CONVEXITY OF REFLECTIVE SUBMANIFOLDS IN SYMMETRIC R-SPACES

Peter Quast and Makiko Sumi Tanaka

(Received October 19, 2011)

Abstract

We show that every reflective submanifold of a symmetric R-space is (geodesically) convex.

Introduction. The main result in this article is the following.
THEOREM 1. Reflective submanifolds of symmetric R-spaces are (geodesically) convex.

We organized this article as follows. In Section 1, we define all notions used in Theorem 1. Reflective submanifolds in symmetric R-spaces are described in Section 2. The proof of Theorem 1 can be found in Section 3. In Section 4, we explain why the assumption "symmetric R-space" in Theorem 1 can not be generalized to all compact symmetric spaces.

Symmetric R-spaces, introduced by Takeuchi and Nagano in the 1960 s, form a class of compact symmetric spaces that have very peculiar geometric properties and appear in various contexts. For example, symmetric R-spaces arise as certain spaces of shortest geodesics, namely as those centrioles (see [CN88]) that are formed by midpoints of shortest geodesics arcs joining a base point to a pole (see e.g. [MQ12]). Reflective submanifolds in symmetric spaces include among others polars and centrioles (see e.g. [CN88, Na88, Qu11]). An iterative construction involving such centrioles has been used by Bott [Bo59] in the first proof of his famous periodicity result for the homotopy groups of classical Lie groups (see also [Mi69, § 23, 24] and [Mi88, § 7]). For the construction described in [MQ11, Sect. 1.2], it is important that the distance between a base point and a pole in a centriole of certain R-spaces measured in the centriole is the same as the distance measured in the ambient R-space. This follows directly from Theorem 1.

Theorem 1 also provides a conceptional proof of [NS91, Remark 3.2b] in the case where the ambient space is a symmetric R-space.

1. Preliminaries. We first define the terminology used in Theorem 1.

Reflective submanifolds. A reflective submanifold M of a Riemannian manifold P is a connected component of the fixed point set of an involutive isometry τ of P, that is τ^{2} equals

[^0]the identity. Thus reflective submanifolds are totally geodesic (see e.g. [BCO03, Prop. 8.3.4]). To contain many reflective submanifolds, the ambient Riemannian manifold P should have a large isometry group. An interesting class of ambient manifolds are therefore symmetric spaces. In the series of papers [Le73, Le74, Le79a, Le79b], Leung studied and classified reflective submanifolds in simply connected irreducible symmetric spaces of compact type.

Convexity. We call a connected Riemannian submanifold $M \subset P$ of a Riemannian manifold P (geodesically) convex, if the (Riemannian) distance $d_{M}\left(m_{1}, m_{2}\right)$ in M between any pair of points $m_{1}, m_{2} \in M$ coincides with the Riemannian distance $d_{P}\left(m_{1}, m_{2}\right)$ in the abient space P. In other words, a complete totally geodesic submanifold $M \subset P$ is convex if any shortest geodesic arc in M joining two arbitrarily chosen points m_{1} and m_{2} in M is still shortest in P (see also [Sa96, pp. 26, 84]).

Symmetric spaces. Before defining the terminology "symmetric R-space", we shortly introduce some useful notions about symmetric spaces. We refer to the Helgason's standard monograph [He78] for proofs and further details about symmetric spaces. Let S be a (Riemannian) symmetric space, that is a connected Riemannian manifold such that for any point $p \in S$ there exists an isometry s_{p} of S that fixes p and whose differential at p is -Id on $T_{p} S$. One can show that symmetric spaces are geodesically complete and homogeneous.

We now fix an origin $o \in S$ and get an involutive Lie group automorphism σ of the isometry group $\mathrm{I}(S)$ of S defined by $\sigma(g)=s_{o} \circ g \circ s_{o}$ for any $g \in \mathrm{I}(S)$. Its differential σ_{*} at the identity is an involutive automorphism of the Lie algebra of $\mathrm{I}(S)$.

