
Mathematical Finance, Vol. 18, No. 1 (January 2008), 185–197

CONVEXITY OF THE EXERCISE BOUNDARY OF THE AMERICAN PUT
OPTION ON A ZERO DIVIDEND ASSET
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We show that the optimal exercise boundary for the American put option with
non-dividend-paying asset is convex. With this convexity result, we then give a simple
rigorous argument providing an accurate asymptotic behavior for the exercise boundary
near expiry.
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1. INTRODUCTION

The Black–Scholes model is widely used to value options. An important advantage of the
model is that European options can be valued analytically by the Black–Scholes formula
(Merton 1992; Hull 1997). The situation is quite different, however, for American put
options with optimal early exercise. While considerable progress has been made, no com-
pletely satisfactory analytic solution has been found. As a result, people resort routinely
either to numerical methods or to analytic approximations. There is a considerable liter-
ature in these fields; see, for example, McKean (1965), Van Moerbeke (1976), MacMillan
(1986), Barone-Adesi and Whaley (1987), Barone-Adesi and Elliott (1991), Carr (1992),
Barle (1995), Broadie and Detemple (1996), Hull (1997), Kuske and Keller (1998), and
Stamicar (1999). A recent list of references can be found in Aitsahlia and Lai (2001) and
Chen and Chadam (2006). With the hypothesis of log-normal underlying asset pricing
S and based on standard arbitrage–free arguments, the price P(S, T) (T-current time)
for the American put option on a non-dividend-paying asset can be formulated as an
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obstacle problem (Wilmott 1995). The domain {0 ≤ T ≤ TF , 0 ≤ S < ∞}(TF -expiration
time) is separated by the optimal exercise boundary S = Sf (T) into two parts:

(i) a continuation region {Sf (T) < S < ∞, 0 ≤ T ≤ TF } where P(S, T) > Payoff =
(E − S)+(=: max{0, E − S}) and satisfies the Black–Scholes equation

∂P
∂T

+ 1
2
σ 2S2 ∂2 P

∂S2
+ r S

∂P
∂S

− r P = 0;

(ii) a stopping region {0 ≤ S ≤ Sf (T), 0 ≤ T ≤ TF } where P(S, T) = Payoff =
(E − S)+.

Across the optimal exercise boundary S = Sf (T), P and ∂P
∂S are continuous. Here E is

the exercise (strike) price, σ the volatility constant, and r the risk-free interest rate.
By using a PDE argument, it is not difficult to show that

Sf (T ) is a monotonically increasing function of T and Sf (TF ) = E.

Thus, in the continuation region, the price P(S, T) of the American put option is a
solution to the following free boundary problem:

(P)




PT + 1
2
σ 2S2 PSS + r SPs − r P = 0 for 0 ≤ T < TF , S > Sf (T ),

P(S, T ) = E − S, PS(S, T ) = −1 for 0 ≤ T < TF , S = Sf (T ),

P(S, TF ) = (E − S)+, Sf (TF ) = E for T = TF , S ≥ 0.

For notational simplicity, it is convenient to write (P) in a non-dimensional form. Let

k = 2r/σ 2, S = Eex, T = TF − 2t/σ 2, P(S, T ) = Ep(x, t), SF (T ) = Ees(t).

Then the problem (P) becomes, for the transformed price p(x, t) and exercise boundary
x = s(t), 


pt − pxx − (k − 1)px + kp = 0 for t > 0, x > s(t),

p(s(t), t) = 1 − es(t), px(s(t), t) = −es(t) for t > 0, x = s(t),

p(x, 0) = (1 − ex)+ for t = 0, 0 ≤ x < ∞.

(1.1)

Here we have p(x, t) ≡ 1 − ex all for x < s(t) and

s(0) = 0, ṡ(t) := d
dt

s(t) < 0 for all t > 0.

In this paper, we shall show that the exercise boundary is convex; namely, we prove the
following theorem:

THEOREM 1.1. The optimal exercise boundary Sf (T) is convex and the transformed
boundary s = s(t) is convex; namely,

d2

dT2 Sf (T) > 0 for all T < TF , s̈(t) > 0 for all t > 0.

