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CONVEXITY OF THE GEODESIC DISTANCE ON SPACES
OF POSITIVE OPERATORS

G. CORACH, H. PORTA AND L. RECHT

Let A be a C*-algebra with 1 and denote by A + the set of positive
invertible elements of A. The set A / being open in A {a A; a* a} it

/ with A for each a A/ Wehas a C structure and we can identify TAa

use G to denote the group of invertible elements of A. Notice that G
operates on the left on A + by the rule

Lga (g*)-lag-1 (g G,a .A+).

This action allows us to introduce a natural reductive homogeneous space
structure in the sense of [8] (for details see [2], [3], [4]).
The corresponding connection--which is preserved by the group

actionhas covariant derivative

DX dX
dt dt 21 (y-X + Xy 3;’ )

where X is a tangent field onA + along the curve ,/and exponential

eXPa X eXa-a/2aea-iX a A + X TA +
a

The curvature tensor has the formula

-1y --1zR(X,Y)Z= -a[[a-XX, a a

for X, Y, Z TA + The manifold A + has also a natural Finsler structurea

given by

IIXII a II a 1/2Xa 1/2 II for X TA +a
and the group G operates by isometries for this Finsler metric.

THEOREM 1. If J(t) is a Jacobi field along the geodesic y(t) in A + then
IIJ(t)llvt) is a convex function of t R.
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Proof The method of proof is based on a similar strategy used in [4]. By
definition J(t) satisfies the equation

D2J
+ R(J, V)V 0 (i)

dt 2

where V(t)= 4/(t).
Notice that by the invariance of the connection and the metric under the

action of G we may assume that y(t)= etX is a geodesic starting at
y(0) 1 A, where X As. Then for the field K(t)= e-tS/2j(t)e-iX
the differential equation (1) changes into

4g gx2 + X2K- 2XKX, (2)

(where the dots indicate ordinary derivative with respect to t). Since the
group G acts by isometries, we have [[J(t)ll(t)-- [[,(t)-l/2j(t)y(t)-l/2[[
]lK(t)[[. Thus the proof reduces to showing that for any solution K(t) of (2)
the function IlK(t)]] is convex in t R, where the norm is the ordinary
norm in the C* algebra A. So fix u < v R and let satisfy u < < v. We
will prove that

v-t t-uK( ) < K(u) / K( v )U--U U--U (3)

Consider first the case where the selfadjoint element X A has the form

n

X _. Aip (4)
i=1

with A1, A2,... An real numbers and Pl, P2,... Pn selfadjoint elements of A
satisfying PiPj 0 for #: j and/91 + P2 + +Pn 1.
Suppose that A is faithfully represented in a Hilbert space ,. For fixed

x A decompose x as x -,in=liXi where x is a unit vector in the
range of pi and the are appropriate scalars. Define next the matrix
k(t) (kij(t)) by ki(t) (K(t)xi, x) for all t. The differential equation (2)
is equivalent to the equations

fcij( ) .kiy( t ) (2ij)

where ij (Ai .)/2.
A simple verification (or Bernoulli’s formula) shows that all solutions of

f’(t) c2f(t) satisfy

f(t) dp(u,v,c;t)f(u) + @(u,v,c;t)f(v)
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where

Sinh c(v t) for c 0
Sinh c(v u)

tk(u, v, c; t) (v-t) forc =0

$(u,v,c;t)

Sinh c(t u) for c : O,
Sinh c(v u)
(t-u) forc 0.

Then each kij(t) satisfies

o(t) 4’o(t) ,o(u) + *o(t) o(v)

where ckij(t) ok(u, v, 5i; t) and d/it(t) $(u, v, 5i; t). This can be written
in matrix form as

k(t) dp(t)o k(u) + *(t)o k(v)

where (t)= {thiflt)} and W(t)= {$i(t)},and the symbol
Schur product {aij}o{bi} {alibis} of matrices. It follows that

denotes the

Ilk(t) _<llq(t) k(u)II / II*(t)

The final step is to prove the inequalities

v-tII(t) k(u) < Ilk(u)--V--U

t--u[]*(t) k(v)[[ < IIk(v)llU--U (6)

Notice that both (t) and W(t) are positive semidefinite. This follows from
Bochner’s theorem [1] applied to b(u, v, c; t) and $(u, v, c; t) considered as
functions of c. In both cases the matrix is of the form {F(A -hi)} where
F(c) is the Fourier transform of a positive function (see [7], formula 1.9.14,
page 31).

Next we apply a theorem of Davis (see [6] and the generalization in [9])
according to which for n n-matrices A and P with P positive semidefinite
we have

IIP A II < ( max Pii)[IA II.
<i <n
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Taking P (t) and P (t) we get inequalities (6). Using now (5) and (6)
we also get

v-t t-u
k(t) < k (u) + k

U--U V--U (7)

Since the element x and the representation space were not specified, we
may assume without loss of generality that for a given between u and v we
have IIg(t)xll ](K(t)x, x)l. Then writing s (s1, s2,..., :n) we conclude
that

<k(t), >1 --I<K(t)x, x>l =IlK(t)II
I<k(u)V,V>l--I(K(u)x,x>l
I(k(v)sC, s)l =l<K(v)x,x)l-<IlK(t)

and then (3) follows from (7) for X of the special form (4).
Let us go then to the general case--when X is an arbitrary selfadjoint

element of A. The spectral theorem allows us to approximate X (in operator
norm) by elements of the form (4). From the well-possedness of problem (2)
we conclude that (t, X) K(t) is norm continuous, and the inequality (3)
for arbitrary X follows from the same inequality for X of the form (4). This
completes the proof of Theorem 1.
For a, b A / let dist(a, b) denote the geodesic distance from a to b in

the Finsler metric IlSll of A. It is not hard to prove (using the invariance of
the metric) that

dist(a, b) II n(a-1/2ba -1/2) II. (8)

THEOREM 2. If y(t) and 6( ) are geodesics in A + then - dist(y(t), 6(t))
is a convex function of R.