The (-1)-eigenspace \mathfrak{s} of σ_{*} is called the Lie triple corresponding to (S, o). It is identified with $T_{o} S$ by the differential at the identity of the principal bundle $\mathrm{I}(S) \rightarrow S, g \mapsto g \cdot o$, where $g \cdot o$ denotes the point in S obtained by applying g to the origin o. By this identification, \mathfrak{s} carries a scalar product denoted by $\langle.,$.$\rangle induced from the Riemannian metric on T_{o} S$. The curvature tensor on $T_{O} P$ is the expressed in \mathfrak{s} by double Lie brackets and the geodesics of P emanating from o are of the form

$$
t \mapsto \exp (t X) \cdot o \quad \text { with } \quad X \in \mathfrak{s},
$$

where exp is the Lie theoretic exponential map. The linear isotropy action on \mathfrak{s} coincides with the adjoint action restricted to \mathfrak{s}.

Orthogonal unit lattices. We choose a maximal abelian subspace $\mathfrak{t} \subset \mathfrak{s}$ in \mathfrak{s}. Then $T:=\exp (\mathfrak{t}) \cdot o$ is a maximal complete connected totally geodesic flat submanifold of S, a maximal flat torus. For a compact symmetric space S, the unit lattice

$$
\Gamma(S, \mathfrak{t}):=\{X \in \mathfrak{t} ; \exp (X) \cdot o=o\}
$$

of S is said to be orthogonal, if there exists a basis $\left\{b_{1}, \ldots, b_{r}\right\}$ of \mathfrak{t} with the properties
(i) $\left\langle b_{j}, b_{k}\right\rangle=0$, if $j \neq k$,
(ii) $\quad \Gamma(S, \mathfrak{t})=\operatorname{span}_{\mathbf{Z}}\left(b_{1}, \ldots, b_{r}\right)=\left\{\sum_{j=1}^{r} x_{j} b_{j} ; x_{j} \in \boldsymbol{Z}\right\}$.

Symmetric R-spaces. Symmetric R-spaces, introduced by Takeuchi and Nagano in the 1960s, form a distinguished subclass of compact Riemannian symmetric spaces. They arise as
particular orbits of s-representations, i.e., linear isotropy representations of symmetric spaces of compact type.

Let S be a symmetric space of compact type, that is the universal Riemannian cover of S is still compact, and o an origin in S. Using the notation introduced above, we take a nonzero element $\xi \in \mathfrak{s}$ that satisfies

$$
\operatorname{ad}(\xi)^{3}=-\operatorname{ad}(\xi)
$$

Then the connected isotropy orbit $P:=\operatorname{Ad}_{\mathrm{I}(S)}(H) \xi \subset \mathfrak{s}$ is a symmetric R-space. Here $H \subset \mathrm{I}(S)$ denotes the identity component of the isotropy group of $o \in S$, which is a compact Lie group. Thus symmetric R-spaces are always compact.

The orbit $P \subset \mathfrak{s}$ is extrinsically symmetric in the Euclidean space \mathfrak{s}, that is, P is invariant under the reflections through all its affine normal spaces (see [Fe80]). In particular, symmetric R-spaces are (Riemannian) symmetric spaces (w.r.t. the submanifold metric induced by the scalar product on \mathfrak{s}). Ferus [Fe74] (see also [Fe80, EH95]) has shown that the converse also holds. Namely, every full compact extrinsically symmetric submanifold in a Euclidean space is a symmetric R-space.

Irreducible symmetric R-spaces have been first classified by Kobayashi and Nagano in [KN64]. A list of them can also be found in [BCO03, p. 311]. Takeuchi [Ta84] has shown that irreducible symmetric R-spaces are either irreducible hermitian symmetric spaces of compact type or compact connected real forms of them and vice-versa.

Theorem 2 ([Lo85, Satz 3]). The unit lattice of a symmetric R-space P is orthogonal.

Following Loos [Lo85], this property is actually an intrinsic characterization of symmetric R-spaces among compact symmetric spaces.
2. Reflective submanifolds of symmetric R-spaces. Let now $M \subset P$ be a reflective submanifold of a symmetric R-space P and $o \in M$ a chosen origin. Since P is compact and M a closed subset of P, M is also compact. Let G be the transvection group of P, that is the identity component of $\mathrm{I}(P)$. The topology underlying the Lie group structure of G is the compact-open topology (see e.g. [He78, Ch. IV, §2,3]). Thus the identity component L of $\{g \in G ; g(M) \subset M\}$ is a closed subgroup of the compact Lie group G and therefore a compact Lie group, too. Since M is a totally geodesic submanifold of P, L contains all transvections of P along geodesics of M. Thus L acts transitively (but maybe highly non effectively) on M.

