g¢ are uniformly
C'%in compact subsets of R”" , thus v¥ — v in CllOC (R’jr) for some function v. Clearly,
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v is nonnegative and quasi-concave in R’} . Moreover, we can proceed as in Step 2-3

in the proof of Lemma 2 to prove that v € K  is a minimizer of Jy (-, R’}) over K K
and v has a compact support. This finishes the proof. O

Proof of Theorem 2 for the p-Laplacian case The proof is similar to the proof of The-
orem 1, thus we only give an idea of the proof. For ¢’ and G' as before, we apply
Lemma 4 to find a minimizer u' of

Jgi(w,RY) = f (|Vw|1’ +pG"(w))

RY

over Kk, which is compactly-supported, nonnegative and quasi-concave. Then, The-
orem 5-6 imply that up to a subsequence u' — u in CllOC (R%) for some function

u e Cllo’g‘ (R%). Clearly, u is nonnegative and quasi-concave, and satisfies |Vu| = 0
on (02 \ K) NR", where Q = {1 > 0}. In addition, we can argue as in the proof of
Theorem 1 for the p-Laplacian case to prove that u = 1 on K, u = 0 on R"~!'\K and
u is an energy minimizer in Kk. Finally, we can show as before, using non-degeneracy
of u, that # has a compact support. This completes the proof. O

4 Proof of Theorem 3

The purpose of this section is to prove Theorem 3. It can be regarded as a corollary
to Theorem 1 and Theorem 2, as its proof simply follows from the argument and the
results in those two preceding theorems.

Lemma5 Let K € A and suppose h : R — R satisfies (2.1). Then there is a solution

of

4.1

F(D*v) = h(v) inR"\ K,
v=1 on K°,

which is a compactly-supported, nonnegative and quasi-concave.
Prpof Step 1. Let h/beasin(2.4)and R > Obea large constant. We first find solutions
v/ i By, \K — R of
F(D*v/) = h/(v/) in By, \ K,
ho=1 on K°, (4.2)
v = 2 in Byp, \B_Ro~

Let w be a solution of (3.1) obtained in Lemma 3, and consider its even reflection
wy : R” — R defined by

wy(x) 1= {wﬁ(x), xn 2 0,
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If Ry > 0 is large so that Bg, D suppwy, then it is easy to see that wy ; =

max {wj, %} is a subsolution of (4.2). Besides, the function w? as in (2.7) (with

K c R" Nisa supersolution of (4.2). With those wy ; and w? at hand, we can repeat
the argument in Lemma 1 to get a solution v/ of (4.2) and prove that v := lim =00 v/

exists over a subsequence and, after extending v = 0 in R"\ Byg,, v solves (4.1).
Step 2. We proceed as in Step 2 in the proof of Lemma 1 up to the definition

E:=sup{0 <t <1: v >0"in D"}

Since K is contained in the thin space R"! as we did in Step 2 in Lemma 3 we
can apply Hopf’s Lemma to v* and use 9, v is bounded in a small ball B,, to get
E # (. Now we assume towards a contradiction 7 := sup £ < 1. We then claim that
Vo (x% = v*(xY) for some point x% e ﬁ\ K. Indeed, if the claim is not true, then
v, > v¥in D*\K. Since {x € D* : v,(x) < v*(x)}is nonempty forevery o < t < 1,
if we take a connected component A, of {x € D* : v, < v*}, then A, converges to a
nonempty set A C D* as t — tg. Since v, < v*in A and v, > v* in D*\ K, we
have A C K. Again, we argue as in Step 2 in Lemma 3 to get a contradiction, and
prove the claim.
Now we can divide the proof into two cases

A.x" e (D*NDy) \ K,

B.x" € dD* N Dy,
and repeat the argument in Step 2 in Lemma 1 to arrive at a contradiction and get
E = 1. This completes the proof. O
Lemma 6 Let K, H be as in Lemma 4. Then there exists a minimizer of

Ju(w, R ::/ (IVw|” + pH (w))

Rn

over Kg = {we WHP(R™) : w = 1 on K}, which is compactly-supported, nonneg-
ative and quasi-concave.

