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CONVEXITY OF REFLECTIVE SUBMANIFOLDS
IN SYMMETRIC R-SPACES
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Abstract. We show that every reflective submanifold of a symmetric R-space is
(geodesically) convex.

Introduction. The main result in this article is the following.

THEOREM 1. Reflective submanifolds of symmetric R-spaces are (geodesically) con-
vex.

We organized this article as follows. In Section 1, we define all notions used in Theorem
1. Reflective submanifolds in symmetric R-spaces are described in Section 2. The proof of
Theorem 1 can be found in Section 3. In Section 4, we explain why the assumption “symmet-
ric R-space” in Theorem 1 can not be generalized to all compact symmetric spaces.

Symmetric R-spaces, introduced by Takeuchi and Nagano in the 1960s, form a class of
compact symmetric spaces that have very peculiar geometric properties and appear in various
contexts. For example, symmetric R-spaces arise as certain spaces of shortest geodesics,
namely as those centrioles (see [CN88]) that are formed by midpoints of shortest geodesics
arcs joining a base point to a pole (see e.g. [MQ12]). Reflective submanifolds in symmetric
spaces include among others polars and centrioles (see e.g. [CN88, Na88, Qu11]). An iterative
construction involving such centrioles has been used by Bott [Bo59] in the first proof of his
famous periodicity result for the homotopy groups of classical Lie groups (see also [Mi69, §
23, 24] and [Mi88, § 7]). For the construction described in [MQ11, Sect. 1.2], it is important
that the distance between a base point and a pole in a centriole of certain R-spaces measured
in the centriole is the same as the distance measured in the ambient R-space. This follows
directly from Theorem 1.

Theorem 1 also provides a conceptional proof of [NS91, Remark 3.2b] in the case where
the ambient space is a symmetric R-space.

1. Preliminaries. We first define the terminology used in Theorem 1.
Reflective submanifolds. A reflective submanifold M of a Riemannian manifold P is a

connected component of the fixed point set of an involutive isometry τ of P, that is τ 2 equals
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the identity. Thus reflective submanifolds are totally geodesic (see e.g. [BCO03, Prop. 8.3.4]).
To contain many reflective submanifolds, the ambient Riemannian manifold P should have
a large isometry group. An interesting class of ambient manifolds are therefore symmetric
spaces. In the series of papers [Le73, Le74, Le79a, Le79b], Leung studied and classified
reflective submanifolds in simply connected irreducible symmetric spaces of compact type.

Convexity. We call a connected Riemannian submanifold M ⊂ P of a Riemannian
manifold P (geodesically) convex, if the (Riemannian) distance dM(m1,m2) in M between
any pair of points m1,m2 ∈ M coincides with the Riemannian distance dP (m1,m2) in the
abient space P. In other words, a complete totally geodesic submanifold M ⊂ P is convex if
any shortest geodesic arc in M joining two arbitrarily chosen points m1 and m2 in M is still
shortest in P (see also [Sa96, pp. 26, 84]).

Symmetric spaces. Before defining the terminology “symmetric R-space”, we shortly
introduce some useful notions about symmetric spaces. We refer to the Helgason’s standard
monograph [He78] for proofs and further details about symmetric spaces. Let S be a (Rie-
mannian) symmetric space, that is a connected Riemannian manifold such that for any point
p ∈ S there exists an isometry sp of S that fixes p and whose differential at p is −Id on TpS.

One can show that symmetric spaces are geodesically complete and homogeneous.
We now fix an origin o ∈ S and get an involutive Lie group automorphism σ of the

isometry group I(S) of S defined by σ(g) = so ◦ g ◦ so for any g ∈ I(S). Its differential σ∗ at
the identity is an involutive automorphism of the Lie algebra of I(S).

The (−1)-eigenspace s of σ∗ is called the Lie triple corresponding to (S, o). It is identi-
fied with ToS by the differential at the identity of the principal bundle I(S) → S, g �→ g · o,

where g ·o denotes the point in S obtained by applying g to the origin o. By this identification,
s carries a scalar product denoted by 〈. , .〉 induced from the Riemannian metric on ToS. The
curvature tensor on ToP is the expressed in s by double Lie brackets and the geodesics of P

emanating from o are of the form

t �→ exp(tX) · o with X ∈ s ,

where exp is the Lie theoretic exponential map. The linear isotropy action on s coincides with
the adjoint action restricted to s.