The involution σ of G given by $\sigma(g)=s_{o} \circ g \circ s_{o}$ for all $g \in G$ leaves $\{g \in G ; g(M) \subset$ $M\}$ and therefore also L invariant and induces an involutive automorphism of L which we also denote by σ. We set

$$
H:=\{l \in L ; l \cdot o=o\} .
$$

Since H is a closed subgroup of the compact Lie group L, H is a compact Lie subgroup of L.
Observation 3. (L, H) is a compact Riemannian symmetric pair (in the sense defined in [Sa77, p. 137]).

Proof. We are left to show that $L_{e}^{\sigma} \subset H \subset L^{\sigma}$, where $L^{\sigma} \subset L$ is the fixed point set of σ in L and L_{e}^{σ} its identity component.

Let K be the subgroup of G formed by all transvections of P that leave o fix. It is well known that $G_{e}^{\sigma} \subset K \subset G^{\sigma}$, here G^{σ} is the fixed point set of σ in G and G_{e}^{σ} is its identity component (see e.g. [He78, Ch. IV, §3]). Since $H=L \cap K, L^{\sigma}=L \cap G^{\sigma}$ and L_{e}^{σ} is the identity component of $L \cap G_{e}^{\sigma}$, the claims follows, because

$$
L_{e}^{\sigma} \subset L \cap G_{e}^{\sigma} \subset H=L \cap K \subset L \cap G^{\sigma}=L^{\sigma} .
$$

Let \mathfrak{p} be the Lie triple corresponding to (P, o) and $\mathfrak{m} \subset \mathfrak{p}$ the Lie subtriple of \mathfrak{p} corresponding to (M, o) (see [He78, Ch. IV, §7] for further explications). If τ denotes the involutive isometry of P such that M is a connected component of the fixed point set of τ and τ_{*} denotes the involution on \mathfrak{p} induced by the differential of τ at o, then \mathfrak{m} is the fix point set of τ_{*} and its orthogonal complement \mathfrak{m}^{\perp} in \mathfrak{p} is the (-1)-eigenspace of τ_{*}. Notice that s_{o} and τ commute (see [Le73, p. 156]). We get an involutive Lie group automorphism

$$
\tilde{\tau}: G \rightarrow G, \quad g \mapsto \tau \circ g \circ \tau .
$$

Since the curves $t \mapsto(\tau \circ \exp (t X) \circ \tau) \cdot o$ and $t \mapsto(\tau \circ \exp (t X)) \cdot o$ in P coincide, we see that, on $\mathfrak{p} \cong T_{o} P$, the differential $\tilde{\tau}_{*}$ of $\tilde{\tau}$ at the identity coincides with the differential τ_{*} of τ at o and therefore leaves \mathfrak{p} invariant.

Let \mathfrak{a} be a maximal abelian subspace of \mathfrak{m} and \mathfrak{t} a maximal abelian subspace of \mathfrak{p} containing \mathfrak{a}.

ObSERVATION 4 ([TT12, Lemma 3.1]). \mathfrak{t} is invariant under τ_{*}.
Proof. The arguments given here are similar to the proof of [Lo69II, Prop. 3.2, p. 125]. Take $T \in \mathfrak{t}$, then $T+\tau_{*}(T)$ lies in \mathfrak{m}. Since

$$
\left.\begin{array}{rl}
{\left[A, T+\tau_{*}(T)\right]} & =[A, T]+\left[A, \tau_{*}(T)\right]
\end{array}=\left[\tau_{*}(A), \tau_{*}(T)\right]\right) \text { } \quad=\left[\begin{array}{rl}
& \left.\left.=\left[\tilde{\tau}_{*}(A), \tilde{\tau}_{*}(T)\right], T\right]\right) \\
& =0
\end{array}\right.
$$

for all $A \in \mathfrak{a}$ and since \mathfrak{a} is a maximal abelian subset of \mathfrak{m}, we see that $T+\tau_{*}(T) \in \mathfrak{a}$ and hence $\tau_{*}(T)=\left(T+\tau_{*}(T)\right)-T \in \mathfrak{t}$.