Proof Suppose the geodesics y(t) and 6(t) are defined for u < < v.
Define h(s, t) by the properties:

(a) the function s --, h(s, u), 0 < s < 1 is the geodesic joining y(u) and
t(u);

(b) the function s h(s, v), 0 < s < 1 is the geodesic joining /(v) and
t(v);

(c) for each s, the function --, h(s, t), u <_ s < v is the geodesic joining
h(s, u) and h(s, v).

In particular h(0, t) y(t) and h(1, t) 6(t). Define also J(s, t)
Oh(s, t)/Os. Then, for each s, t J(s, t) is a Jacobi field along the geodesic



CONVEXITY OF THE GEODESIC DISTANCE 91

t h(s, t). Finally define

f(t) f01[I/(s, t)I1<,,)as,

From Theorem 1, --) IIJ(s, t)II is convex for each s. Hence f(t) is also
convex for u < t < v. But f(u)= fdllJ(s,u)llh(s,u)ds is the length of the
geodesic s ---) h(s, u) and therefore f(u) dist(y(u), ti(u)). Similarly, f(v)
dist(y(v), (v)). Now for u < t _< v, the value f(t)= fdllJ(s,t)l]h,t)ds is
the length of the curve s ---) h(s, t) joining y(t) and it(t) and then we have
dist(3’(v), $(v )) f(t). Convexity of dist(3’( v ), $(v)) follows and Theorem 2 is
proved.

COROLLARY 2.1. For any fixed y A + the function f: A+ R, f(x)
dist(x, y) is convex in the geometric sense", that is, each geodesic 3"(t) satisfies

f(3"(t)) <_ (1 t)f(3"(O)) + tf(3’(1)).

In particular geodesic spheres are convex sets.

Proof Take 6(t) y for all and apply Theorem 2.

COROLLARY 2.2. For any ao, al, bo, and b in A + we have

al/2(a 1/2alaff 1/2 )talo/2 )1/2(b/2(bff

< ila1/2t,1/2111-to ’o Ila/2b/2ll (9)

Proof. Take two geodesics 3’(t) and it(t) and write them as

3"( t ) alo/2(al/2alaff l/2 )ta/2,
t3( t) b10/2(b1/2blb;1/2)tb/2

where a0 3’(0), a 3’(1), b0 ti(0), b it(l). Then for each 0 < < 1
we have, by convexity,

dist(3’(t), t(t)) _< (1 t)dist(ao, bo) + dist(al, bl)

or

ln(3’(t)-1/2ti (t)3’(t)-1/2)II
_< (1 -t)llln(affl/2boaffl/2)l + tllln(aF1/2bla:l/2)lI.
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Next we apply this formula to the geodesics y(t) and k6(t) where k > 0. By
choosing k large enough we can assume that

y(t)-/2(k(t))y(t) -1/2 > 1

a0-I/2(kbo)aff/2 > 1

a{-/Z(kb)a{/2 > 1

and therefore using Illn x ll ln llxll for x > 1 and canceling out k, the last
inequality for norms becomes

[]y(t)-’/e6(t)3,(t)-’/211 <_

Notice that y(t)- is also a geodesic so that the last formula gives also:

or equivalently

which is another way to write (9).
This inequality has many variations. For example, replacing a by a/2 and b

by b/z and using the definition of the geodesics, we get

[l(ao(affaZaff,) )-/2( )-/zl[ao bo(bfflbbg 1) bo <_ Ilaobolll-tllalb[[

or using Izl (zz*)/2"

lao(aClaaff)t/211bo(bffbbffl)l/lll <-]laobolll-tllalbl lit.

As special cases of (9) we can also get [labtall <_ Ilaball and Ilatbtl] <_ I]abll
for anya, bA/ and0<t< 1.

THEOREM 3 (see [3]). The exponential function in A + increases distances.

Proof By invariance it suffices to show that the exponential function
increases distances at the identity 1 A /. Consider two geodesics of the
form y(t)= etX and 6(t)= e tY. Then according to Theorem 2 the function

f(t) dist(y(t), 6(t)) ln(e-tX/2etYe-tX/2)II
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is convex. Since f(0) 0 this implies that f(t)/t < f(1) for each 0 < < 1.
Taking limits we have lim --,0 f(t)/t < f(1).

Observe next that In x can be approximated on any interval Ix0, xl] with
0 < x0 < X uniformly in the C sense by polynomials Pn(X). In particular
limn Pn(X) In x and lim,, P,(x) 1/x. Then

1
In( e-tX/2etYe -tX/2)lim -t--O

1 e_X/ere_X/)lim lim =p(
n O

d _tX/2etYe_tX/2lim --d-fPn(e )
n-o t=0

=Y-X

(the last inequality is justified below). Now from this equality and convexity
we conclude that f(t) > II Y XII and this means that

dist(exPa(tX),exPa(tY)) > tllg-xll forall a A+ andall X,Y rA+a
To finish the proof write the polynomials Pn explicitly as p,,(x) Ern, k xk.

Then

d__ln(e_tX/2etYe -tX/2) It odt

d _tX/2etYe_tX/2lim -’fPn(e )
n t=0

d e_tX/2etYe_tX/2 )klim Ern k ’d(
n O

lim rn,k(Y X) k

n--
lim p,(1)(Y- X) (Y- X).
n

As observed in [3] this property of the exponential is equivalent to Segal’s
inequality (lleX+YII <_ IlegetVll for X,Y selfadjoint)which is therefore an-
other consequence of the convexity of the distance function in A /.
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