Proof The proof can be obtained by repeating the argument in Lemma 2, thus we
briefly sketch the proof.
For 0 < & < 1, let v® be an energy minimizer of

J(w, R") := / <(8 + |Vw|2>p/2 —ePl? 4 pH(w))

over K k - Clearly, v® solves

. e12\P/2—1 el & : n
{dlv[(s—HVv 2P vy ] — h(v*) InR"\K, w3

v =1 on K.
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Fix a compact set K C R” strictly larger than K. Then SUPRm & |Vvé| < oo, thus

the first equation in (4.3) is an uniformly elliptic equation in R" \ K. With this at
hand, we can argue as in Lemma 2 to prove that v® has a compact support. Besides,
the quasi-concavity of v® can be derived by following the line of the proof for the
corresponding result in Lemma 4. Finally, we can proceed as in Step 2-3 in Lemma 2
to complete the proof. O

We finish this section with a formal proof of our last main result.

Proof of Theorem 3 With Lemma 5 and Lemma 6 at hand, the proof follows from
repeating the argument in Theorem 2. O
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Appendix A. Property of quasi-concave envelopes

In this appendix, we show that quasi-concave envelopes of regularized problems are
subsolutions. They follow from applying the results and proofs in [4] to our settings.
The fully nonlinear case is treated in Proposition 1, and the p-Laplacian one can be
found in Proposition 2.

Proposition 1 If v is a solution of (2.3), then its quasi-concave envelope v* is a sub-
solution of (2.3). Similarly, if v is a solution to (3.1), then v* is a subsolution for
(3.1).

Proof Proposition 1 follows by applying Theorem 3.1 in [4]. Indeed, when v is a
solution to (2.3), the theorem can be rephrased in our favor as the following: if v is a
solution of F (v, D?*v) = 0in D\ K, where F(v,A) := F(A)=h(v)and D = {v > 0},
then the quasi-concave envelope v* is a subsolution to F (v, D?v) = 0, provided the
conditions (C1) — (C5) below is satisfied

(C1) F(v, A)is proper (i.e., F(s, A) < F(t, A) whenever s > 1),
(C2) D\ K isaconvex ring (i.e., D and K are convex),
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(C3) F is continuous and degenerate elliptic in (0, 1) x S(n)
(ie., F(v, A) > F(v, B)ywhen A > B),
(C4) Forsome o € R and for any fixed ¢ € (1, t1), the function ®; (g, A)

- A
1= q“F(t, —) is concave in (0, 00) x S(n),
q
(C5) |Vv|>0inD\ K.

In fact, (C1) — (C5) are assumed throughout theorems in [4], and one can see from
the proof of Thoerem 3.1 in [4] that it still holds without (C1) — (C2). Moreover,
the condition (C3) simply follows from the properties of F and k. For (C4), we take
o =3 and see $; 3(q, A) = q3ﬁ(t, q%) =F(A)— h(t)q3 is concave as F is concave
and h(t) > 0.

Now we will show that the theorem is still true without the condition (C5) with
small modifications in its proof, since our function v is a solution and hence admits
the maximum principle. To see where (C5) is used in [4], let x € D\K such that
v¥(Xx) > v(x) and let + = v*(x). Then for D(¢t) := {x : v(x) > t} there exist
Xi € (0,1) and xie dD(t),1 <i < n, with Zi"zlki = 1 such that

=31 ux and v*(X) = v(x') =1.
Here, the condition |[Vv| > 0 is used in Theorem 3.1 in [4] to have the following:

(P1) te(0,1),
(P2) x € dD*(t), where D*(¢) = {x : v*(x) > t},
(P3) |[Vo(x)| >0, 1<i<n.