Since d2

dT2 Sf (T ) = σ 4 Ees(t){s̈(t) + ṡ2(t)}/4, we see that s̈(t) > 0 implies d2

dT2 Sf (T ) > 0.
We would like to point out that numerical simulations in the past had already convinced

people that Sf (T) is convex. Nevertheless, prior to our current work, we had not seen
any published research on the rigorous verification of this important fact. During the
revision of this paper, an alternate rigorous proof of the convexity has appeared (Ekstrom
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2004). Both proofs are based on the use of the classic results of Friedman and Jensen
(1997). Ekstrom (2004) uses the level curves of v = (p + ex)t/(p + ex)x while our analysis
is based on studying φ = qt/qx where q satisfies the classic Stefan problem with delta-
function initial data and is related to p in equation (1.1) through p(x, t) = (1 − ex)+ +∫ t

0 q(x, τ ), dτ and hence, pt = q. Another interesting difference in the proofs is that
Ekstrom (2004) uses a version of the near expiry estimate (1.2) below in his proof to
establish a decreasing order for the level curves v = α away from the early exercise
boundary. By contrast, one of our main objectives is to prove the convexity in order
to provide a simpler proof of these estimates. Specifically, in Section 4, we will use the
convexity to prove

THEOREM 1.2. Near expiry, the optimal exercise boundary satisfies

lim
t↘0

{
s2(t)

4t
+ log

√
4πk2t

}
= 0,

log[Sf (T )/E] = σ
√

(TF − T )[− log(8πr 2(TF − T )/σ 2) + o(1)]

(1.2)

where o(1) → 0 ad T↗TF .

Note that the behavior of Sf (T) follows directly from the behavior of s(t).
There have been many efforts on the near expiry behavior of the exercise boundary

(Barone-Adesi and Whaley 1987; Barles et al. 1995; Kuske and Keller 1998; Stamicar
et al. 1999; Bunch and Johnson 2000; Chen and Chadam 2006). The correct coefficient
4πk2 in (1.2) was first found in Stamicar et al. (1999), and later rigorously verified in
Chen and Chadam (preprint), with a very involved mathematical analysis. As mentioned
above, the argument to be presented here is much simpler. The near expiry behavior and
convexity of the optimal exercise boundary can then be interpolated with the long time
behavior (the infinite horizon solution) to provide a global, in time, approximation for
the exercise boundary; see, for example, Bunch and Johnson (2000), Chen and Chadam
(2006).

It would be interesting to examine convexity for problems with other pay-offs and/or
underliers. Indeed with the same approach we find that the optimal boundary Sf (T) (not
necessarily s(t)) is convex when the payoff (E − S)+ is replaced by certain other functions
whose derivative admits a jump at S = E. On the other hand, we anticipate that a full study
of these questions might be quite subtle and specialized in view of the fact that numerical
simulations for the closely related problem (P) on a dividend-paying asset suggest that
for a particular choice of parameters, the early exercise boundary may not be convex (J.
Detemple, private communication).

In this paper we will show s̈ > 0 by studying the equation for q(x, t) = pt(x, t) which
satisfies 


qt − Lq = 0 for x > s(t), t > 0,

q = 0, qx = −kṡ on x = s(t), t > 0,

q(x, 0) = δ(x) for x ≥ 0,

(1.3)

where δ(x) is the Dirac function with mass concentrated at the right-half of the origin, ˙ =
d
dt and L represents the operator

Lq =
{

∂2

∂x2
+ (k − 1)

∂

∂x
− k

}
q.(1.4)
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Formally the system (1.3) satisfied by q can be obtained as follows (a rigorous proof will
be given in Section 3). First of all, (1.3) can be derived by differentiating equation (1.1)
with respect to t. The equation qt =L q follows by differentiating pt = Lp with respect to t.
The boundary condition q = 0 on x = s(t) follows from the fact that q = pt is continuous
in R × (0, ∞). The free boundary condition qt = kṡ on x = s(t) follows from

qx(s(t)+, t) = pxt = d
dt

px − pxxṡ = [ − es − pxx
]
ṡ

= [ − es − pt + (k − 1)px − kp
]
ṡ = −kṡ.

Finally, q(x, 0) = L(1 − ex)+ = δ(x) − k χ{x<0} giving the initial condition in (1.3) in the
region x ≥ 0. The proof then employs the idea that for a solution q to (1.3), the function

p(x, t) := (1 − ex)+ +
∫ t

0
q(x, τ ) dτ

solves equation (1.1), so that pt =q. Note that the first part (1 − ex)+ represents the exercise
pay-off of the put option. Thus the second quantity is the delayed exercise premium and
the function q(x, τ ) represents the local benefits of delaying exercise at τ ; see Carr, Jarrow,
and Myneni (1997). Since s(·) is decreasing and q(x, τ ) = 0 for all x < s(τ ), we see that
p(x, t) = (1 − ex)+ for all x ≤ s(t). Thus all information about the exercise boundary is
captured in problem (1.3).

