CONVEXITY OF THE GEODESIC DISTANCE ON SPACES OF POSITIVE OPERATORS

G. Corach, H. Porta and L. Recht

Let A be a C^{*}-algebra with 1 and denote by A^{+}the set of positive invertible elements of A. The set A^{+}being open in $A^{s}=\left\{a \in A ; a^{*}=a\right\}$ it has a C^{∞} structure and we can identify $T A_{a}^{+}$with A^{s} for each $a \in A^{+}$. We use G to denote the group of invertible elements of A. Notice that G operates on the left on A^{+}by the rule

$$
L_{g} a=\left(g^{*}\right)^{-1} a g^{-1} \quad\left(g \in G, a \in A^{+}\right)
$$

This action allows us to introduce a natural reductive homogeneous space structure in the sense of [8] (for details see [2], [3], [4]).

The corresponding connection-which is preserved by the group action-has covariant derivative

$$
\frac{D X}{d t}=\frac{d X}{d t}-\frac{1}{2}\left(\dot{\gamma} \gamma^{-1} X+X \gamma^{-1} \dot{\gamma}\right)
$$

where X is a tangent field on A^{+}along the curve γ and exponential

$$
\exp _{a} X=e^{X a^{-1} / 2} a e^{a^{-1} X / 2}, \quad a \in A^{+}, X \in T A_{a}^{+}
$$

The curvature tensor has the formula

$$
R(X, Y) Z=-\frac{1}{4} a\left[\left[a^{-1} X, a^{-1} Y\right], a^{-1} Z\right]
$$

for $X, Y, Z \in T A_{a}^{+}$. The manifold A^{+}has also a natural Finsler structure given by

$$
\|X\|_{a}=\left\|a^{-1 / 2} X a^{-1 / 2}\right\| \text { for } X \in T A_{a}^{+}
$$

and the group G operates by isometries for this Finsler metric.
Theorem 1. If $J(t)$ is a Jacobi field along the geodesic $\gamma(t)$ in A^{+}then $\|J(t)\|_{\gamma(t)}$ is a convex function of $t \in \mathbf{R}$.

1991 Mathematics Subject Classification. Primary 53C22; Secondary 58B20, 52AD5.

Proof. The method of proof is based on a similar strategy used in [4]. By definition $J(t)$ satisfies the equation

$$
\begin{equation*}
\frac{D^{2} J}{d t^{2}}+R(J, V) V=0 \tag{1}
\end{equation*}
$$

where $V(t)=\dot{\gamma}(t)$.
Notice that by the invariance of the connection and the metric under the action of G we may assume that $\gamma(t)=e^{t X}$ is a geodesic starting at $\gamma(0)=1 \in A$, where $X \in A^{s}$. Then for the field $K(t)=e^{-t X / 2} J(t) e^{-t X / 2}$ the differential equation (1) changes into

$$
\begin{equation*}
4 \ddot{K}=K X^{2}+X^{2} K-2 X K X \tag{2}
\end{equation*}
$$

(where the dots indicate ordinary derivative with respect to t). Since the group G acts by isometries, we have $\|J(t)\|_{\gamma(t)}=\left\|\gamma(t)^{-1 / 2} J(t) \gamma(t)^{-1 / 2}\right\|=$ $\|K(t)\|$. Thus the proof reduces to showing that for any solution $K(t)$ of (2) the function $t \rightarrow\|K(t)\|$ is convex in $t \in \mathbf{R}$, where the norm is the ordinary norm in the C^{*} algebra A. So fix $u<v \in \mathbf{R}$ and let t satisfy $u \leq t \leq v$. We will prove that

$$
\begin{equation*}
\|K(t)\| \leq \frac{v-t}{v-u}\|K(u)\|+\frac{t-u}{v-u}\|K(v)\| . \tag{3}
\end{equation*}
$$

Consider first the case where the selfadjoint element $X \in A$ has the form

$$
\begin{equation*}
X=\sum_{i=1}^{n} \lambda_{i} p_{i} \tag{4}
\end{equation*}
$$

with $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ real numbers and $p_{1}, p_{2}, \ldots p_{n}$ selfadjoint elements of A satisfying $p_{i} p_{j}=0$ for $i \neq j$ and $p_{1}+p_{2}+\cdots+p_{n}=1$.

