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Abstract
Let A = (A1, . . . , Am) be an m-tuple of n × n Hermitian matrices. For 1 ≤ k ≤ n, the

kth joint numerical range of A is defined by

Wk(A) = {(tr (X∗A1X), . . . , tr (X∗AmX)) : X ∈ Cn×k, X∗X = Ik}.

We consider linearly independent families of Hermitian matrices {A1, . . . , Am} so that Wk(A)
is convex. It is shown that m can reach the upper bound 2k(n− k) + 1. A key idea in our
study is relating the convexity of Wk(A) to the problem of constructing rank k orthogo-
nal projections under linear constraints determined by A. The techniques are extended to
study the convexity of other generalized numerical ranges and the corresponding matrix
construction problems.

1 Introduction

Let A = (A1, . . . , Am) be an m-tuple of n × n Hermitian matrices. For 1 ≤ k ≤ n, the kth
joint numerical range of A is defined as

Wk(A) = {(tr (X∗A1X), . . . , tr (X∗AmX)) : X ∈ Cn×k, X∗X = Ik}.

When k = 1, it reduces to the usual joint numerical range of A that are useful in the study of
various pure and applied subjects (see [2, 3, 4, 5, 7]). In particular, in the study of structured
singular values arising in robust stability (see [6, 7, 15]), it is important that W1(A) is convex.
Unfortunately, W1(A) is not always convex if m > 3 (e.g., see [1]). We modify the example
in [1] to show that the same conclusion holds for Wk(A) in the following.

Example 1.1 Let A1 =
(

1 0
0 −1

)
⊕ 0n−2, A2 =

(
0 1
1 0

)
⊕ 0n−2, A3 =

(
0 i
−i 0

)
⊕ 0n−2,

A4 = I2 ⊕ 2Ik−1 ⊕ 0n−k−1, Aj = In for all other j ≤ m. Then Wk(A) is not convex.
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Proof. Suppose Wk(A) is convex. Note that 2k−1 is the sum of the k largest eigenvalues
of A4. If X ∈ Cn×k with X∗X = Ik such that tr (X∗A4X) = 2k − 1, then (see e.g. [10])
the column space of X must be spanned by k eigenvectors of A4 corresponding to the k
largest eigenvalues. Thus, there exists an k×k unitary matrix V such that XV has columns
αe1 + βe2, e3, . . . , ek+1, where |α|2 + |β|2 = 1. Then one can check that the subset

S = {(a1, . . . , am) ∈ Wk(A) : a4 = 2k − 1} = {(a, b, c, 2k − 1, k, . . . , k) : a2 + b2 + c2 = 1}

of Wk(A) is not convex, which is a contradiction. 2

Apart from these negative results, one would still hope to get the convexity conclusion
if A has some special structure. In this paper, we consider linearly independent families
{A1, . . . , Am} so that Wk(A) is convex. In particular, we show that the maximum value of
m is 2k(n− k) + 1, which is much larger than 3 ensured by the general theorem [2].

A key idea in our study is to view Wk(A) as the image of the set of all rank k projections
under the linear map

φ(P ) = (tr A1P, . . . , tr AmP ).

To make this claim precise, denote by

U(C) = {U∗CU : U∗U = In}

the unitary similarity orbit of a given Hermitian matrix C. If

Jk = Ik ⊕ 0n−k,

then U(Jk) is the set of rank k orthogonal projections. Since a matrix P belongs to U(Jk) if
and only if P = XX∗ for some X ∈ Cn×k satisfying X∗X = Ik, we have

Wk(A) = {(tr A1P, . . . , tr AmP ) : P ∈ U(Jk)}.

So, Wk(A) is just the image of U(Jk) under the linear projection onto the linear space spanned
by {A1, . . . , Am}. With this new formulation of Wk(A), its convex hull can be written as:

conv Wk(A) = {(tr A1X, . . . , tr AmX) : X ∈ convU(Jk)}.

Consequently, we have the following.