One notices that problem (1.3) is a one-phase Stefan problem with Dirac function as its
initial value. The influence of initial datum on the curvature of the free boundary s(t) to
one-phase Stefan problem for the heat equation has been studied by Friedman and Jensen
(1977). The major tool is to study the level curves of the function φ(x, t) = qt(x,t)

qx(x,t) where q is
a solution to the one-phase Stefan problem. But this approach will not carry over directly
for the problem (1.3) since here the initial datum is the singular Dirac function. We shall
approximate (1.3) with special smooth initial data and prove s̈ > 0 for the approximation
problems by using the idea introduced in Friedman and Jensen (1977). Then we take the
limit to show the convexity of the exercise boundary.

We remark that the approximation problem we present can also be used for numerical
simulations. This approximation handles the singularity near the origin nicely, and hence
could improve numerical accuracy and speed.

Our scheme is as follows. We first replace the initial data for (1.3) by a sequence
{qε

0(x)} of smooth functions approximating the Dirac mass. For the resulting solution
(qε, sε), we define pε = pε

0(x) + ∫ t
0 qε(x, τ ) dτ where pε

0 is the unique solution of Lpε
0 =

qε
0(x)χ{x>0} − k χ{x<0}.
We show that (i) (pε, sε) → (p, s) uniformly as ε ↘ 0, where (p, s) is the unique solution

to equation (1.1), and (ii) with a carefully chosen Dirac mass approximating sequence
{qε

0}, sε is convex. As a consequence, s = lim sε is also convex. Since qε = pε
t , we see that

lim qε = pt and that q =: pt = lim qε is a solution to (1.3) in a certain weak mathematical
sense, which we shall not elaborate upon.

2. THE APPROXIMATION PROBLEM

We consider, for every ε > 0, the following problem, for (qε(x, t), sε(t)),


qε
t − Lqε = 0 for x > sε(t), t > 0,

qε = 0, qε
x = −kṡε on x = sε(t), t > 0,

qε(x, 0) = qε
0 (x) for x ≥ sε(0) := 0.

(2.1)
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Here qε
0 is a non-negative function approximating the Dirac function and will be chosen

carefully such that sε(t) is convex.
In the sequel, a solution qε to (2.1) is automatically extended to the domain x ∈ R, t ≥ 0

by the default

qε(x, t) ≡ 0 ∀x ≤ sε(t), t ≥ 0.(2.2)

In this section, we first study the well–posedness of (2.1), then construct pε from the
equation pε

t = qε as in equation (2.4) below, and finally show the convergence of (pε, sε, qε)
to (p, s, q) as ε ↘ 0. As a consequence, we have q = pt.

We begin with the well-posedness of (2.1).

LEMMA 2.1. Assume that qε
0 satisfies


qε

0 ∈ C4([0, ∞)) ∩ L1((0, ∞)), qε
0 (x) > 0 for all x > 0,

qε
0 (0) = 0, qε

0x(0)2 = kLqε
0 (0), qε

0(∞) := lim
x→∞ qε

0 (x) = 0.
(2.3)

Then problem (2.1) admits a unique solution, and the solution satisfies, for any α ∈ (0, 1),

sε ∈ C∞((0, ∞)) ∩ C2+α/2([0, ∞)), ṡε < 0 on [0, ∞),

qε ∈ C∞(Dε) ∩ C3+α,(3+α)/2)(D̄ε), qε > 0 in Dε = {(x, t)|x > sε(t), t > 0}.

Since (2.1) is a one-phase Stefan problem, the result is well-known and hence the
proof is omitted; see, for example, Jiang (1965) or Friedman (1982, 1976). We remark
that the condition on qε

0(0) and qε
0x(0) are simply the zeroth and first order compatibility

conditions: the values of qε and qε
t = Lqε at the origin (0,0) calculated from the initial data

match with that calculated from the free boundary conditions. Indeed, 0 = q̇ε(sε, t) =
qε

t + qε
xṡ = qε

t − qε
x

2/k. Since qε
t = Lqε at the origin, we need kLqε

0 = qε2
0x at x = 0. These

compatibility conditions ensure that the PDE in (2.1) extends continuously to the free
boundary for t ≥ 0.