The space \mathfrak{t} splits as an orthogonal direct sum

$$
\mathfrak{t}=\mathfrak{a} \oplus \mathfrak{a}^{\perp}
$$

with $\mathfrak{a}^{\perp}=\mathfrak{t} \cap \mathfrak{m}^{\perp}$.
Since τ_{*} is the differential of an involutive isometry of P that leaves \mathfrak{t} invariant, $\left.\tau_{*}\right|_{\mathfrak{t}}$ is an orthogonal transformation of \mathfrak{t} that squares to the identity and preserves the unit lattice $\Gamma(P, \mathfrak{t}) \subset \mathfrak{t}$. Since the unit lattice of the symmetric R-space P is orthogonal (see Theorem 2 due to Loos [Lo85]), there exists an orthogonal basis $\left\{b_{1}, \ldots, b_{r}\right\}$ of \mathfrak{t} that generates $\Gamma(P, \mathfrak{t})$ over \boldsymbol{Z}.

Proposition 5 ([TT12, Proposition 3.3]). There exists an orthogonal basis $\left\{e_{1}, \ldots\right.$, $\left.e_{r}\right\}$ of \mathfrak{t} with the properties
(i) $\quad \Gamma(P, \mathfrak{t})=\operatorname{span}_{\mathbf{Z}}\left(e_{1}, \ldots, e_{r}\right)=\left\{\sum_{j=1}^{r} x_{j} e_{j} ; x_{j} \in \boldsymbol{Z}\right\}$,
(ii) there exist integer numbers p, q with $0 \leq 2 p \leq q \leq r$ such that

- $\tau_{*}\left(e_{2 j}\right)=e_{2 j-1}$ for $1 \leq j \leq p$,
- $\tau_{*}\left(e_{j}\right)=e_{j}$ for $2 p+1 \leq j \leq q$,
- $\tau_{*}\left(e_{j}\right)=-e_{j}$ for $q+1 \leq j \leq r$.

PROOF. Tanaka and Tasaki presented a differential geometric proof of this result (see [TT12, proof of Prop. 3.3]). In this paper we are inclined to give an elementary linear algebraic construction of the orthogonal basis $\left\{e_{1}, \ldots, e_{r}\right\}$.

Without loss of generality, we may assume that the orthogonal basis $B=\left\{b_{1}, \ldots, b_{r}\right\}$ that generates the unit lattice $\Gamma(P, \mathfrak{t})$ over \boldsymbol{Z} is ordered by length, that is $\left\|b_{1}\right\| \leq\left\|b_{2}\right\| \leq$ $\cdots \leq\left\|b_{r}\right\|$. Let $s \in\{1, \ldots, r\}$ be the integer number such that $\left\|b_{1}\right\|=\left\|b_{j}\right\|$ for $j=1, \cdots, s$ and $\left\|b_{1}\right\|<\left\|b_{s+1}\right\|$. If $0 \neq x=\sum_{j=1}^{r} x_{j} b_{j} \in \Gamma(P, \mathfrak{t})$, that is $x_{j} \in \boldsymbol{Z}$, then $\|x\|^{2}=$ $\sum_{j=1}^{r} x_{j}^{2}\left\|b_{j}\right\|^{2} \geq\left\|b_{1}\right\|^{2}$, and $\|x\|=\left\|b_{1}\right\|$ holds if and only if $x \in\left\{ \pm b_{1}, \ldots, \pm b_{s}\right\}$. Since τ_{*} is an orthogonal map that preserves $\Gamma(P, \mathfrak{t})$, we conclude that

$$
\tau_{*}\left(b_{j}\right) \in\left\{ \pm b_{1}, \ldots, \pm b_{s}\right\} \quad \text { for all } \quad j \in\{1, \ldots, s\}
$$

Let $V:=\operatorname{span}_{\boldsymbol{R}}\left\{b_{1}, \ldots, b_{s}\right\}$, then $V^{\perp}=\operatorname{span}_{\boldsymbol{R}}\left\{b_{s+1}, \ldots, b_{r}\right\}$. Since the orthogonal endomorphism τ_{*} leaves V invariant, the same holds for V^{\perp}. By applying the above arguments to $\left.\tau_{*}\right|_{V^{\perp}}$ and by iterating this scheme, we get

$$
\tau_{*}\left(b_{j}\right) \in\left\{ \pm b_{1}, \ldots, \pm b_{r}\right\} \quad \text { for all } \quad j \in\{1, \ldots, r\}
$$

Since τ_{*} is involutive, $\tau_{*}\left(b_{j}\right)=b_{k}$ implies $\tau_{*}\left(b_{k}\right)=b_{j}$ and $\tau_{*}\left(b_{j}\right)=-b_{k}$ implies $\tau_{*}\left(b_{k}\right)=$ $-b_{j}$.