Theorem 1.2 Let A = (A1, . . . , Am) be an m-tuple of n × n Hermitian matrices. Then
Wk(A) is convex if and only if for any X ∈ convU(Jk) there exists P ∈ U(Jk) so that
tr AjP = tr AjX for all j = 1, . . . ,m.

This rather simple observation turns out to be very useful in our study. Moreover,
if A1, . . . , Am are chosen from the standard basis for n × n Hermitian matrices, then the
constraints tr AjP = tr AjX for all j = 1, . . . ,m, are just specification of certain entries of
P . Thus the problem reduces to construction of a rank k orthogonal projection P with some
specified entries.

We shall use {E11, E12, . . . , Enn} to denote the standard basis for Cn×n in our discussion.
Moreover, the following observations will be used frequently:

2



(1) Wk(A) = Wk(V
∗A1V, . . . , V ∗AmV ) for any unitary V .

(2) Wk(A) is convex if and only if Wk(I, A1, . . . , Am) is convex.

(3) Let {B1, . . . , Bs} be a basis for span {A1, . . . , Am}. Then Wk(A) is convex if and only if
Wk(B1, . . . , Bs) is convex.

(4) Suppose Wk(A) is convex. Then Wk(B1, . . . , Bs) is convex if Bj ∈ span {I, A1, . . . , Am}
for 1 ≤ j ≤ s.

2 The kth Numerical Range and Orthogonal Projec-

tions

The focus of this section is to study linearly independent families {A1, . . . , Am} for which
Wk(A1, . . . , Am) is convex. We call such a family a linearly independent convex family for
the kth numerical range. In particular, we would like to study maximal (in the set inclusion
sense) linearly independent convex families.

We begin with the following result on the completion of a certain partial Hermitian matrix
to a rank k orthogonal projection.

Theorem 2.1 Let 1 ≤ k < n and X ∈ Ck×(n−k). There exists a rank k orthogonal projection

of the form
( ∗ X

X∗ ∗

)
if and only if ‖X‖ ≤ 1/2.

Proof. Suppose X is an off-diagonal submatrix of a rank k orthogonal projection. Then
‖X‖ ≤ 1/2 by the result in [12]. For the converse, let m = min{k, n− k}. Suppose 2X has
singular value decomposition UDV , where U and V are unitary, and

Drs =
{

sin tr if r = s ≤ m,
0 otherwise,

with π/2 ≥ t1 ≥ · · · ≥ tm ≥ 0. Set

P =
{

Udiag (1 + cos t1, . . . , 1 + cos tk)U
∗/2 if k ≤ n/2,

U(diag (1 + cos t1, . . . , 1 + cos tm)⊕ I2k−n)U∗/2 otherwise,

and

Q =
{

V ∗(diag (1− cos t1, . . . , 1− cos tk)⊕ 0n−2k)V/2 if k ≤ n/2,
V ∗diag (1− cos t1, . . . , 1− cos tm)V/2 otherwise.

One easily checks that
(

P X
X∗ Q

)
is a rank k orthogonal projection. 2

Clearly, the set of k×(n−k) matrices X satisfying ‖X‖ ≤ 1/2 is convex. By observations
(1) and (2), we have the following result.

Theorem 2.2 Let A = (A1, . . . , Am) be an m-tuple of n × n Hermitian matrices. Suppose
1 ≤ k < n and

S =
{
αI +

(
0 X

X∗ 0

)
: α ∈ R, X ∈ Ck×(n−k)

}
.

If there exists a unitary U such that U∗AjU ∈ S for all j, then Wk(A) is convex.

3



Let 1 ≤ k < n. Since all matrices in U(Jk) have Frobenius norm equal to
√

k, the set
U(Jk) is highly non-convex in the sense that no three points in U(Jk) are collinear [18]. It is
somewhat surprising that the projection of U(Jk) to a subspace of dimension 2k(n− k) + 1
can be convex. In particular, if n = 2k then 2k(n − k) + 1 = n2/2 + 1, which is more than
half of the dimension of the space of n × n Hermitian matrices! In any event, we have the
following result showing that 2k(n− k) + 1 is indeed the upper limit.