To recover p, we first extend the solution qε of (2.1) by (2.2) and then define pε by

pε(x, t) := pε
0(x) +

∫ t

0
qε(x, τ ) dτ, x ∈ R, t ≥ 0(2.4)

where pε
0 ∈ C1(R) ∩ L∞(R) is the solution to the following ODE problem

Lpε
0 =

{
qε

0 (x) if x > 0,

−k if x < 0.
(2.5)

This definition comes from q = pt = Lq, the fact that p = p0 =: max{1 − ex, 0} for x <

s(t), and the identity Lp0(x) = −k for x < 0.
One notices that the second order derivative pε

0xx has a jump qε
0(0) − (−k) = k when x

passes through 0.
First we show that pε

0 is well-defined.

LEMMA 2.2. Assume that qε
0 satisfies (2.3). Then (2.5) admits a unique solution

pε
0 ∈ C1(R) ∩ L∞(R) ∩ C∞((−∞, 0−]) ∩ C6([0+, ∞)).
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In addition, suppose that as ε → 0, qε
0 → δ, i.e.,

1 = lim
ε↘0

∫ ∞

0
qε

0 (x) dx = lim
ε↘0

∫ z

0
qε

0 (x) dx ∀z > 0.(2.6)

Then limε↘0 pε
0(x) = p0(x) =: max{1 − ex, 0} uniformly for x ∈ R.

The proof is elementary and is given in the Appendix.

THEOREM 2.1. Assume that qε
0 satisfies (2.3) and (2.6). Let pε

0 be the unique solution
to (2.5), (qε, sε) be the unique solution to (2.1), and define pε as in (2.4). Then

lim
ε↘0

pε(x, t) = p(x, t), lim
ε↘0

sε(t) = s(t) uniformly for all x ∈ R, t ≥ 0(2.7)

where (p, s) is the unique solution to equation (1.1).

Proof . Since qε is continuous, one can verify pε ∈ C1(R × [0, ∞)). As qε = 0 for
x ≤ sε(t),

pε(x, t) − pε
0(x) = pε

x(x, t) − pε
0x(x) = 0 ∀x ≤ sε(t), t ≥ 0.

When x > sε(t), qε > 0, so that pε > pε
0. In addition, one calculates

pε
t − Lpε = −Lpε

0 + qε
0 (x)χ{x>0} − kχ{x<0} = 0 ∀x > sε(t), t ≥ 0

by the definition of pε
0. In the set x < sε(t), we have pε = pε

0 so pε
t − Lp = −Lpε

0 = k > 0.
Thus, pε indeed solves the following obstacle problem{

pε
t − Lpε ≥ 0, pε − pε

0 ≥ 0,
(

pε − pε
0

)(
pε

t − Lpε
) = 0 in R × (0, ∞),

pε(x, 0) = pε
0(x) on R × {0}.

(2.8)

As k > 0, a comparison principle for the obstacle problem (see, for example Friedman
1982) gives

‖pε − p‖C(R×[0,∞)) ≤ ‖pε
0 − p0‖C(R).

Since pε
0 → p0 uniformly as ε → 0, we see that pε → p uniformly. In addition, since

pt = q ≥ 0, one can show that the coincidence set {(x, t) | pε = pε
0} = {(x, t) | x ≤ sε(t), t ≥

0} also approaches that of the limit problem as ε → 0. (Indeed, once we know the
regularity of s, one can show that (p − p0)xx|s=s+ = k for every t > 0. ) This completes the
proof. �

In the next section, we show that for an appropriate Dirac sequence {qε
0}, sε is convex

and that (qε, sε) → (q, s). As qε = pε
t , we see that pt = q.

3. THE CONVEXITY OF sε

As mentioned in the introduction, we use the idea of Friedman and Jensen (1977)
considering the function φε = qε

t /qε
x. The basic idea is to choose an appropriate δ-

sequence {qε
0}0<ε<ε0 such that the derivatives qε

x and qε
t have the signs illustrated in the

following figure.
More precisely, (i) the set {qε

x = 0} is a smooth curve x = sε
1(t), to its left qε

x > 0 and to
its right qε

x < 0; (ii) in the region bounded by x = sε(t) and x = sε
1(t), there is a smooth

curve x = sε
2(t) on which qε

t = 0, to its left, qε
t < 0 and to its right, qε

t < 0.
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First we consider the curve on which qε
x = 0.