We claim that all of these three properties hold for the solution v of (2.3) without the
assumption |Vv| > 0.

Indeed, (P1) follows from the definition D = {v > 0} and the fact that v cannot
have a local maximum in D \ K, for F(D?v) = f(v) > 0in D\K.

(P2) and (P3) can be obtained by applying Proposition 1 and Proposition 2 in [13],
respectively. Indeed, these propositions require the following nondegeneracy property:
If the level set D(t), for infp\x v < t < supp, g v, has a supporting hyperplane
passing through some point x € D(t), then Vv(x) # 0. This property holds for our
solution v, since the supporting hyperplane guarantees that {v < ¢} satisfies interior
sphere condition at x and thus Hopf’s Lemma can be applied.

Next, we consider the second case when v is a solution of (3.1). Recall that condi-
tions (C1) — (C2) are not essential. Moreover, (C3) — (C4) and (P1) — (P3) can be
justified by the similar way as in the first case. This completes the proof. O
Proposition 2 If v® is a solution of (2.10), then its quasi-concave envelope (v¢)* is a
subsolution of (2.12). Similarly, if v¢ solves (3.5), then (v¢)* is a subsolution of (3.6).

Proof We only consider the case when v® is a solution of (2.10), as the other case can
be treated in a similar way.
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Since the operator I« (B) = a'/ (Vv®)b; ., defined in the proof of Lemma 2, satisfies
condition (1.5) in every compact subset of R” \ K, we can prove that (v®)* is a
subsolution by repeating the proof of Proposition 1. We only need to check condition
(C4) in Proposition 1 holds for Fy:. To prove it, let L (t, B) :== a' (Vv®)b;j — h(1),
B = (bij)nxn.t € (0, 1), and define ®, , := g1 (t, 3) for some @ € R. If we

take & = 3, then ®; 3(¢, B) = ¢ [ lf(Vv@)q—3 — h(t)] = all (Vo*)byj — h(t)g3 is a
concave function, as desired. O

Appendix B. Regularity of solutions and minimizers

In this section we establish the local C 1% -regularity of solutions and energy minimizers
in Lemmas 1-6. We first obtain the regularity result when the operator L is the fully
nonlinear operator F.

Theorem 4 Forfixed —1 < a < 0and Cy > 0, let g : R — R be a function satisfying

g§=00n(—00,0]and 0 < g(t) < C1t* for 0 < t < oco. Let Q@ C R" be a bounded

open set and B 1= L € (1, 2). If u is a nonnegative solution of

F(D*u) = §(u) inS,
thenu € Cllo‘ffl(Q). Moreover, for every Q' € Q

sup u < C(rﬂ 4+ u(x)) foranyx € A, r > 0,
B, (x)NS

where C > 0 is a constant depending only on n, a, A, A, ', but independent of u.

Proof The proof follows the line of [3]. Let v(x) := u(x)'/#, x € {u > 0}. Using
F(D*u) = & (u) and following the computation (11)-(16) in [3], we can getin {u > 0}

1
F(Dzv 1+av7] ~VU®VU> :fvil,

where f(x) = (13%) (u(x))"*g(u(x)). Note that f(x) < (15%) (u(x))~*Cru(x)® =
%, i.e., f isboundedin {u# > 0}. With the above equation for v and the bounded-

ness of f athand, we can proceed as in [3], in particular Proposition 1 and Theorem 3,
to obtain Theorem 4. O

Next, we derive the C!-%-regularity of energy minimizers concerning p-Laplacian
operators treated in this paper. First, we make use of [18] to get the result when
2<p<oo.