Suppose that A is faithfully represented in a Hilbert space \mathscr{H}. For fixed $x \in A$ decompose $x \in \mathscr{H}$ as $x=\sum_{i=1}^{n} \xi_{i} x_{i}$ where x_{i} is a unit vector in the range of p_{i} and the ξ_{i} are appropriate scalars. Define next the matrix $k(t)=\left(k_{i j}(t)\right)$ by $k_{i j}(t)=\left\langle K(t) x_{i}, x_{j}\right\rangle$ for all t. The differential equation (2) is equivalent to the equations

$$
\begin{equation*}
\ddot{k}_{i j}(t)=\delta_{i j}^{2} k_{i j}(t) \tag{2ij}
\end{equation*}
$$

where $\delta_{i j}=\left(\lambda_{i}-\lambda_{j}\right) / 2$.
A simple verification (or Bernoulli's formula) shows that all solutions of $\ddot{f}(t)=c^{2} f(t)$ satisfy

$$
f(t)=\phi(u, v, c ; t) f(u)+\psi(u, v, c ; t) f(v)
$$

where

$$
\begin{aligned}
& \phi(u, v, c ; t)= \begin{cases}\frac{\operatorname{Sinh} c(v-t)}{\operatorname{Sinh} c(v-u)} & \text { for } c \neq 0 \\
\frac{(v-t)}{(v-u)} & \text { for } c=0\end{cases} \\
& \psi(u, v, c ; t)= \begin{cases}\frac{\operatorname{Sinh} c(t-u)}{\operatorname{Sinh} c(v-u)} & \text { for } c \neq 0 \\
\frac{(t-u)}{(v-u)} & \text { for } c=0\end{cases}
\end{aligned}
$$

Then each $k_{i j}(t)$ satisfies

$$
k_{i j}(t)=\phi_{i j}(t) k_{i j}(u)+\psi_{i j}(t) k_{i j}(v)
$$

where $\phi_{i j}(t)=\phi\left(u, v, \delta_{i j} ; t\right)$ and $\psi_{i j}(t)=\psi\left(u, v, \delta_{i j} ; t\right)$. This can be written in matrix form as

$$
k(t)=\Phi(t) \circ k(u)+\Psi(t) \circ k(v)
$$

where $\Phi(t)=\left\{\phi_{i j}(t)\right\}$ and $\Psi(t)=\left\{\psi_{i j}(t)\right\}$, and the symbol \circ denotes the Schur product $\left\{a_{i j}\right\} \circ\left\{b_{i j}\right\}=\left\{a_{i j} b_{i j}\right\}$ of matrices. It follows that

$$
\begin{equation*}
\|k(t)\| \leq\|\Phi(t) \circ k(u)\|+\|\Psi(t) \circ k(v)\| \tag{5}
\end{equation*}
$$

The final step is to prove the inequalities

$$
\begin{align*}
& \|\Phi(t) \circ k(u)\| \leq \frac{v-t}{v-u}\|k(u)\| \\
& \|\Psi(t) \circ k(v)\| \leq \frac{t-u}{v-u}\|k(v)\| \tag{6}
\end{align*}
$$

Notice that both $\Phi(t)$ and $\Psi(t)$ are positive semidefinite. This follows from Bochner's theorem [1] applied to $\phi(u, v, c ; t)$ and $\psi(u, v, c ; t)$ considered as functions of c. In both cases the matrix is of the form $\left\{F\left(\lambda_{i}-\lambda_{j}\right)\right\}$ where $F(c)$ is the Fourier transform of a positive function (see [7], formula 1.9.14, page 31).

Next we apply a theorem of Davis (see [6] and the generalization in [9]) according to which for $n \times n$-matrices A and P with P positive semidefinite we have

$$
\|P \circ A\| \leq\left(\max _{1 \leq i \leq n} P_{i i}\right)\|A\|
$$

Taking $P=\Phi(t)$ and $P=\Psi(t)$ we get inequalities (6). Using now (5) and (6) we also get

$$
\begin{equation*}
\|k(t)\| \leq \frac{v-t}{v-u}\|k(u)\|+\frac{t-u}{v-u}\|k(v)\| . \tag{7}
\end{equation*}
$$

Since the element x and the representation space \mathscr{H} were not specified, we may assume without loss of generality that for a given t between u and v we have $\|K(t) x\|=|\langle K(t) x, x\rangle|$. Then writing $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ we conclude that

$$
\begin{aligned}
& |\langle k(t) \xi, \xi\rangle|=|\langle K(t) x, x\rangle|=\|K(t)\| \\
& |\langle k(u) \xi, \xi\rangle|=|\langle K(u) x, x\rangle| \leq\|K(t)\| \\
& |\langle k(v) \xi, \xi\rangle|=|\langle K(v) x, x\rangle| \leq\|K(t)\|
\end{aligned}
$$

and then (3) follows from (7) for X of the special form (4).
Let us go then to the general case-when X is an arbitrary selfadjoint element of A. The spectral theorem allows us to approximate X (in operator norm) by elements of the form (4). From the well-possedness of problem (2) we conclude that $(t, X) \rightarrow K(t)$ is norm continuous, and the inequality (3) for arbitrary X follows from the same inequality for X of the form (4). This completes the proof of Theorem 1.