After renumbering $\left\{b_{1}, \ldots, b_{r}\right\}$ suitably, we can therefore assume that

- $\tau_{*}\left(b_{2 j}\right)= \pm b_{2 j-1}$ for $1 \leq j \leq p$,
- $\tau_{*}\left(b_{j}\right)=b_{j}$ for $2 p+1 \leq j \leq q$,
- $\tau_{*}\left(b_{j}\right)=-b_{j}$ for $q+1 \leq j \leq r$,
for some integers p, q with $0 \leq 2 p \leq q \leq r$. We now choose the desired basis $\left\{e_{1}, \ldots, e_{r}\right\}$ as follows:
- $e_{2 j-1}=b_{2 j-1}$ for $1 \leq j \leq p$,
- $e_{2 j}=\left\{\begin{array}{lll}b_{2 j} & \text { if } & \tau_{*}\left(b_{2 j}\right)=b_{2 j-1} \\ -b_{2 j} & \text { if } & \tau_{*}\left(b_{2 j}\right)=-b_{2 j-1}\end{array}\right.$ for $1 \leq j \leq p$,
- $e_{j}=b_{j}$ for $2 p+1 \leq j \leq r$.

Since \mathfrak{a} is the fixed point set of τ_{*} in \mathfrak{t}, Proposition 5 implies the following corollary.
COROLLARY 6 ([TT12, Proposition 3.3]). We have the equalitiy

$$
\mathfrak{a}=\left\{\sum_{j=1}^{r} x_{j} e_{j} ; x_{2 j-1}=x_{2 j} \text { for } 1 \leq j \leq p \text { and } x_{q+1}=\cdots=x_{r}=0\right\}
$$

3. Proof of the main result, Theorem 1. A reflective submanifold $M \subset P$ in a compact symmetric R-space is itself a compact connected symmetric space and hence complete. The classical theorem of Hopf and Rinow (see e.g. [Sa96, p. 84]) tells us that any two points $m_{1}, m_{2} \in M$ can be joined by a geodesic in M that is shortest within M. If such a shortest geodesic in M is still shortest within P, then M is geodesically convex.

The tangent cut locus $\tilde{C}\left(T_{p} P\right)$ of a compact Riemannian manifold P at a point $p \in M$ is the set of all tangent vectors $X \in T_{p} P$ such that

- $d_{P}\left(p, \gamma_{X}(t)\right)=t\|X\|$ for $t \in[0,1]$ and
- $d_{P}\left(p, \gamma_{X}(t)\right)<t\|X\|$ for $t>1$,
where d_{P} denotes the Riemannian distance in P (see e.g. [Sa96, p. 26] for the definition) and γ_{X} is the geodesic in P that emanates from p in the direction X. We refer to [Sa96, p. 104] for further explication concerning the tangent cut locus.

Thus $M \subset P$ is convex, if

$$
\begin{equation*}
\tilde{C}\left(T_{m} M\right)=T_{m} M \cap \tilde{C}\left(T_{m} P\right) \tag{1}
\end{equation*}
$$

holds for any point $m \in M$. Since M is homogeneous, it suffices to verify Equation (1) at just one point $o \in M$.

Sakai [Sa77, Thm. 2.5] has shown that the tangent cut locus of a compact symmetric space is determined up to the isotropy action by the tangent cut locus of a maximal flat totally geodesic torus. Tasaki [Ta10, Lemma 2.2] adapted Sakai's result to totally geodesic submanifolds. We now state Tasaki's result in a version that is specialized to fit best our needs and set up. We use again the notions established in Sections 1 and 2. Tasaki's assumptions in [Ta10, Lemma 2.2] concerning the symmetric pairs are satisfied by Observation 3.