Theorem 2.3 The unitary orbit U(Jk) is a homogeneous manifold, and the tangent space
at Jk equals

{i(HJk − JkH) : H = H∗} =
{(

0 X
X∗ 0

)
: X ∈ Ck×(n−k)

}
,

which has dimension 2k(n− k). Consequently, if A = (A1, . . . , Am) is such that

dim (span {I, A1, . . . , Am}) > 2k(n− k) + 1,

then Wk(A) is not convex.

Proof. The set U(Jk) is the orbit of Jk under the group action (U,C) 7→ U∗CU for any
unitary U and Hermitian C. Thus U(Jk) is a homogeneous manifold.

Since every unitary matrix admits a representation of the form eiH for some Hermitian
H, every smooth path of unitary matrices U(t), −1 ≤ t ≤ 1, U(0) = I, is of the form
U(t) = eiH(t) where H(t), −1 ≤ t ≤ 1 is a smooth path of Hermitian matrices such that
H(0) = 0. Thus we have

d(eiH(t)Jke
−iH(t))

dt

∣∣∣∣
t=0

= i(H ′(0)Jk − JkH
′(0))

and the tangent space of U(Jk) at Jk is equal to

{i(HJk − JkH) : H = H∗} =
{(

0 X
X∗ 0

)
: X ∈ Ck×(n−k)

}
,

which has dimension 2k(n− k).
Let A = (A1, . . . , Am), and let S = span {I, A1, . . . , Am} satisfy dimS > 2k(n−k)+1. We

prove that Wk(A) is not convex. Suppose Wk(A) is indeed convex. By observation (4), we can
find a linearly independent subset {I, B1, . . . , Bs} of {I, A1, . . . , Am} with s = 2k(n− k) + 1
such that Wk(B1, . . . , Bs) is also convex.

We claim that Wk(B1, . . . , Bs) has nonempty interior in Rs. If it is not true, then the
convex set Wk(B1, . . . , Bs) must lie in a certain hyperplane

P = {v ∈ Rs : vtw = d},

for some unit vector w = (w1, . . . , ws)
t ∈ Rs and d ∈ R. But then we have

tr

 s∑
j=1

wjBj

 X

 = d
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for all X ∈ U(Jk), i.e., Wk(
∑s

j=1 wjBj) = {d}. It follows that (see [10])
∑s

j=1 wjBj = dI/k,
contradicting the fact that {I, B1, . . . , Bs} is linearly independent.

Now U(Jk) is a homogeneous manifold of (real) dimension 2k(n − k) and φ(U(Jk)) =
Wk(B1, . . . , Bs) with

φ(P ) = (tr B1P, . . . , tr BsP ).

The set Wk(B1, . . . , Bs) ⊆ Rs with s = 2k(n − k) + 1 cannot have non-empty interior. So,
the assumption that dimS > 2k(n− k) + 1 cannot be true. 2

By the last two theorems, we see that a basis for the tangent space of U(Jk) at any point
together with the identity matrix form a maximal linearly independent convex family for the
kth generalized numerical range.

Next we turn to other linearly independent families {A1, . . . , Am} so that Wk(A) is convex.
By the result in [14], we have the following.

Theorem 2.4 Let 1 ≤ k ≤ n/2 and P ∈ Ck×k be Hermitian. Then there exists a rank k

orthogonal projection of the form
(

P ∗
∗ ∗

)
if and only if all eigenvalues of P lie in [0, 1].

Clearly, the set of matrices P ∈ Ck×k with eigenvalues lying in [0, 1] is convex. Using
Theorem 1.2, observations (1) and (2), we obtain

Theorem 2.5 Let A = (A1, . . . , Am) be an m-tuple of Hermitian matrices. Suppose

S = {P ⊕ αIn−k : α ∈ R, P is k × k Hermitian } .