Theorem 5 For fixed —1 < a < 0and C; > 0, let g : R — R be a]iunction
satisfying ¢ = 0 on (—00,0] and 0 < ¢ < C1t* for 0 < t < oo, and G(t) =
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fioog(s) ds, —00 <t < 00. Let Q@ € R" be a bounded open set, 2 < p < 0o and
@ € WhP(Q) N L®(Q). If u is a nonnegative energy minimizer of

T, Q) = /Q (|Vu|” + é(u))

among all competitors v € Wol’p(Q) + @, then u € CH%(Q) for some 0 < a < 1,
depending only on n, p, a. Moreover, for every Q' € Q, there exists a constant C > 0
depending only on ', n, p, a, ||¢|lco such that

”M”Cl.a(Q/) =< C.

Proof The proof of the theorem can be obtained by repeating the proof of the cor-
responding result in [18], whose consequence involves the C!“-estimates of the
nonnegative minimizer v of

o, . = [ (190 + Guw).

where Ga(v) = fioo 8a(s)ds, 8a(s) = Ci5“x(s>0). Indeed, in the proof for the

regularity of v in [18], the definition of G, is used only twice to have for any j € N
and Br € Q

fA_ (éa(vj)—éa(v)) <0 and fB

J R

(Gt = Gum) = [ 1y =or,
R

where A; := {v > j},v; := min{v, j},y := 14+a € (0, 1), and v} is the p-harmonic
replacement of u in Bg, i.e., v} is the solution of the Dirichlet problem

Apvp =0 in Bg,
Vp =V on dBg.

It is easy to see that the energy minimizer u of J4 (-, £2) in our case also satisfies

/(G(uj)—G(u))fo and /

Aj Bgr

mwp—Gw»sc/|@—um

Bpr

where u’, is the p-harmonic replacement of u in Bg. In fact, the first inequality simply
follows from the fact that ¢ — é(t) is nondecreasing and u ; < u. For the second one,

we assume u > u (otherwise, G(u}e) — G(u) < 0, and there is nothing to prove) and
use Lemma 2.5 in [18] to have

Aok A u;e A h a Cl * Cl *
Gug) —Gu) = g(s)ds < Cis%ds < —((up) —u’) < — @y —uw)?’.
u u 14 14
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This completes the proof. O

In the remainder of this section, we consider the case | < p < 2 and prove an
analogous regularity result with Theorem 5. We expect that similar results already
exist in the literature, but it looks like that they are scattered and we were not able to
find them. Thus, we give a complete proof of it. We start by proving a Holder regularity
with some degree § = §(n, p) € (0, 1), following the line of [8].

Lemma7 Forl < p <2, let g, G be as in Theorem 5, @ € R" be a bounded open
set, and ¢ € WhP(Q)NL>®(Q) be a nonnegative function. If u is an energy minimizer

of

Jou, Q) = /Q (|Vu|p + é(u))

2
among all competitors v € Wol’p(SZ) + ¢, thenu € CY3(Q), for§ = 2’1’1—172 € (0, 1).
Moreover; for every Q' € R, there exists a constant C > 0 depending only on ', n,

P> a, |l¢lloo sSuch that
lullcos gy, < C.

Proof Note that max{u, 0} € W(;’p (2) + ¢ is a valid competitor for u, and that
J (max{u, 0}, Q) < Ja(u, ) as g(r) = 0 for (—oo, 0]. Moreover, the strict inequal-
ity Jz (max{u, 0}, 2) < Jiz (u, ) holds when {u < 0} is nonempty. Thus, we should
have u > 0. Similarly, min{u, ||¢|lc0} € Wol’p(Q) + ¢, and J (minfu, [[¢|loo}, 2) <
Jow, Q) if {u > [l¢llc} # @. Therefore, 0 < u < |[|¢[lcc. In the proof, universal
constant C may vary, but will depend only on n, p, a, and ||¢||cc-

We follow the argument in Sect. 3 in [8] (in particular, Lemma 3.1). For any (small)
ball B,(x% & , let uy be the p-harmonic replacement of u in B, (x©%). Without
loss of generality, we may assume x% = 0 and use Jo(u, By) < Jg (ur, B;) and
lurliLes,) < lluliLe,) =< ¢l to have