Orthogonal unit lattices. We choose a maximal abelian subspace t ⊂ s in s. Then
T := exp(t) · o is a maximal complete connected totally geodesic flat submanifold of S, a
maximal flat torus. For a compact symmetric space S, the unit lattice

Γ (S, t) := {X ∈ t ; exp(X) · o = o}
of S is said to be orthogonal, if there exists a basis {b1, . . . , br} of t with the properties

(i) 〈bj , bk〉 = 0, if j 	= k,

(ii) Γ (S, t) = spanZ(b1, . . . , br) =
{ r∑

j=1
xjbj ; xj ∈ Z

}
.

Symmetric R-spaces. Symmetric R-spaces, introduced by Takeuchi and Nagano in the
1960s, form a distinguished subclass of compact Riemannian symmetric spaces. They arise as
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particular orbits of s-representations, i.e., linear isotropy representations of symmetric spaces
of compact type.

Let S be a symmetric space of compact type, that is the universal Riemannian cover of S

is still compact, and o an origin in S. Using the notation introduced above, we take a nonzero
element ξ ∈ s that satisfies

ad(ξ)3 = −ad(ξ) .

Then the connected isotropy orbit P := AdI(S)(H)ξ ⊂ s is a symmetric R-space. Here
H ⊂ I(S) denotes the identity component of the isotropy group of o ∈ S, which is a compact
Lie group. Thus symmetric R-spaces are always compact.

The orbit P ⊂ s is extrinsically symmetric in the Euclidean space s, that is, P is invariant
under the reflections through all its affine normal spaces (see [Fe80]). In particular, symmetric
R-spaces are (Riemannian) symmetric spaces (w.r.t. the submanifold metric induced by the
scalar product on s). Ferus [Fe74] (see also [Fe80, EH95]) has shown that the converse also
holds. Namely, every full compact extrinsically symmetric submanifold in a Euclidean space
is a symmetric R-space.

Irreducible symmetric R-spaces have been first classified by Kobayashi and Nagano in
[KN64]. A list of them can also be found in [BCO03, p. 311]. Takeuchi [Ta84] has shown that
irreducible symmetric R-spaces are either irreducible hermitian symmetric spaces of compact
type or compact connected real forms of them and vice-versa.

THEOREM 2 ([Lo85, Satz 3]). The unit lattice of a symmetric R-space P is orthogo-
nal.

Following Loos [Lo85], this property is actually an intrinsic characterization of symmet-
ric R-spaces among compact symmetric spaces.

2. Reflective submanifolds of symmetric R-spaces. Let now M ⊂ P be a reflective
submanifold of a symmetric R-space P and o ∈ M a chosen origin. Since P is compact
and M a closed subset of P, M is also compact. Let G be the transvection group of P, that
is the identity component of I(P ). The topology underlying the Lie group structure of G is
the compact-open topology (see e.g. [He78, Ch. IV, §2,3]). Thus the identity component L

of {g ∈ G ; g(M) ⊂ M} is a closed subgroup of the compact Lie group G and therefore
a compact Lie group, too. Since M is a totally geodesic submanifold of P, L contains all
transvections of P along geodesics of M. Thus L acts transitively (but maybe highly non
effectively) on M.

The involution σ of G given by σ(g) = so ◦g ◦ so for all g ∈ G leaves {g ∈ G ; g(M) ⊂
M} and therefore also L invariant and induces an involutive automorphism of L which we
also denote by σ. We set

H := {l ∈ L ; l · o = o} .

Since H is a closed subgroup of the compact Lie group L, H is a compact Lie subgroup of L.

OBSERVATION 3. (L,H) is a compact Riemannian symmetric pair (in the sense de-
fined in [Sa77, p. 137]).
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PROOF. We are left to show that Lσ
e ⊂ H ⊂ Lσ , where Lσ ⊂ L is the fixed point set

of σ in L and Lσ
e its identity component.