If there exists a unitary U such that U∗AjU ∈ S for all j, then Wk(A) is convex.

3 Convex Families for the First Joint Numerical Range

We first identify a maximal linearly independent convex family for the first joint numerical
range which is different from those constructed in the previous section.

Theorem 3.1 Let A = (A1, . . . , Am) be an m-tuple of Hermitian matrices. Suppose

S = span ({Ejj : 1 ≤ j ≤ n} ∪ {Ej,j+1 + Ej+1,j : 1 ≤ j ≤ n− 1}) .

If there exists a unitary U such that U∗AjU ∈ S for all j, then W1(A) is convex.

Proof. Let A = (A1, . . . , A2n−1) so that Aj = Ejj for 1 ≤ j ≤ n and An+j = (Ej,j+1 +
Ej+1,j)/2 for 1 ≤ j ≤ n − 1. Then (x1, . . . , x2n−1) ∈ W1(A) if and only if there is a unit
vector v = (v1, . . . , vn)t ∈ Cn such that

xj = |vj|2 if 1 ≤ j ≤ n ,
xn+j = vj v̄j+1 + v̄jvj+1 if 1 ≤ j < n .
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These conditions hold if and only if (x1, . . . , x2n−1) satisfies

n∑
j=1

xj = 1, xj ≥ 0 for 1 ≤ j ≤ n , and

|xn+j|2 ≤ xjxj+1 for 1 ≤ j ≤ n− 1.

Now suppose x = (x1, . . . , x2n−1), y = (y1, . . . , y2n−1) ∈ W1(A) and z = (z1, . . . , z2n−1) equals
(x + y)/2. Clearly, we have

n∑
j=1

zj = 1, zj ≥ 0 for j = 1, . . . , n.

Moreover, for j = 1, . . . , n− 1,

4|zn+j|2 = |xn+j + yn+j|2 ≤ (
√

xjxj+1 +
√

yjyj+1)
2 ≤ (xj + yj)(xj+1 + yj+1).

Hence z ∈ W1(A). Since W1(A) is closed, we conclude that it is a convex set. 2

A result of Horn [8] implies that W1(E11, E22, . . . , Enn) is convex. Theorem 3.1 strength-
ens this statement.

Note that a maximal linearly independent convex family of the first joint numerical range
may not have 2(n− 1) + 1 elements as shown in the following example.

Example 3.2 Suppose (k, n) = (1, 3). Then {I3, A1, A2, A3} with

A1 =

 1 0 0
0 −1 0
0 0 0

 , A2 =

 0 1 0
1 0 0
0 0 0

 , A3 =

 0 i 0
−i 0 0
0 0 0

 ,

is a maximal linearly independent convex family for W1(A).

Proof. Suppose there exists A4 such that {I, A1, . . . , A4} is linearly independent, and
W1(I3, A1, . . . , A4) is convex. One may replace A4 by a matrix of the form A4−(a0I3+a1A1+
a2A2+a3A3) so that the leading 2×2 principal submatrix is zero. Since W1(I3, A1, . . . , A4) is
convex if and only if W1(A) is convex with A = (A1, . . . , A4), we can focus on W1(A) ⊆ R4.
Using the unit vectors (1, 0, 0)t and (0, 1, 0)t, we see that (1, 0, 0, 0), (−1, 0, 0, 0) ∈ W1(A).
By convexity, we see that (0, 0, 0, 0) ∈ W1(A). One easily checks that a unit vector giving
rise to the point (0, 0, 0, 0) ∈ W1(A) must be of the form (0, 0, µ) ∈ C3. As a result, the
(3, 3) entry of A4 must be 0. Let U be a unitary matrix of the form U = Û ⊕ [1] so that
Â4 = U∗A4U = µ(E13 + E31). Then

span {A1, A2, A3, Â4} = span {U∗AjU : 1 ≤ j ≤ 4}.