Lemma 7 ([Ta10, Lemma 2.2]). Let M be a reflective submanifold of a symmetric R-space P, o a point in M, \mathfrak{a} an arbitrarily chosen maximal abelian linear subspace of $\mathfrak{m} \cong T_{o} M$ and \mathfrak{t} a maximal abelian linear subspace of $\mathfrak{p} \cong T_{o} P$ that contains \mathfrak{a}. Let A be the maximal flat torus of M corresponding to \mathfrak{a} and T the maximal flat torus of P corresponding to \mathfrak{t}, that is $\mathfrak{a} \cong T_{o} A$ and $\mathfrak{t} \cong T_{o} T$. If

$$
\begin{equation*}
\tilde{C}(\mathfrak{a})=\mathfrak{a} \cap \tilde{C}(\mathfrak{t}) \tag{2}
\end{equation*}
$$

then $\tilde{C}(\mathfrak{m})=\mathfrak{m} \cap \tilde{C}(\mathfrak{p})$ and M is a (geodesically) convex submanifold of P.
Thus, to prove Theorem 1, we just need to show that Equation (2) is satisfied, that is, A is a convex submanifold of T. We do this by showing the following claim.

Claim 8. For all points $a \in A$ we have

$$
d_{A}(o, a)=d_{T}(o, a) .
$$

Proof. Both maps

$$
\mathfrak{a} \rightarrow A, X \mapsto \exp (X) \cdot o \quad \text { and } \quad \mathfrak{t} \rightarrow T, Y \mapsto \exp (Y) \cdot o
$$

are Riemannian coverings between flat spaces. Thus they map straight lines in \mathfrak{a} and \mathfrak{t} onto geodesics of A and T, and every geodesic arises in this way.

Let $a \in A$ be an arbitrarily chosen point in A, then $a=\exp (X) \cdot o$ for some $X \in \mathfrak{a}$. In view of Corollary 6 , one can write $X=\sum_{j=1}^{r} x_{j} e_{j}$ with

- $x_{2 j}=x_{2 j-1}$ for $1 \leq j \leq p$,
- $x_{q+1}=\cdots=x_{r}=0$,
where $\left\{e_{1}, \ldots, e_{r}\right\}$ is the orthogonal basis of \mathfrak{t} mentioned in Proposition 5. Using Theorem 2, we get

$$
\begin{aligned}
d_{T}^{2}(o, a) & =\min \left\{\|X+Y\|^{2} ; Y \in \Gamma(P, \mathfrak{t})\right\} \\
& =\min \left\{\left\|\sum_{j=1}^{r}\left(x_{j}+y_{j}\right) e_{j}\right\|^{2} ; y_{1}, \ldots, y_{r} \in \boldsymbol{Z}\right\} \\
& =\min \left\{\sum_{j=1}^{r}\left(x_{j}+y_{j}\right)^{2}\left\|e_{j}\right\|^{2} ; y_{1}, \ldots, y_{r} \in \boldsymbol{Z}\right\} .
\end{aligned}
$$

We now choose integer numbers $z_{1}, \ldots, z_{r} \in \boldsymbol{Z}$ as follows:

- For $1 \leq j \leq p$, we choose $z_{2 j}$ such that

$$
\left(x_{2 j}+z_{2 j}\right)^{2}=\min \left\{\left(x_{2 j}+y_{2 j}\right)^{2} ; y_{2 j} \in Z\right\}
$$

and set $z_{2 j-1}:=z_{2 j}$. Since $x_{2 j}=x_{2 j-1}$, we also get

$$
\left(x_{2 j-1}+z_{2 j-1}\right)^{2}=\min \left\{\left(x_{2 j-1}+y_{2 j-1}\right)^{2} ; y_{2 j-1} \in Z\right\}
$$

- For $2 p+1 \leq j \leq q$, we choose $z_{j} \in \boldsymbol{Z}$ such that

$$
\left(x_{j}+z_{j}\right)^{2}=\min \left\{\left(x_{j}+y_{j}\right)^{2} ; y_{j} \in \mathbf{Z}\right\} .
$$

- $z_{q+1}=\cdots=z_{r}=0$.