/ (IVul? = |Vu}|?) < Jgu, By) — Jg(u}, By) +/ (G — Gu))
Br Br (B.1)
s/ Gup) < cr',

where in the last inequality we used G (u?) = fﬁ‘io g(s)ds < Cun)'t < Cllolllte.
The following inequalities are obtained in the beginning of Sect. 3 in [8], only using
that i is p-harmonic replacementof # and 1 < p < 2:

f (IVul? = [Vus|?) = c/ V@ —up)? (1Vul + Vur)" 2,
r Br

p/2
/W(u—u:w’s(f |V(u—u:)|2<|W|+|w:|)f’—2>

B, B,
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</ (IVul + |w:|)”)1_p/2.

Combining these two inequalities with [, |Vuy|? < [, [Vu|” and (B.1) gives
r/2 1=p/2
V-l < C ( (IVul” - |Vu:|">> (/ |w|")
B, r

1-p/2
< Ccrrl? (/ |Vu|P> ) (B.2)
B,

Moreover, using again the fact that /4 is the p-harmonic replacement of «# and applying
Theorem 1 in [22] (with ¢ = 0), we get

C 1/p 1/p
sup |Vu*| < <—/ |Vu;|P> < (Cr_"/ |Vu|”) . (B.3)
Br/2 r' B, r

Now, for small & > 0 to be chosen below, we have for 0 < r < rg(g) withr® < 1/2

/ |VulP < C / IV(u —uy)|? +/ [Vur|?
Bite Biye B iye

(1+¢) p
<C [ W= e

B,

1-p/2
< crv/? (/ |vu|1’) +Crm | |VulP, (B.4)
r Br

where the last step follows from (B.2) and (B.3). Since u is a p-subsolution (A ,u =
g(u) > 0), we can apply Caccioppoli inequality (see e.g. Lemma 2.9 in [20], whose
proof works for p-subsolutions as well) to obtain

C
/ |[VulP < — ul < Cr'"7P, (B.5)
r r By,
This, combined with (B.4), yields (by letting p = r!+¢)
n—p+p2/2 n—p+ten
/ |Vu|p <Cl|p T +p 1+ .
By

2 2
: _ 7 2/ : __r
Taking ¢ = 5 so that p~/2 = en, we obtain that for § = T ?

/ |Vu|P < Cp"—PtPs, (B.6)
By
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As this estimate holds for any center x° and any small radius p, by applying Morrey
space embedding theorem, we can obtain u € C%%(Q) and ||u lcos @y < C for every
Qe Q. O

Now we use bootstrapping to improve the Holder-continuity result in Lemma 7 to
almost Lipschitz regularity.

Lemma8 Forl < p < 2, let g, Gu, @ be as in Lemma 7. Then u € C%%(Q) for
every0 < o < 1. Moreover, for any Q' € , there exists a constant C > 0 depending
onlyon 2, n, p, a, ||¢|lco such that

||M ”CO,a () < C.

Proof For B, € 2 and small ¢ > 0 to be specified below, we have by (B.4)

1-p/2
/‘ |VMW;§CVWV2(/‘|VMW) +(ﬁ£"/a|VuW.
B,H»s By B,

Instead of (B.5), we use the improved estimate (B.6), fBr |Vul? < Cr*=P*P3 tohave

for p = rlte

n—p+p@+p/2—ps/2) n—p+en+pé

/ |Vu|17 < C,O T+e +Cp T+e
B,

2
We take ¢ = g—n(l — &) so that the two terms on the right-hand side have the same
power, and obtain

p/2A =8 + p/nd —8))

/|%M§CWWH% § =68+
BP

1+ 2n(l —9)
By iteration, we can find a sequence of positive numbers 81, 87, - - - such that §; = 6,
8k < ka1 < Sk + r/20 Sk)(1+l7/n(l 3) for k > 1, and fB |Vu|2 < Cp"~ P+p3k for