Thus W1(A) is convex if and only if W1(Â) is, where Â = (A1, A2, A3, Â4). Note that

W1(Â) = {(|v1|2− |v2|2, v1v̄2 + v2v̄1, i(v2v̄1− v1v̄2), v1v̄3− v3v̄1) : v1, v2, v3 ∈ C,
3∑

j=1

|vj|2 = 1}.

Using the unit vectors (1/2,±1/2, 1/
√

2)t, we see that (0,±1/2, 0, 1/
√

2) ∈ W1(Â). However,
their mid-point (0, 0, 0, 1/

√
2) /∈ W1(Â), which is a contradiction. 2

In connection with the above discussion, it would be interesting to solve:
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Problem 3.3 Characterize maximal linearly independent convex families for the first (or
the kth) joint numerical range.

Problem 3.4 Determine maximal linearly independent convex families with smallest num-
ber of elements.

4 A Theorem on Non-convexity

Let n ≥ 3. Then there exists a 4-tuple A of n×n Hermitian matrices such that W1(A) is not
convex as mentioned in the introduction. Suppose A1, A2, A3 are n× n Hermitian matrices
such that {I, A1, A2, A3} is linearly dependent, say, span {I, A1, A2, A3} = span {I, A1, A2}.
Then for any Hermitian matrix A4, W (A1, A2, A4) is convex, and so is W (I, A1, A2, A3, A4)
by observations (2) and (3).

In the following, we show that as long as {I, A1, A2, A3} is linearly independent, one can
find A4 so that W1(A1, A2, A3, A4) is not convex. We first establish the following auxiliary
result, which is of independent interest.

Theorem 4.1 Let A1, A2, A3 be n×n Hermitian matrices. If {I, A1, A2, A3} is linearly inde-
pendent, then there exists X ∈ Cn×2 with X∗X = I2 such that {I2, X

∗A1X,X∗A2X,X∗A3X}
is linearly independent.

Proof. We assume that n > 2 to avoid trivial consideration. Since I, A1, A2 are linearly
independent, the complex matrix A1+iA2 cannot be written as αH+βI for any α, β ∈ C and
Hermitian matrix H. By [14, Theorem 3.5], there exists X ∈ Cn×2 such that X∗(A1 + iA2)X
is not normal. By [9, 1.3.1], we may assume that X∗(A1 + iA2)X has equal diagonal entries
γ1 + iγ2 with γ1, γ2 ∈ R. Replace A1 and A2 by suitable linear combinations of A1−γ1I and
A2 − γ2I, we may assume that

X∗A1X =
(

0 1
1 0

)
and X∗A2X =

(
0 i
−i 0

)
.

If {I2, X
∗A1X, X∗A2X, X∗A3X} is linearly independent, then we are done. If not, we

may replace A3 by a suitable linear combination of I, A1, A2, A3 so that X∗A3X = 0 and
{I, A1, A2, A3} is still linearly independent. Since A3 6= 0, there exists Y = [X|y] ∈ Cn×3

such that Y ∗Y = I3 and

Â1 = Y ∗A1Y =

 0 1 a1

1 0 a2

ā1 ā2 a3

 , Â2 = Y ∗A2Y =

 0 i b1

−i 0 b2

b̄1 b̄2 b3

 ,

and Â3 = Y ∗A3Y =

 0 0 c1

0 0 c2

c̄1 c̄2 c3

 6= 0.

We may assume that c2 ≥ |c1|; otherwise, we may replace Â3 by D∗Â3D with D =

diag(1, µ, 1) or D =
(

0 µ
1 0

)
⊕ [1] for some suitable µ ∈ C with |µ| = 1. One can then
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replace Â1 and Â2 by suitable linear combinations of D∗Â1D and D∗Â2D, and assume that
Â1 and Â2 are still of the form in the display.