These choices ensure that

$$
\sum_{j=1}^{r}\left(x_{j}+z_{j}\right)^{2}\left\|e_{j}\right\|^{2}=d_{T}^{2}(o, a)
$$

Moreover the vector $Z=\sum_{j=1}^{r} z_{j} e_{j} \in \Gamma(P, \mathfrak{t})$ satisfies

- $z_{2 j}=z_{2 j-1}$ for $1 \leq j \leq p$,
- $z_{q+1}=\cdots=z_{r}=0$,
that is $Z \in \mathfrak{a}$.
Notice that $\exp (X+Z) \cdot o=\exp (X) \exp (Z) \cdot o=\exp (X) \cdot o=a$ and $d_{T}^{2}(o, a)=$ $\|X+Z\|^{2}$. Since $X+Z \in \mathfrak{a}$ and $d_{T}^{2}(o, a) \leq d_{A}^{2}(o, a)$, we get $d_{T}^{2}(o, a)=d_{A}^{2}(o, a)$, and Claim 8 follows.

4. Counterexamples. Though our proof of Theorem 1 relies on Loos' characterization of symmetric R-spaces in terms of orthogonal unit lattices, one may ask if the statement of Theorem 1 is still true for reflective submanifolds in arbitrary compact symmetric spaces. In this section we present two counterexamples for such a statement, that arose in discussion with Jost-Hinrich Eschenburg.

EXAMPLE 9. Take a flat 2 -torus P with a non-rectangular rhombic lattice. Then the long diagonal in the rhombic lattice gives a reflective submanifold M of P. The shortest geodesic in P joining the midpoint of a rhombic fundamental domain to a vertex of it follows the short diagonal and therefore does not lie in the reflective submanifold M. Thus M is not convex.

With this picture in mind for a maximal flat torus in a symmetric space, one gets a first counterexample of the statement in Theorem 1, if one replaces "symmetric R-space" by "symmetric space of compact type".

Example 10. Consider SU_{3} equipped with the bi-invariant metric induced by

$$
\langle X, Y\rangle=\operatorname{trace}(X Y), X, Y \in \mathfrak{s u}_{3} .
$$

The complex conjugation is an involutive isometry of SU_{3} whose fixed point set is SO_{3}. Since the complex conjugation leaves the center

$$
C=\left\{I_{3}, e^{2 \pi i / 3} I_{3}, e^{4 \pi i / 3} I_{3}\right\}
$$

of SU_{3} invariant, it descends to an involutive isometry σ of the irreducible symmetric spaces $P=\mathrm{SU}_{3} / C \cong \operatorname{Ad}\left(\mathrm{SU}_{3}\right)$. As SO_{3} meets the center of SU_{3} only in I_{3}, the restriction of the Riemannian covering

$$
\pi: \mathrm{SU}_{3} \rightarrow \mathrm{SU}_{3} / C, x \mapsto[x]
$$

to SO_{3} is an injective map and $M=\pi\left(\mathrm{SO}_{3}\right)$ is the fixed point set of σ and therefore a reflective submanifold of P.

A shortest geodesic arc within M that joins $\left[I_{3}\right]$ to the point

$$
\left[\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\right]=\left[\left(\begin{array}{ccc}
e^{\pi i / 3} & 0 & 0 \\
0 & e^{\pi i / 3} & 0 \\
0 & 0 & e^{-2 \pi i / 3}
\end{array}\right)\right]
$$

is given by

$$
\gamma_{1}:[0, \pi] \rightarrow M \subset P, t \mapsto\left[e^{t X_{1}}\right] \text { with } X_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

But there is a considerably shorter geodesic arc in P joining the given endpoints, namely,

$$
\gamma_{2}:[0, \pi] \rightarrow M \subset P, t \mapsto\left[e^{t X_{2}}\right] \text { with } X_{2}=\left(\begin{array}{ccc}
i / 3 & 0 & 0 \\
0 & i / 3 & 0 \\
0 & 0 & -2 i / 3
\end{array}\right)
$$

Notice that $\left\|X_{2}\right\|^{2}=2 / 3<2=\left\|X_{1}\right\|^{2}$. This shows that the reflective submanifold M of P is not geodesically convex.

Acknowledgment. Both authors wish to thank Jost-Hinrich Eschenburg for valuable discussions and helpful remarks.