For $a, b \in A^{+}$let $\operatorname{dist}(a, b)$ denote the geodesic distance from a to b in the Finsler metric $\|X\|_{a}$ of A. It is not hard to prove (using the invariance of the metric) that

$$
\begin{equation*}
\operatorname{dist}(a, b)=\left\|\ln \left(a^{-1 / 2} b a^{-1 / 2}\right)\right\| \tag{8}
\end{equation*}
$$

Theorem 2. If $\gamma(t)$ and $\delta(t)$ are geodesics in A^{+}then $t \rightarrow \operatorname{dist}(\gamma(t), \delta(t))$ is a convex function of $t \in \mathbf{R}$.

Proof. Suppose the geodesics $\gamma(t)$ and $\delta(t)$ are defined for $u \leq t \leq v$. Define $h(s, t)$ by the properties:
(a) the function $s \rightarrow h(s, u), 0 \leq s \leq 1$ is the geodesic joining $\gamma(u)$ and $\delta(u)$;
(b) the function $s \rightarrow h(s, v), 0 \leq s \leq 1$ is the geodesic joining $\gamma(v)$ and $\delta(v) ;$
(c) for each s, the function $t \rightarrow h(s, t), u \leq s \leq v$ is the geodesic joining $h(s, u)$ and $h(s, v)$.

In particular $h(0, t)=\gamma(t)$ and $h(1, t)=\delta(t)$. Define also $J(s, t)=$ $\partial h(s, t) / \partial s$. Then, for each $s, t \rightarrow J(s, t)$ is a Jacobi field along the geodesic
$t \rightarrow h(s, t)$. Finally define

$$
f(t)=\int_{0}^{1}\|J(s, t)\|_{h(s, t)} d s
$$

From Theorem 1, $t \rightarrow\|J(s, t)\|$ is convex for each s. Hence $t \rightarrow f(t)$ is also convex for $u \leq t \leq v$. But $f(u)=\int_{0}^{1}\|J(s, u)\|_{h(s, u)} d s$ is the length of the geodesic $s \rightarrow h(s, u)$ and therefore $f(u)=\operatorname{dist}(\gamma(u), \delta(u))$. Similarly, $f(v)=$ $\operatorname{dist}(\gamma(v), \delta(v))$. Now for $u \leq t \leq v$, the value $f(t)=\int_{0}^{1}\|J(s, t)\|_{h(s, t)} d s$ is the length of the curve $s \rightarrow h(s, t)$ joining $\gamma(t)$ and $\delta(t)$ and then we have $\operatorname{dist}(\gamma(v), \delta(v)) \leq f(t)$. Convexity of $\operatorname{dist}(\gamma(v), \delta(v))$ follows and Theorem 2 is proved.

Corollary 2.1. For any fixed $y \in A^{+}$the function $f: A^{+} \rightarrow \mathbf{R}, f(x)=$ $\operatorname{dist}(x, y)$ is |convex in the geometric sense", that is, each geodesic $\gamma(t)$ satisfies

$$
f(\gamma(t)) \leq(1-t) f(\gamma(0))+t f(\gamma(1))
$$

In particular geodesic spheres are convex sets.
Proof. Take $\delta(t)=y$ for all t and apply Theorem 2.
Corollary 2.2. For any a_{0}, a_{1}, b_{0}, and b_{1} in A^{+}we have

$$
\begin{align*}
& \left\|\left(a_{0}^{1 / 2}\left(a_{0}^{-1 / 2} a_{1} a_{0}^{-1 / 2}\right)^{t} a_{0}^{1 / 2}\right)^{1 / 2}\left(b_{0}^{1 / 2}\left(b_{0}^{-1 / 2} b_{1} b_{0}^{-1 / 2}\right)^{t} b_{0}^{1 / 2}\right)^{1 / 2}\right\| \\
& \quad \leq\left\|a_{0}^{1 / 2} b_{0}^{1 / 2}\right\|^{1-t}\left\|a_{1}^{1 / 2} b_{1}^{1 / 2}\right\|^{t} \tag{9}
\end{align*}
$$