Now consider P =
(

1 0 0
0 cos θ sin θ

)t

with θ ∈ (0, π/2). Then

P ∗A1P = sin θ
(

0 cot θ + a1

cot θ + ā1 (a2 + ā2) cos θ + a3 sin θ

)
,

P ∗A2P = sin θ
(

0 i cot θ + b1

−i cot θ + b̄1 (b2 + b̄2) cos θ + b3 sin θ

)
,

P ∗A3P = sin θ
(

0 c1

c̄1 2c2 cos θ + c3 sin θ

)
.

We claim that there exists θ ∈ (0, π/2) such that {I2, P
∗Â1P, P ∗Â2P, P ∗Â3P} is linearly

independent, and hence the conclusion of the theorem follows. Since all the (1, 1) entries of
P ∗Â1P, P ∗Â2P and P ∗Â3P equal 0, I2 is not a linear combination of these 3 matrices. To
establish our claim, we need only show that there exists θ ∈ (0, π/2) such that P ∗Â1P, P ∗Â2P
and P ∗Â3P are linearly independent. To this end, construct the following matrix B, whose
rows contain the real and imaginary parts of the entries of P ∗ÂjP , etc.:

B = sin θ

 cot θ + (a1 + ā1)/2 i(ā1 − a1)/2 (a2 + ā2) cos θ + a3 sin θ
(b1 + b̄1)/2 cot θ + i(b̄1 − b1)/2 (b2 + b̄2) cos θ + b3 sin θ
(c1 + c̄1)/2 i(c̄1 − c1)/2 2c2 cos θ + c3 sin θ

 .

Now,

det(B)/ sin4 θ = det

 cot θ + (a1 + ā1)/2 i(ā1 − a1)/2 (a2 + ā2) cot θ + a3

(b1 + b̄1)/2 cot θ + i(b̄1 − b1)/2 (b2 + b̄2) cot θ + b3

(c1 + c̄1)/2 i(c̄1 − c1)/2 2c2 cot θ + c3


can be viewed as p(cot θ) for some real polynomial p of degree 3. If det(B) = 0 for all
θ ∈ (0, π/2), then the coefficient of cot3 θ in p(cot θ) is 0, which is just 2c2 by expanding
det(B)/ sin4 θ. Since c2 ≥ |c1|, we see that c1 = 0 as well. Now, consider the coefficient of
cot2 θ in p(cot θ), which is just c3. Again, it has to be 0. It follows that Â3 = 0, which is a
contradiction. 2

Now we are ready to state the non-convexity result of the joint numerical range.

Theorem 4.2 Suppose A1, A2, A3 are Hermitian matrices such that {I, A1, A2, A3} is lin-
early independent. Then there exists a Hermitian matrix A4 such that W1(A1, A2, A3, A4) is
not convex.

Proof. By the previous theorem, there exists X ∈ Cn×2 such that X∗X = I2 and
{I2, X

∗A1X, X∗A2X, X∗A3X} is linearly independent. Let A4 = XX∗. Then (a, b, c, 1) ∈
W1(A1, A2, A3, A4) if and only if (a, b, c) ∈ W1(X

∗A1X, X∗A2X, X∗A3X), which is not convex
[1]. The result follows. 2

We remark that Theorem 4.1 and its proof can be easily modified to deal with infinite di-
mensional self-adjoint operators A1, A2, A3. In general, it is interesting to solve the following
problem.
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Problem 4.3 If a linearly independent family {A1, . . . , Am} of (finite or infinite dimen-
sional) self-adjoint operators is given, where (r − 1)2 < m ≤ r2, does there exist an X such
that X∗X = Ir and {X∗AjX : j = 1, . . . ,m} is linearly independent.

By private communication, Doug Farenick pointed out that this problem can be studied
in the context of unital completely positive maps on C∗-algebras.

5 Related results and questions

There are many variations of our problems. We mention a few of them in the following.

Real symmetric matrices
In applications, one often has to consider real symmetric matrices instead of complex

Hermitian matrices. One can modify the results and proofs on complex Hermitian matrices
and get the following analogs for real symmetric matrices.