Let K be the subgroup of G formed by all transvections of P that leave o fix. It is well
known that Gσ

e ⊂ K ⊂ Gσ , here Gσ is the fixed point set of σ in G and Gσ
e is its identity

component (see e.g. [He78, Ch. IV, §3]). Since H = L ∩ K, Lσ = L ∩ Gσ and Lσ
e is the

identity component of L ∩ Gσ
e , the claims follows, because

Lσ
e ⊂ L ∩ Gσ

e ⊂ H = L ∩ K ⊂ L ∩ Gσ = Lσ . �

Let p be the Lie triple corresponding to (P, o) and m ⊂ p the Lie subtriple of p corre-
sponding to (M, o) (see [He78, Ch. IV, §7] for further explications). If τ denotes the involutive
isometry of P such that M is a connected component of the fixed point set of τ and τ∗ denotes
the involution on p induced by the differential of τ at o, then m is the fix point set of τ∗ and its
orthogonal complement m⊥ in p is the (−1)-eigenspace of τ∗. Notice that so and τ commute
(see [Le73, p. 156]). We get an involutive Lie group automorphism

τ̃ : G → G, g �→ τ ◦ g ◦ τ .

Since the curves t �→ (τ ◦ exp(tX) ◦ τ ) · o and t �→ (τ ◦ exp(tX)) · o in P coincide, we
see that, on p ∼= ToP, the differential τ̃∗ of τ̃ at the identity coincides with the differential τ∗
of τ at o and therefore leaves p invariant.

Let a be a maximal abelian subspace of m and t a maximal abelian subspace of p con-
taining a.

OBSERVATION 4 ([TT12, Lemma 3.1]). t is invariant under τ∗.

PROOF. The arguments given here are similar to the proof of [Lo69II, Prop. 3.2, p. 125].
Take T ∈ t, then T + τ∗(T ) lies in m. Since

[A, T + τ∗(T )]= [A, T ] + [A, τ∗(T )] = [τ∗(A), τ∗(T )]
= [τ̃∗(A), τ̃∗(T )] = τ̃∗([A, T ])
= 0

for all A ∈ a and since a is a maximal abelian subset of m, we see that T + τ∗(T ) ∈ a and
hence τ∗(T ) = (T + τ∗(T )) − T ∈ t. �

The space t splits as an orthogonal direct sum

t = a ⊕ a⊥

with a⊥ = t ∩ m⊥.

Since τ∗ is the differential of an involutive isometry of P that leaves t invariant, τ∗|t is
an orthogonal transformation of t that squares to the identity and preserves the unit lattice
Γ (P, t) ⊂ t. Since the unit lattice of the symmetric R-space P is orthogonal (see Theorem 2
due to Loos [Lo85]), there exists an orthogonal basis {b1, . . . , br} of t that generates Γ (P, t)

over Z.

PROPOSITION 5 ([TT12, Proposition 3.3]). There exists an orthogonal basis {e1, . . . ,
er } of t with the properties
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(i) Γ (P, t) = spanZ(e1, . . . , er ) =
{ r∑

j=1
xj ej ; xj ∈ Z

}
,

(ii) there exist integer numbers p, q with 0 ≤ 2p ≤ q ≤ r such that
• τ∗(e2j ) = e2j−1 for 1 ≤ j ≤ p,

• τ∗(ej ) = ej for 2p + 1 ≤ j ≤ q,

• τ∗(ej ) = −ej for q + 1 ≤ j ≤ r.

PROOF. Tanaka and Tasaki presented a differential geometric proof of this result (see
[TT12, proof of Prop. 3.3]). In this paper we are inclined to give an elementary linear algebraic
construction of the orthogonal basis {e1, . . . , er }.

Without loss of generality, we may assume that the orthogonal basis B = {b1, . . . , br}
that generates the unit lattice Γ (P, t) over Z is ordered by length, that is ‖b1‖ ≤ ‖b2‖ ≤
· · · ≤ ‖br‖. Let s ∈ {1, . . . , r} be the integer number such that ‖b1‖ = ‖bj‖ for j = 1, · · · , s

and ‖b1‖ < ‖bs+1‖. If 0 	= x = ∑r
j=1 xjbj ∈ Γ (P, t), that is xj ∈ Z, then ‖x‖2 =∑r

j=1 x2
j ‖bj‖2 ≥ ‖b1‖2, and ‖x‖ = ‖b1‖ holds if and only if x ∈ {±b1, . . . ,±bs}. Since τ∗

is an orthogonal map that preserves Γ (P, t), we conclude that

τ∗(bj ) ∈ {±b1, . . . ,±bs} for all j ∈ {1, . . . , s} .

Let V := spanR{b1, . . . , bs}, then V ⊥ = spanR{bs+1, . . . , br }. Since the orthogonal en-
domorphism τ∗ leaves V invariant, the same holds for V ⊥. By applying the above arguments
to τ∗|V ⊥ and by iterating this scheme, we get

τ∗(bj ) ∈ {±b1, . . . ,±br } for all j ∈ {1, . . . , r} .