Proof. Take two geodesics $\gamma(t)$ and $\delta(t)$ and write them as

$$
\begin{aligned}
& \gamma(t)=a_{0}^{1 / 2}\left(a_{0}^{-1 / 2} a_{1} a_{0}^{-1 / 2}\right)^{t} a_{0}^{1 / 2} \\
& \delta(t)=b_{0}^{1 / 2}\left(b_{0}^{-1 / 2} b_{1} b_{0}^{-1 / 2}\right)^{t} b_{0}^{1 / 2}
\end{aligned}
$$

where $a_{0}=\gamma(0), a_{1}=\gamma(1), b_{0}=\delta(0), b_{1}=\delta(1)$. Then for each $0 \leq t \leq 1$ we have, by convexity,

$$
\operatorname{dist}(\gamma(t), \delta(t)) \leq(1-t) \operatorname{dist}\left(a_{0}, b_{0}\right)+t \operatorname{dist}\left(a_{1}, b_{1}\right)
$$

or

$$
\begin{aligned}
& \left\|\ln \left(\gamma(t)^{-1 / 2} \delta(t) \gamma(t)^{-1 / 2}\right)\right\| \\
& \quad \leq(1-t)\left\|\ln \left(a_{0}^{-1 / 2} b_{0} a_{0}^{-1 / 2}\right)\right\|+t\left\|\ln \left(a_{1}^{-1 / 2} b_{1} a_{1}^{-1 / 2}\right)\right\|
\end{aligned}
$$

Next we apply this formula to the geodesics $\gamma(t)$ and $k \delta(t)$ where $k>0$. By choosing k large enough we can assume that

$$
\begin{aligned}
\gamma(t)^{-1 / 2}(k \delta(t)) \gamma(t)^{-1 / 2}>1 \\
a_{0}^{-1 / 2}\left(k b_{0}\right) a_{0}^{-1 / 2}>1 \\
a_{1}^{-1 / 2}\left(k b_{1}\right) a_{1}^{-1 / 2}>1
\end{aligned}
$$

and therefore using $\|\ln x\|=\ln \|x\|$ for $x>1$ and canceling out k, the last inequality for norms becomes

$$
\left\|\gamma(t)^{-1 / 2} \delta(t) \gamma(t)^{-1 / 2}\right\| \leq\left\|a_{0}^{-1 / 2} b_{0} a_{0}^{-1 / 2}\right\|^{1-t}\left\|a_{1}^{-1 / 2} b_{1} a_{1}^{-1 / 2}\right\|^{t}
$$

Notice that $\gamma(t)^{-1}$ is also a geodesic so that the last formula gives also:

$$
\left\|\gamma(t)^{1 / 2} \delta(t) \gamma(t)^{1 / 2}\right\| \leq\left\|a_{0}^{1 / 2} b_{0} a_{0}^{1 / 2}\right\|^{1-t}\left\|a_{1}^{1 / 2} b_{1} a_{1}^{1 / 2}\right\|^{t}
$$

or equivalently

$$
\left\|\gamma(t)^{1 / 2} \delta(t)^{1 / 2}\right\| \leq\left\|a_{0}^{1 / 2} b_{0}^{1 / 2}\right\|^{1-t}\left\|a_{1}^{1 / 2} b_{1}^{1 / 2}\right\|^{t}
$$

which is another way to write (9).
This inequality has many variations. For example, replacing a_{i} by a_{i}^{2} and b_{i} by b_{i}^{2} and using the definition of the geodesics, we get

$$
\left\|\left(a_{0}\left(a_{0}^{-1} a_{1}^{2} a_{0}^{-1}\right)^{t} a_{0}\right)^{-1 / 2}\left(b_{0}\left(b_{0}^{-1} b_{1}^{2} b_{0}^{-1}\right)^{t} b_{0}\right)^{-1 / 2}\right\| \leq\left\|a_{0} b_{0}\right\|^{1-t}\left\|a_{1} b_{1}\right\|^{t}
$$

or using $|z|=\left(z z^{*}\right)^{1 / 2}$:

$$
\left\|\left|a_{0}\left(a_{0}^{-1} a_{1}^{2} a_{0}^{-1}\right)^{t / 2}\right|\left|b_{0}\left(b_{0}^{-1} b_{1}^{2} b_{0}^{-1}\right)^{1 / 2}\right|\right\| \leq\left\|a_{0} b_{0}\right\|^{1-t}\left\|a_{1} b_{1}\right\|^{t}
$$

As special cases of (9) we can also get $\left\|a b^{t} a\right\| \leq\|a b a\|^{t}$ and $\left\|a^{t} b^{t}\right\| \leq\|a b\|^{t}$ for any $a, b \in A^{+}$and $0 \leq t \leq 1$.