Theorem 5.1 Let A = (A1, . . . , Am) be an m-tuple of real symmetric matrices. Suppose
1 ≤ k ≤ n/2 and

S =
{
αI +

(
0k X
X t 0n−k

)
: α ∈ R, X ∈ Rk×(n−k)

}
,

or
S = {P ⊕ αIn−k : α ∈ R, P is k × k real symmetric } .

If there is a real orthogonal Q such that QtAjQ ∈ S, then Wk(A) is convex.

Theorem 5.2 The orthogonal similarity orbit O(Jk) is a homogeneous manifold, and the
tangent space at Jk equals

{(KJk − JkK) : K = −Kt} =
{(

0 X
X t 0

)
: X ∈ Rk×(n−k)

}
,

which has dimension k(n− k). Consequently, if A = (A1, . . . , Am) such that

dim (span {I, A1, . . . , Am}) > k(n− k) + 1,

then Wk(A) is not convex.

By this theorem and a result of Horn [8], we have the following corollary.

Corollary 5.3 The elements of A = (E11, E22, . . . , Enn) form a maximal linearly indepen-
dent convex family for W1(A).

Rectangular matrices
Suppose A = (A1, . . . , Am), where A1, . . . , Am are n × r matrices over F = R or C. To

be specific, we assume that n ≤ r in our discussion. Otherwise, consider the transposes of
A1, . . . , Am. For 1 ≤ k ≤ n, define
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Vk(A) = {(∑k
j=1 x∗jA1yj, . . . ,

∑k
j=1 x∗jAmyj) : {x1, . . . , xk} is an orthonormal set of Fn,

{y1, . . . , yk} is an orthonormal set of Fr},
which is a subset of Fm. Let Vk be the collection of n × r matrices X such that X∗X is a
rank k orthogonal projection. It is not hard to see that

Vk(A) = {(tr X∗A1, . . . , tr X∗Am) : X ∈ Vk}.

It was shown in [13, Theorems 14 and 41] that Vk(A) is not convex in general if m > 2.
Again, if A1, . . . , Am belong to a certain subset, then one can get convexity for a much larger
m as shown in the following result.

Theorem 5.4 Let A = (A1, . . . , Am) be an m-tuple of n× r matrices. Suppose

S =
{(

X 0
0 0

)
∈ Fn×r : X ∈ Fp×q

}
,

where min{p, q} ≤ k ≤ n + r− p− q. If there exist square matrices U and V with U∗U = In

and V ∗V = Ir such that UAjV ∈ S for all j, then Vk(A) is convex.

The proof of this theorem depends on

Theorem 5.5 Let (p, q) ≤ (n, r) in the entrywise sense, and min{p, q} ≤ k ≤ n+ r− p− q.
Then a p × q matrix X can be embedded in an n × r matrix Y so that Y ∗Y is a rank k
orthogonal projection if and only if ‖X‖ ≤ 1. Hence, the collection of all such X ∈ Fp×q is
a convex set.

Proof. By a result of Thompson [17] and our assumptions on the positive integers
n, r, p, q, k, we see that a p × q matrix X with singular values s1 ≥ . . . ≥ sk can be em-
bedded in an n × r matrix with the k largest singular values equal to 1 and the rest equal
to 0 if and only if si ≤ 1. The result follows. 2

Let Rk = E11 + E22 + · · · + Ekk ∈ Fn×r. In the complex case, the tangent space of the
manifold Vk at Rk is

T (Rk) = {i(RkH + GRk) : H = H∗, G = G∗}
=

{(
iX Y
Z 0(n−k)×(r−k)

)
: X = X∗ ∈ Ck×k

}
,

and has real dimension k2+2k(n+r−2k). In the real case, the tangent space of the manifold
Vk at Rk is

T (Rk) =
{
RkH + GRk : H = −H t, G = −Gt

}
=

{(
X Y
Z 0(n−k)×(r−k)

)
: X = −X t ∈ Rk×k

}
,

and has real dimension k(k − 1)/2 + k(n + r − 2k). It would be interesting to see whether
one can construct a maximal linearly independent convex family for Vk(A) of this size.
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Complex symmetric matrices
Let A = (A1, . . . , Am), where A1, . . . , Am are n × n complex symmetric matrices. For

1 ≤ k ≤ n, let Jk = Ik ⊕ 0n−k, and define

W t
k(A) = {(tr JkU

tA1U, . . . , tr JkU
tAmU) : U∗U = I}.