1+§,,(1 3k)
0 < p < pr as long as 6 < 1. Note that if 0 < 6 < o for some o € (0, 1), then

p/21 =0+ p/n(1 = 8) _ p/2(1 =)+ p/n(l —a))
T+ 20— 8) 1+

This implies that we can make §x41 — &, greater than a universal positive constant,
independent of k, as long as §; < 1. Thus, for any o € (0, 1) we can find m € N such
thato < §,, < 1 and

/ |Vu|p < Cpn—p+p5m < Cpn—p-ﬁ—pcr.
B,

As we have seen in Lemma 7, this Morrey-type estimate implies the C%? -regularity.
O
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Finally, we prove the C!“®-regularity of energy minimizers with the help of
Lemma 8 and [18].

Theorem6 Let 1 < p < 2 and let g, G, u, @ be as the above lemmas. Then there
exists a constant a € (0, 1), depending only on p and a such that u € CH%(Q).
Furthermore, for every Q' € , there exists a constant C > 0, depending only on 2/,
n, p, a, ||¢lleo, such that

”M || Ccla(Q) < C.
Proof Fix asmall ball B, (x°) € €, and let uy be the p-harmonic replacement of u in

B, (xo). For simplicity we assume x% = 0 and use Lemma 4.1 in [18] (which holds
for 1 < p < 2 as well) to have

n+poa
f Vu— (Vu),l” < € (£) / Vi — (V) |7
B, r B,

—I—C/ IV —ud)l’, 0<p<r.
B,

Here, o), € (0, 1) is some constant depending on p, and (Vu), = |Bls| st Vu, 0 <
s <r,is the mean value in B. Suppose we have
/ V(@ —ub)|? < Cr*tr? B.7)
B,

for some constant @ € (0, ap), depending only on a and p. Then

n+paoa
/ \Vu — (Vu),|P < C (3) " Vi = (V)P e 0 < p <1
B, r B,

By applying Lemma 3.4 in [14], we obtain
/ |V — (Vu),|P < Cp" TP,
By

and thus Vu € C%¢ by Campanato space embedding theorem.
Now we prove (B.7) and close the argument. To this aim, we recall the first inequality
in (B.2):

p/2 1—p/2
/ [V —up|? <C </ (|Vul? — IWZI”)) ([ IWI”> . (B.®)
B, B, B,

We also observe that for y :=1+a € (0, 1)

. . u x)
/ (|Vu|” - |Vu:|”) < / (Guy) —Gw)dx = / / 8(s)dsdx
r By r Ju(x)
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uy(x)
< / / Cis%dsdx < C/ ((u:)” — u”)
B Nur>u} Ju(x) B N{ur>u}

scf |@—mysc/|@—mﬂ
B N{ur>u} B,

where we used Lemma 2.5 in [18] in the second to last step. By applying Poincaré
inequality together with Holder’s inequality, we further have

v/p
* 1+ *
/ (IVul? = [Vuz|?) < C|B, | p(/'nuu—u»w)
B, By

_c by =1 v - y/p
=Cr IV(u — uj)| .
B,

Combining this with (B.8) and writing A := fBr |V(u — uy)|?, we infer that

n 2 1=p/2
A< C(r”ﬂ'_T’yAy/[’)p/ </ |Vu|f’) .

Recall that we have proved in Lemma 8 that for any ¢ € (0, 1)

/ |VulP < Cr"=PHPU=8) — cpn=re 0 <1 <7,
Br
Inserting this into the equation above gives

A<C (rnwf%Ay/p)”/z F=pe)(1=p/2).

which can be simplified as

V*E(Z*P))
A< Crn+p( 2=y

__Y
Now, we take ¢ = 0-7) and get

A<Cr'trPe, g = L
22 -vy)

Redefining « = min [2(+_y), ozp} if necessary, we obtain (B.7) and completes the
proof. O
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