Since τ∗ is involutive, τ∗(bj ) = bk implies τ∗(bk) = bj and τ∗(bj ) = −bk implies τ∗(bk) =
−bj .

After renumbering {b1, . . . , br} suitably, we can therefore assume that
• τ∗(b2j ) = ±b2j−1 for 1 ≤ j ≤ p,

• τ∗(bj ) = bj for 2p + 1 ≤ j ≤ q,

• τ∗(bj ) = −bj for q + 1 ≤ j ≤ r,

for some integers p, q with 0 ≤ 2p ≤ q ≤ r. We now choose the desired basis {e1, . . . , er }
as follows:

• e2j−1 = b2j−1 for 1 ≤ j ≤ p,

• e2j =
{

b2j if τ∗(b2j ) = b2j−1

−b2j if τ∗(b2j ) = −b2j−1
for 1 ≤ j ≤ p,

• ej = bj for 2p + 1 ≤ j ≤ r. �

Since a is the fixed point set of τ∗ in t, Proposition 5 implies the following corollary.

COROLLARY 6 ([TT12, Proposition 3.3]). We have the equalitiy

a =
{ r∑

j=1

xj ej ; x2j−1 = x2j for 1 ≤ j ≤ p and xq+1 = · · · = xr = 0

}
.
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3. Proof of the main result, Theorem 1. A reflective submanifold M ⊂ P in a com-
pact symmetric R-space is itself a compact connected symmetric space and hence complete.
The classical theorem of Hopf and Rinow (see e.g. [Sa96, p. 84]) tells us that any two points
m1,m2 ∈ M can be joined by a geodesic in M that is shortest within M. If such a shortest
geodesic in M is still shortest within P, then M is geodesically convex.

The tangent cut locus C̃(TpP ) of a compact Riemannian manifold P at a point p ∈ M

is the set of all tangent vectors X ∈ TpP such that
• dP (p, γX(t)) = t‖X‖ for t ∈ [0, 1] and
• dP (p, γX(t)) < t‖X‖ for t > 1,

where dP denotes the Riemannian distance in P (see e.g. [Sa96, p. 26] for the definition) and
γX is the geodesic in P that emanates from p in the direction X. We refer to [Sa96, p. 104]
for further explication concerning the tangent cut locus.

Thus M ⊂ P is convex, if

(1) C̃(TmM) = TmM ∩ C̃(TmP)

holds for any point m ∈ M. Since M is homogeneous, it suffices to verify Equation (1) at just
one point o ∈ M.

Sakai [Sa77, Thm. 2.5] has shown that the tangent cut locus of a compact symmetric
space is determined up to the isotropy action by the tangent cut locus of a maximal flat totally
geodesic torus. Tasaki [Ta10, Lemma 2.2] adapted Sakai’s result to totally geodesic submani-
folds. We now state Tasaki’s result in a version that is specialized to fit best our needs and set
up. We use again the notions established in Sections 1 and 2. Tasaki’s assumptions in [Ta10,
Lemma 2.2] concerning the symmetric pairs are satisfied by Observation 3.

LEMMA 7 ([Ta10, Lemma 2.2]). Let M be a reflective submanifold of a symmetric
R-space P, o a point in M, a an arbitrarily chosen maximal abelian linear subspace of
m ∼= ToM and t a maximal abelian linear subspace of p ∼= ToP that contains a. Let A be the
maximal flat torus of M corresponding to a and T the maximal flat torus of P corresponding
to t, that is a ∼= ToA and t ∼= ToT . If

(2) C̃(a) = a ∩ C̃(t)

then C̃(m) = m ∩ C̃(p) and M is a (geodesically) convex submanifold of P.

Thus, to prove Theorem 1, we just need to show that Equation (2) is satisfied, that is, A

is a convex submanifold of T . We do this by showing the following claim.

CLAIM 8. For all points a ∈ A we have

dA(o, a) = dT (o, a) .