LEMMA 3.1. Assume that qε
0 satisfies (2.3), (2.6), and for some xε

1 > 0, qε
0x(xε

1) = 0
and

qε
0x(x) > 0 ∀x ∈ [

0, xε
1

)
, qε

0x(x) < 0 ∀x ∈ (
xε

1, ∞
)
, qε

0xx

(
xε

1

)
< 0.(3.1)

Then there exists a smooth function sε
1(t) defined for t ∈ [0, ∞) such that sε

1(0) = xε
1 and for

all t ≥ 0,

sε
1(t) > sε(t), qε

x

(
sε

1(t), t
) = 0, qε

xx

(
sε

1(t), t
)

< 0, qε
t

(
sε

1(t), t
)

< 0,

qε
x(x, t) > 0 if x ∈ [

sε(t), sε
1(t)

)
, and qε

x(x, t) < 0 if x > s1
ε (t).

Proof . Note that qε > 0 in Dε =: {(x, t) | x > sε(t), t > 0} and 0 = qε(sε(t), t) for all t ≥
0. Also, since qε

0(∞) =: limx→∞qε
0(x) = 0 we have qε(∞, t) = 0 for every t ≥ 0. Thus there

exists a point sε
1(t) ∈ (sε(t), ∞) on which qε(·, t) attains its positive maximum. Clearly,

qε
x(sε

1(t), t) = 0. Next we show that sε
1 is unique.

Since qε attains its minimum at x = sε(t), by Hopf’s Lemma, qε
x(sε(t), t) > 0. From the

PDE (qε
x)t − Lqε

x = 0 in D̄ε, we conclude that the number of roots, for z ∈ [sε(t), ∞), to
qε

x(z, t) = 0 is non-increasing in t. Since initially qε
x(z, 0) = 0 has exactly one root attained

at xε
1, we conclude that qε

x(z, t) = 0 has at most one, and hence exactly one root. Thus, sε
1

is uniquely defined. Consequently, qε
x > 0 for x ∈ [sε(t), sε

1(t)) and qε
x < 0 for x > sε

1.
To show that sε

1(t) is smooth, we need only show that qε
xx(sε

1(t), t) < 0 since the implicit
function theorem then can be applied to the equation qε

x(z, t) = 0 for z.
To do this, we use Sard’s theorem, which asserts that there are arbitrarily small δ > 0

such that the set where qε
xekt ± δ = 0 are smooth curves. Since (qε

xekt)t = (qε
xekt)xx + (k −

1)(qε
xekt)x, one can use the same idea as above to show that the zero level set of qε

xekt ± δ, for
t ≥ 0, is actually a vertical curve (i.e., no up and down swings). Now we consider qε

xx in the
region {(x, t) | |qε

x|ekt ≤ δ, 0 < t ≤ t∗}, where t∗ is a number (depending on δ) such that
the region is in Dε. As qε

xekt attains its extreme on the lateral boundary, ektqε
xx(xε

1) ≤ 0 on
the lateral boundary. Since initially qε

0xx < 0, we then conclude from the maximum princi-
ple for the equation (qε

xx)t = Lqε
xx that qε

xx > 0 in the set {(x, t) | |ektqε
x| < δ, 0 ≤ t ≤ t∗};

in particular, pε
xx(sε

1(t), t) < 0 for all t ∈ [0, t∗]. Upon sending δ to 0, we have t∗ → ∞.
Hence, pε

xx(sε
1(t), t) < 0 for all t ≥ 0. Thus, sε

1 is smooth.
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Finally, from the differential equation qε
t = Lqε and the fact that on x = sε

1(t), qε >

0, qε
x = 0, and qε

xx < 0, we see that qε
t (sε

1(t), t) < 0 for all t ≥ 0. This completes the
proof. �

Next we consider qε
t in the set Dε

1 =: {(x, t) | x ∈ [sε(t), sε
1(t)], t ≥ 0}. Differentiating

qε(sε(t), t) = 0 gives qε
t = −ṡqε

x > 0 at x = sε(t). From the previous lemma, we have qε
t <

0 when x = sε
1(t). Hence, if we assume that the initial value qε

t (x, 0) = Lqε
0(x) vanishes

on [0, xε
1] exactly once, we can use the same argument just given to show that qε

t (·, t) = 0
has exactly one root in (sε(t), sε

1(t)) for every t ≥ 0, as described in the following:

LEMMA 3.2. Assume that qε
0 satisfies (2.3), (2.6), (3.1), and for some xε

2 ∈
(0, xε

1), Lqε
0(xε

2) = 0

Lqε
0 (x) > 0 ∀x ∈ [

0, xε
2

)
, Lqε

0 (x) < 0 ∀x ∈ (
xε

2, xε
1

]
, and (Lqε

0 )x
(
xε

2

)
< 0.(3.2)

Then there exists a smooth function sε
2(t) defined on [0, ∞) such that sε

2(0) = xε
2 and for all

t ≥ 0,

sε(t) < sε
2(t) < sε

1(t), qε
t

(
sε

2(t), t
) = 0,

qε
t (x, t) > 0 ∀x ∈ [

sε(t), sε
2(t)

)
, qε

t (x, t) < 0 ∀x ∈ (
sε

2(t), sε
1(t)

]
.

Now we are ready to consider, in the domain D̄ε
2 := {(x, t)|sε(t) ≤ x < sε

2(t), t ≥ 0}, the
function

φε(x, t) := qε
t (x, t)

qε
x(x, t)

.(3.3)

From the two lemmas we just proved, φε is well-defined, φε(x, t) > 0 in Dε
2, and

φε(sε
2(t), t) = 0.

Upon differentiating qε(sε(t), t) = 0 we see that

ṡε(t) = −φε(sε(t), t) for all t ≥ 0.(3.4)

Hence, s̈ε > 0 is equivalent to φ̇ε(sε(t), t) < 0. Direct differentiation shows that in Dε
2,

φε
t = φε

xx + bεφε
x,

(φε
x)t = (

φε
x

)
xx + bε

(
φε

x

)
x + bε

xφ
ε
x,

(3.5)

where bε = k − 1 + 2qε
xx/qε

x is a smooth function on D̄ε
2. This provides the PDE satisfied

by φε
x.

Next, we consider the behavior of φε
x at the boundary x = sε(t). Direct differentiation

gives

φε
x(sε(t), t) = qε

txqε
x − qε

t qε
xx

qε
x

2
= qε

x

(
qε

tx + qε
xxṡε

) − qε
xx

(
qε

xṡε + qε
t

)
qε

x
2

= q̇ε
x(sε(t), t)

qε
x

= s̈ε(t)
ṡε(t)

.

As φε(sε(t), t) = −ṡε, we have

φ̇ε(sε(t), t) = φεφε
x.(3.6)
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Using φ̇ε(sε, t) = φε
t + φε

xṡε = φε
xx + bεφε

x − φεφε
x we then obtain the boundary condition

for φε
x:

φε
xx = (2φε − bε)φε

x on x = sε(t), t ≥ 0.(3.7)

Now we are ready to prove the following.

LEMMA 3.3. Assume that qε
0 satisfies (2.3), (2.6), (3.1), (3.2), and

d
dx

(
Lqε

0

qε
0x

)
< 0 on [0, xε

2 ].(3.8)

Then

s̈ε = −φ̇ε(sε(t), t) > 0 for all t ≥ 0.(3.9)

Proof . We know φε = qε
t /qε

x > 0 in Dε
2. In view of (3.6), we need only show φε

x < 0
in Dε

2.
Initially when t = 0, φε

x = ( qε
t

qε
x
)x = ( Lqε

0
qε

0x
)x < 0 for all x ∈ [0, xε

2].
On the lateral boundary x = sε

2(t) of the domain Dε
2, φ

ε attains its minimum zero so
that φε

x(sε
2(t), t) < 0 for all t ≥ 0.

Now we can conclude that φε
x < 0 in D̄ε

2. Indeed, if it were not true, then there would be
a minimum t0 > 0 and a point x0 ∈ [sε(t0), sε

2(t0)] such that φε
x(x0, t0) = 0 is the maximum

of φε
x in D̄ε

2(t0) := {(x, t)|t ∈ [0, t0], x ∈ [sε(t), sε
2(t)]}. From the PDE for φε

x in (3.5), we
see that (x0, t0) must lie on the lateral boundary D̄ε

2(t0). From the initial and boundary
value of φε

x, we then conclude that x0 = sε(t0). By the Hopf Lemma, this implies that
φε

xx(x0, t0) < 0. However, from (3.7) we would have φε
xx(x0, t0) = 0, and we obtain a

contradiction.
Thus, φε

x < 0 in D̄ε
2. Consequently, (3.9) holds. This completes the proof. �

Finally we show that we can construct qε
0 having the needed properties.