Theorem 3 (see [3]). The exponential function in A^{+}increases distances.
Proof. By invariance it suffices to show that the exponential function increases distances at the identity $1 \in A^{+}$. Consider two geodesics of the form $\gamma(t)=e^{t X}$ and $\delta(t)=e^{t Y}$. Then according to Theorem 2 the function

$$
f(t)=\operatorname{dist}(\gamma(t), \delta(t))=\left\|\ln \left(e^{-t X / 2} e^{t Y} e^{-t X / 2}\right)\right\|
$$

is convex. Since $f(0)=0$ this implies that $f(t) / t \leq f(1)$ for each $0<t \leq 1$. Taking limits we have $\lim _{t \rightarrow 0} f(t) / t \leq f(1)$.

Observe next that $\ln x$ can be approximated on any interval $\left[x_{0}, x_{1}\right]$ with $0<x_{0}<x_{1}$ uniformly in the C^{1} sense by polynomials $p_{n}(x)$. In particular $\lim _{n \rightarrow \infty} p_{n}(x)=\ln x$ and $\lim _{n \rightarrow \infty} p_{n}^{\prime}(x)=1 / x$. Then

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{1}{t} & \ln \left(e^{-t X / 2} e^{t Y} e^{-t X / 2}\right) \\
& =\lim _{n \rightarrow \infty} \lim _{t \rightarrow 0} \frac{1}{t} p_{n}\left(e^{-t X / 2} e^{t Y} e^{-t X / 2}\right) \\
& =\left.\lim _{n \rightarrow \infty} \frac{d}{d t} p_{n}\left(e^{-t X / 2} e^{t Y} e^{-t X / 2}\right)\right|_{t=0}=Y-X
\end{aligned}
$$

(the last inequality is justified below). Now from this equality and convexity we conclude that $f(t) \geq t\|Y-X\|$ and this means that
$\operatorname{dist}\left(\exp _{a}(t X), \exp _{a}(t Y)\right) \geq t\|Y-X\| \quad$ for all $a \in A^{+} \quad$ and all $X, Y \in T A_{a}^{+}$.
To finish the proof write the polynomials p_{n} explicitly as $p_{n}(x)=\Sigma r_{n, k} x^{k}$. Then

$$
\begin{aligned}
\frac{d}{d t} \ln & \left.\left(e^{-t X / 2} e^{t Y} e^{-t X / 2}\right)\right|_{t=0} \\
& =\left.\lim _{n \rightarrow \infty} \frac{d}{d t} p_{n}\left(e^{-t X / 2} e^{t Y} e^{-t X / 2}\right)\right|_{t=0} \\
& =\left.\lim _{n \rightarrow \infty} \sum r_{n, k} \frac{d}{d t}\left(e^{-t X / 2} e^{t Y} e^{-t X / 2}\right)^{k}\right|_{t=0} \\
& =\lim _{n \rightarrow \infty} \sum r_{n, k}(Y-X)^{k}=\lim _{n \rightarrow \infty} p_{n}^{\prime}(1)(Y-X)=(Y-X)
\end{aligned}
$$

As observed in [3] this property of the exponential is equivalent to Segal's inequality ($\left\|e^{X+Y}\right\| \leq\left\|e^{X} e^{\mathrm{tY}}\right\|$ for X, Y selfadjoint) which is therefore another consequence of the convexity of the distance function in A^{+}.

References

1. S. Bochner, Vorlesungen über Fouriersche Integrale, Leipzig, 1932.
2. G. Corach, H. Porta and L. Recht, The geometry of the space of self-adjoint invertible elements of a C^{*}-algebra, to appear (preprint form in Trabajos de Matemática \#149, Instituto Argentino de Matemática.)
3. \qquad , A geometric interpretation of Segal's inequality, Proc. Amer. Math. Soc., 115 (1992), 229-231.
4. \qquad , Jacobi fields on spaces of positive operators, Linear Algebra Appl., to appear.
5. \qquad , Geodesics and operator means in the space of positive operators, Internat. J. Math., to appear.
6. C. Davis, On the norm of the Schur product operation, Numer. Math. 4 (1962), 343-344.
7. A. Erdelyi et al., Tables of integral transforms (The Bateman manuscript), Volume 1, McGraw-Hill, New York, 1954.
8. M. Kobayashi and K. Nomizu, Foundations of differential geometry, Interscience, New York, 1969.
9. M. Walter, On the norm of the Schur product, Linear Algebra Appl. 79 (1986), 209-213.

Instituto Argentino de Matemática
Buenos Aires, Argentina

University of Illinois
Urbana, Illinois
Universidad Simón Bolívar
Caracas, Venezuela