PROOF. Both maps

a → A, X �→ exp(X) · o and t → T , Y �→ exp(Y ) · o
are Riemannian coverings between flat spaces. Thus they map straight lines in a and t onto
geodesics of A and T , and every geodesic arises in this way.
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Let a ∈ A be an arbitrarily chosen point in A, then a = exp(X) · o for some X ∈ a. In
view of Corollary 6, one can write X = ∑r

j=1 xj ej with
• x2j = x2j−1 for 1 ≤ j ≤ p,

• xq+1 = · · · = xr = 0,

where {e1, . . . , er } is the orthogonal basis of t mentioned in Proposition 5. Using Theorem 2,
we get

d2
T (o, a) = min{‖X + Y‖2 ; Y ∈ Γ (P, t)}

= min

{∥∥∥∥
r∑

j=1

(xj + yj )ej

∥∥∥∥
2

; y1, . . . , yr ∈ Z
}

= min

{ r∑
j=1

(xj + yj )
2 ‖ej‖2; y1, . . . , yr ∈ Z

}
.

We now choose integer numbers z1, . . . , zr ∈ Z as follows:
• For 1 ≤ j ≤ p, we choose z2j such that

(x2j + z2j )
2 = min{(x2j + y2j )

2 ; y2j ∈ Z}
and set z2j−1 := z2j . Since x2j = x2j−1, we also get

(x2j−1 + z2j−1)
2 = min{(x2j−1 + y2j−1)

2 ; y2j−1 ∈ Z} .

• For 2p + 1 ≤ j ≤ q, we choose zj ∈ Z such that

(xj + zj )
2 = min{(xj + yj )

2 ; yj ∈ Z} .

• zq+1 = · · · = zr = 0.

These choices ensure that
r∑

j=1

(xj + zj )
2‖ej‖2 = d2

T (o, a) .

Moreover the vector Z = ∑r
j=1 zj ej ∈ Γ (P, t) satisfies

• z2j = z2j−1 for 1 ≤ j ≤ p,

• zq+1 = · · · = zr = 0,

that is Z ∈ a.
Notice that exp(X + Z) · o = exp(X) exp(Z) · o = exp(X) · o = a and d2

T (o, a) =
‖X + Z‖2. Since X + Z ∈ a and d2

T (o, a) ≤ d2
A(o, a), we get d2

T (o, a) = d2
A(o, a), and

Claim 8 follows. �

4. Counterexamples. Though our proof of Theorem 1 relies on Loos’ characteriza-
tion of symmetric R-spaces in terms of orthogonal unit lattices, one may ask if the statement
of Theorem 1 is still true for reflective submanifolds in arbitrary compact symmetric spaces.
In this section we present two counterexamples for such a statement, that arose in discussion
with Jost-Hinrich Eschenburg.
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EXAMPLE 9. Take a flat 2-torus P with a non-rectangular rhombic lattice. Then the
long diagonal in the rhombic lattice gives a reflective submanifold M of P. The shortest
geodesic in P joining the midpoint of a rhombic fundamental domain to a vertex of it follows
the short diagonal and therefore does not lie in the reflective submanifold M. Thus M is not
convex.

With this picture in mind for a maximal flat torus in a symmetric space, one gets a
first counterexample of the statement in Theorem 1, if one replaces “symmetric R-space” by
“symmetric space of compact type”.

EXAMPLE 10. Consider SU3 equipped with the bi-invariant metric induced by

〈X,Y 〉 = trace(XY ), X, Y ∈ su3 .

The complex conjugation is an involutive isometry of SU3 whose fixed point set is SO3. Since
the complex conjugation leaves the center

C = {
I3, e2πi/3I3, e4πi/3I3

}
of SU3 invariant, it descends to an involutive isometry σ of the irreducible symmetric spaces
P = SU3/C ∼= Ad(SU3). As SO3 meets the center of SU3 only in I3, the restriction of the
Riemannian covering

π : SU3 → SU3/C, x �→ [x] ,

to SO3 is an injective map and M = π(SO3) is the fixed point set of σ and therefore a
reflective submanifold of P.

A shortest geodesic arc within M that joins [I3] to the point



−1 0 0

0 −1 0
0 0 1





 =





eπi/3 0 0

0 eπi/3 0
0 0 e−2πi/3







is given by

γ1 : [0, π] → M ⊂ P, t �→
[
etX1

]
with X1 =


 0 1 0

−1 0 0
0 0 0


 .

But there is a considerably shorter geodesic arc in P joining the given endpoints, namely,

γ2 : [0, π] → M ⊂ P, t �→
[
etX2

]
with X2 =


i/3 0 0

0 i/3 0
0 0 −2i/3


 .

Notice that ‖X2‖2 = 2/3 < 2 = ‖X1‖2. This shows that the reflective submanifold M of P

is not geodesically convex.
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