Then Theorem 5.1 is valid for the complex case. However, the tangent space of the manifold
at Jk is

U t(Jk) =
{
i(JkH + H tJk) : H = H∗

}
=

{
i
(

X Y
Y t 0n−k

)
: X = X t ∈ Rk×k, Y ∈ Ck×(n−k)

}
,

and has real dimension k(k + 1)/2 + 2k(n − k). It is interesting to know whether one can
find a maximal linearly independent convex family for W t

k(A) of this size.
Note that one may consider W t

k(A) for an m-tuple of complex matrices A = (A1, . . . , Am).
However, it is easy to check that W t

k(A) is the same as W t
k(Â1, . . . , Âm), where Âj is the

symmetric part of Aj for all j. For skew-symmetric matrices, one needs a different treatment
as shown in the next subsection.

Skew-symmetric matrices

Suppose A1, . . . , Am are skew-symmetric matrices over F = R or C. For 1 ≤ k ≤ n/2,

let Tk =
(

0k Ik

−Ik 0k

)
⊕ 0n−2k, and define

W t
k(A) = {(tr TkU

tA1U, . . . , tr TkU
tAmU) : U∗U = I}.

We have the following convexity theorem.

Theorem 5.6 Let A = (A1, . . . , Am) be an m-tuple of n × n skew-symmetric matrices.
Suppose

S = {Ej,k+j : j = 1, . . . , k}, or

S =


 0p 0 X

0 0 0
−X t 0 0q

 : X ∈ Fp×q, ‖X‖ ≤ 1


for some positive integers p and q such that n − (p + q) ≥ k ≥ min{p, q}. If there exists a
square matrix U with U∗U = In such that U tAjU ∈ S for all j, then W t

k(A) is convex.

The proof of this theorem depends on following two theorems. First of all, we have the
following (see [16] and its references).

Theorem 5.7 Let (d1, . . . , dk) ∈ Fk. There exists U with U∗U = In such that the (1, k +
1), (2, k + 2), . . . , (k, 2k) entries of U tTkU equal d1, . . . , dk if and only if |dj| ≤ 1 for all j.
Hence, the collection of such (d1, . . . , dk) form a convex set.
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Note that the singular values of the matrix
(

0k X
−X t 0n−k

)
are just two copies of those

of X. Applying the result on rectangular matrices to the k × (n − k) right top corner of a
skew-symmetric matrix, we have the following result.

Theorem 5.8 Let p and q be positive integers with n − (p + q) ≥ k ≥ min{p, q}. Then a
p× q matrix X can be embedded in the right top corner of an n× n skew-symmetric matrix
with the 2k largest singular values equal to 1 and the rest equal to 0 if ‖X‖ ≤ 1. Hence, the
collection of all such X is a convex set.
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Note added in proof
Professor M.D. Choi pointed out that the answer of Problem 4.3 is negative. For instance,

the 10× 10 Hermitian matrices Aj = E1j + Ej1, j = 2, . . . , 10, are linearly independent, but
it is impossible to have 10× 3 matrix V with V ∗V = I3 so that {V ∗AjV : j = 2, . . . , 10} is
linearly independent. A modified problem would be: Given linearly independent Hermitian
operators A1, . . . , Am, find the smallest positive integer r so that there exists V with V ∗V =
Ir for which the set {V ∗AjV : j = 1, . . . ,m} is still linearly independent.
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