LEMMA 3.4. For each small ε > 0, there exists qε
0 satisfying (2.3) (2.6), (3.1), (3.2),

and (3.8).

The construction will be given in the Appendix.
Proof of Theorem 1. Let {qε

0}0<ε<ε0 be constructed as in Lemma 3.4. Then the resulting
solution (qε, sε) to (2.1) has the property ṡε < 0 for all t ∈ [0, ∞). Sending ε ↘ 0 we see
that s̈ ≥ 0.

To show that s̈ > 0, we argue as follows. Define Qε(y, t) = qε(sε(t) + y, t) and Q(y, t) =
q(s(t) + y, t). Then, together with all derivatives, Qε → Q uniformly on [0, 1] × [δ, 1/δ],
for every δ > 0. It then follows that φ = qt/qx is non-negative and φx is non-positive near
x = s(t) (on the right–hand side). A strong maximum principle then gives s̈ > 0. This
completes the proof. �

4. AN APPLICATION

Now we use the convexity of s(t) to find its behavior near t = 0. Let


(x, t) = 1√
4π t

exp
{
− x2

4t
− k − 1

2
x − (k + 1)2

4
t
}
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be the fundamental solution for the parabolic operator ∂
∂t − L. Applying the Green’s

formula for qε and sending ε → 0, we obtain (Chen and Chadam, 2006)


(s(t), t)
k

= −
∫ t

0

(s(t) − s(τ ), t − τ )ṡ(τ ) dτ for all t > 0.(4.1)

To evaluate the integral, we make the change of variables from τ to η by η = η(t; τ ) :=
s(τ ) − s(t)
2
√

t − τ
. Then the interval [0, t] of integration for τ becomes [0, α(t)] for η, where α(t) =

|s(t)|/(2
√

t). Direct differentiation gives

dη(t; τ )
dτ

= ṡ(τ )(1 − θ )

2
√

t − τ
, θ = θ (t; τ ) := s(t) − s(τ )

2(t − τ )ṡ(τ )
.

Using the convexity of s, we see that 0 ≤ θ ≤ 1/2. Denote by τ = τ (t;η) the inverse
of η = η(t; τ ), we then obtain from (4.1) that

e−α2(t)

√
4πk2t

= 1√
π

∫ α(t)

0
e−η2 eδ(η)

1 − θ (t; τ (t; η))
dη =: µ(t)

where δ(η) = (k − 1)s(τ )/2 + (k + 1)2τ/4|τ=τ (t;η) is a small quantity that can be ignored.
Since θ ∈ [0, 1/2], µ(t) is bounded, so we must have α(t) → ∞ as t ↘ 0. In addition,

by the mean value theorem, µ(t) ∈ [1/2 + o(1), 1 + o(1)] where o(1) → 0 as t ↘ 0. Thus

s(t) = −2
√

tα(t), α(t) =
√

− log
√

4πk2µ2t =
√

− log
√

t + O(1)√− log t
.(4.2)

We now show that µ(t) → 1 as t ↘ 0. First of all, since s is convex, for any small positive
ε,

|ṡ(t)| ≥ |s(t + εt) − s(t)|
εt

= |s(t)|
t

√
1 + εα(t + εt) − α(t)

εα(t)
= |s(t)|

2t

{
1 + O(ε) + O(1)

ε log t

}

by using (4.2). Similarly, |ṡ(t)| ≤ |s(t) − s(t − εt)|
εt = |s(t)|

2t {1 + O(ε) + O(1)
ε log t }. Therefore

ṡ(t) = s(t)
2t

[1 + o(1)]

where o(1) → 0 as t ↘ 0.
Now fix an arbitrary small positive ε. We write

√
πµ(t) =

∫ α(t)

η(t;t−εt)

e−η2
eδ(η)

1 − θ
dη +

∫ η(t;t−εt)

0

e−η2
eδ(η)

1 − θ (t; τ (t, η))
dη.(4.3)

When τ ∈ (0, t − ε t),

η(t; τ ) ≥ η(t; t − εt) = |s(t)|
2t

1 − s(t − εt)/s(t)√
ε

≥ α(t)
{√

ε − O(ε) − O(1)√
ε log t

}

by using (4.2). Thus limt↘0 η(t;t − ε t) = ∞. Hence, the first integral in (4.3) approaches
0 as t ↘ 0.