References

[BCO03] J. Berndt, S. Console and C. Olmos, Submanifolds and holonomy, Chapman Hall/CRC Res. Notes Math. 434, Chapman \& Hall, Boca Raton, FL, 2003.
[Bo59] R. Bott, The stable homotopy of the classical groups, Ann. Math. (2) 70 (1959), 313-337.
[CN88] B.-Y. CHEN AND T. NAGANO, A Riemannian geometric invariant and its applications to a problem of Borel and Serre, Trans. Am. Math. Soc. 308 (1988), 273-297.
[EH95] J.-H. Eschenburg and E. Heintze, Extrinsic symmetric spaces and orbits of s-representations, Manuscripta Math. 88 (1995), 517-524.
[Fe74] D. FERUS, Immersions with parallel second fundamental form, Math. Z. 140 (1974), 87-93.
[Fe80] D. FERUS, Symmetric submanifolds of euclidean space, Math. Ann. 247 (1980), 81-93.
[He78] S. HELGASON, Differenital Geometry, Lie groups and symmetric spaces, Pure Appl. Math. 80, Academic Press, New York-London, 1978.
[KN64] S. Kobayashi and T. Nagano, On filtered Lie algebras and geometric structures. I, J. Math. Mech. 13 (1964), 875-907.
[Le73] D. S. P. LeUnG, The reflection principle for minimal submanifolds of Riemannian symmetric spaces, J. Differential Geom. 8 (1973), 153-160.
[Le74] D. S. P. LeUnG, On the classification of reflective submanifolds of Riemannian symmetric spaces, Indiana Univ. Math. J. 24 (1974/75), 327-339, erratum Indiana Univ. Math. J. 24 (1975), p. 1199.
[Le79a] D. S. P. LEUNG, Reflective submanifolds. III. Congruency of isometric reflective submanifolds and corrigenda to the classification of reflective submanifolds, J. Differential Geom. 14 (1979), 167-177.
[Le79b] D. S. P. LEUNG, Reflective submanifolds. IV. Classification of real forms of Hermitian symmetric spaces, J. Differential Geom. 14 (1979), 179-185.
[Lo69II] O. Loos, Symmetric spaces, II: Compact Spaces and Classification, W. A. Benjamin Inc., New YorkAmsterdam, 1969.
[Lo85] O. Loos, Charakterisierung symmetrischer R-Räume durch ihre Einheitsgitter, Math. Z. 189 (1985), 211-226.
[MQ11] A.-L. MARE AND P. QUAST, Bott periodicity for inclusions, arXiv:1108.0954.
[MQ12] A.-L. MARE AND P. QUAST, On some spaces of minimal geodesics in Riemannian symmetric spaces, Q. J. Math. 63 (2012), 681-694.
[Mi69] J. Milnor, Morse Theory, Annals of mathematics studies 51, 3rd printing, Princeton University Press, Princeton, 1969.
[Mi88] S. A. Mitchell, Quillen's theorem on buildings and the loops on a symmetric space, Enseign. Math. (2) 34 (1988), 123-166.
[Na88] T. NAGANO, The involutions of compact symmetric spaces, Tokyo J. Math. 11 (1988), 57-79.
[NS91] T. Nagano and M. Sumi, The spheres in symmetric spaces, Hokkaido Math. J. 20 (1991), 331-352.
[Qu11] P. QUAST, Centrioles in symmetric spaces, to appear in Nagoya Math. J.
[Sa77] T. SAKAI, On cut loci of compact symmetric spaces, Hokkaido Math. J. 6 (1977), 139-161.
[Sa96] T. SAKAI, Riemannian Geometry, Transl. Math. Monogr. 149, American Mathematical Society, Procidence, RI, 1996.
[Ta84] M. TAKEUCHI, Stability of certain minimal submanifolds of compact Hermitian symmetric spaces, Tohoku Math. J. (2) 36 (1984), 293-314.
[TT12] M. S. TANAKA AND H. TASAKI, The intersection of two real forms in Hermitian symmetric spaces of compact type, J. Math. Soc. Japan 64 (2012), 1297-1332.
[Ta10] H. TASAKI, The intersection of two real forms in the complex hyperquadric, Tohoku Math. J. (2) 62 (2010), 375-382.

Institut FÜr Mathematik
Universität Augsburg
86135 AUGSBURG
GERMANY
E-mail address: peter.quast@math.uni-augsburg.de

Faculty of Science and Technology
Tokyo University of Science
NODA, CHIBA 278-8510
JAPAN
E-mail address: tanaka_makiko@ma.noda.tus.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 53C35; Secondary 53C40.
 Key words and phrases. Convexity, reflective submanifolds, symmetric spaces.
 The second author was partly supported by the Grant-in Aid for Science Research (C) 2011 (No. 23540108), Japan Society for the Promotion of Science.