When τ ∈ [t − εt, t], η ∈ [0, η(t; t − εt)] and θ (t; τ ) = s(t) − s(τ )
(t − τ )ṡ(τ ) = 1 + O(ε) + O(1)

ε log t .
Thus, first sending t ↘ 0 and then ε → 0 we see that µ → 1 as t → 0. Consequently,

s2(t)
4t

= α2(t) = − log
√

4πk2µ2t = − log
√

4πk2t + o(1)

where o(1) → 0 as t ↘ 0. This completes the proof of Theorem 1.2.
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APPENDIX

Proof of Lemma 2.2. For the operator L, its characteristic equation λ2 + (k − 1)λ −
k = 0 has roots 1 and − k. Hence, the general bounded solution to Lpε

0 = −k for x ∈
(−∞, 0] is given by

pε
0(x) = 1 − ex + c1ex ∀x ≤ 0(A.1)

where c1 is any constant. By variation of constants, the general bounded solution to
Lpε

0 = qε
0 for x ∈ [0, ∞) is given by

pε
0 = e−kx

1 + k

{
c2 −

∫ x

0
qε

0 (ξ )ekξ

}
− ex

1 + k

∫ ∞

x
qε

0 (ξ )e−ξ dξ ∀x ≥ 0(A.2)

where c2 is an arbitrary constant.
Hence, for pε

0 to be a C1(R) bounded solution on R, it is necessary and sufficient to
take

c2 = 1, c1 = 1
1 + k

{
1 −

∫ ∞

0
e−ξ qε

0 (ξ ) dξ

}
.

This proves the existence of a unique solution pε
0. The limit of pε

0 as ε ↘ 0 follows from
the assumption (2.6) for qε

0. �

Proof of Lemma 3.4. We take

qε
0 (x) := ε−2 Qε(ε−2x), Qε(y) := [aεy + y2/2] e−y

where a = a(ε, k) = √
k + O(ε) is the unique positive solution to a2 = k[(1 − 2aε) + (k −

1) aε3].
One can calculate

Qε′(y) = [aε + (1 − aε)y − y2/2]e−y, Q′′
ε (y) = [(1 − 2aε) − (2 − aε)y + y2/2]e−y.

Hence, we have the following:

(i) qε
0 ∈ C∞([0, ∞)) ∩ L1([0, ∞)), qε

0(0) = 0 and qε
0(x) > 0 for all x > 0. In

addition,

qε
0 (0)2 − kLqε

0 (0) = ε−8 Q′
ε(0)2 − kε−6[Q′′

ε (0) + ε2(k − 1)Q′
ε(0)

} = 0

by the definition of a. Thus, (2.3) holds.
(ii)

∫ ∞
0 qε

0 (x) dx = ∫ ∞
0 Qε(y)dy = 1 + aε → 1 as ε ↘ 0. Also for each fixed z >

0,
∫ z

0 qε
0 (x) dx = ∫ z/ε2

0 Qε(y)dy → 1 as ε ↘ 0. Hence, (2.6) holds.
(iii) Let yε

1 = 2 + O(ε) be the unique positive solution to aε + (1 − aε)y − y2/2 = 0,
then (3.1) holds with xε

1 = ε2yε
1 = 2ε2 + O(ε3).

(iv) If x ∈ [0, xε
1], then y =: ε−2x ∈ [0, yε

1] = [0, 2 + O(ε)] and

Lqε
0 (x) = ε−6{Q′′

ε (y) + ε2(k − 1)Q′
ε(y) − kε4 Qε(y)

}
= ε−6e−y{1 − 2y + y2/2 + O(ε)}.

It follows that there exists yε
2 = 2 − √

2 + O(ε) such that (3.2) holds with xε
2 =

ε2yε
2.
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(v) Finally, for x ∈ [0, xε
2], we have y = ε−2x ∈ [0, 2 − √

2 + O(ε)] and

d
dx

Lqε
0 (x)

qε
0x(x)

= ε−4 d
dy

1 − 2y + y2/2 + O(ε)
aε + (1 − aε)y − y2/2

= ε−4 O(ε) − [2 − y][1 − y2/2] − [1 − 2y + y2/2][1 − y]
[aε + (1 − aε)y − y2/2]2

< 0.

Thus (3.8) holds. This completes the proof. �
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