106 W. T. Ingram

Case 2. If OC is a subset of myh(K), there is a subcontinuum &, of X such
that nyfi(Ky) = OC. Then L = {(x, »)| (x,¥) s in Tx T and there is a point z of K,
such that x = ay(z) and y = nyA(z)} is a subcontinuum of T T such that PL)
1s a subset of OB and P,(L) = OC. Thus, I contains a point of ¥y. As before. this
involves a contradiction,
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Convexity on a topological space
by

H. Xomiya (Tokyo)

Abstract, Although convexity is an attribute of subsets of linear spaces in general, we define
convexity on topological spaces without linear structures paying aftention to the concept of convex
hull. Then some theorems which have been obtained in linear topological spaces are given in these
spaces.

Takahashi [5] discussed a convexity on a metric space. In this paper, we discuss
a convexity on a topological space without linear space structure. We introduce
a comvexity on a topological space and several concepts concerning the convexity,
and obtain some theorems which generalize the theorems proved by Browder [1],
Fan [2] and Sion [4]. All topological structures are implicitly assumed to satisfy
Hausdorfl' separation axiom.

The author tenders his very warm thanks to Professor W. Takahashi for his
advice in preparing this paper.

1. Definitions and some elementary properties. Let X be a topological space,
o (X} the family of all subsets of X and #(X) the family of all finite subsets of X,
An H-operator on X is a mapping {-) from &/ (X} into o7 (X) satisfying the following
conditions:

{a) {@> = @, where & is the empty set;

(b) {x}) = {x}, xe X;

) L)y =<(A), de(X);

(@) (A = U {{Fy: FoA, Fe F(X)}.

The image (4> of A is said to be the convex hull of 4. A convex setin X is
a subset of X which is equal to its convex hull.

ProvosiTioN 1. (i) An H-operator is monatone, i.e. if A< B, then {A>={&>.

(i) The convex hull {A> of A€ &Z{(X) is the smallest convex set containing A.

(iii) The entire space X ond the empty set & are comvex sets.

V) If {C.)ver is a family of convex sets, then [\ C, is a convex set.

vel
() If {C,}yer is a family of convex sets such that for any two indices vy and v,

there exists an ipdex p with C,=C,, ) C,,, then |J C, is a convex set.
vel
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Proof. (i) Suppose 4 = B and F is a finite subsel of 4. Since Fis a finite subsct
of B, {F><{(B) by (d). Hence {A>={B>.

(i) Suppose 4 € &/ (X). If 4 = &, then the assertion is trivial by (a). Suppose
A % @ and x e 4. Since {x} = {{xPD={4)> by (i), 4={4D>. (4> is convex by (&)
If B is a convex set containing 4, then {(A>=¢(B) = B by (i),

(iii) The empty set @ is convex by (a), Since X<{X) by (i), X=X,

(iv) Put C = {'\ICV. Since {CH>={C,> = C, for vel, (C>eC. Hence C is
convex. "

(v) Put € = {J C. To show C is convex, we need only o show (e lor

vel
finite subset F of C by (d). Since F is finite, there exists v e 7 such that Fe C,. Hence
it follows {(F>cC,=C. ‘
Let R be the set of all functions from a countably infinite set N into the real
num’t?er system R which are zero except at a finite number of points of N, i.e. R is
the direct sum ZI:VRj where R; = R for all ie N. The topolegy and the linear space

sfructure on R are the usual ones. Suppese that a topological space X and an
H-operator (-) on X are given. Let #(X) be a stibfamily {(F): Fe #(X)} of
& (X). For He #(X), 2 mapping ¢ from H into R is called a structure mapping
on H, if it has the following properties:

(8) The mapping ¢ is an into-homeomorphism

(6) If AcH, then @({A4)) = {p(A)), where {p(4)> is the usual convex hull
of (A) in R. ’

ProrosrTion 2. (1) _[f a subset A of H is comvex, then ¢(4) is convex.
. (i) If A< p(H), then ¢~ 1(¢Dp) = L@~ (D). Hence if X is convex, then o~ 1A
is convex. :

Proof. (i) Since {p(A)y = ¢({4)) = w(4);.p(4) is convex.

@) Since g({p™*(AD) = Lp(e " HD)> = (D, <p™ 1)y = p~}(¢D).

Let Sg be the set of all structure mappings on H. When Sy is nonempty for cach
He #(X), an element @ of the product . ;_!x) Sy is said to be a structure on X with

respect to‘ the H-operator {*>. A convex space (X, ¢ ->, V) is a triple consisting of

? to(pt;loglcal space X, an H-operator {3 on X and a structure @ on X with respect
o (.

A nonempty,cor‘xvex set ¥ in a convex space (X, {*), ®) is also a convex space.

The to})ology on Y is the relative topology induced from X. The H-operator {3y
on Y is defined as follows, For A es2(Y), {A>y = {4>. The structure. &y is the

restriction of @ to A (Y). The convex space (¥, {-Dy, @) is said to be a subspace
of the convex space (X, >, &)

2 E}xampl'es !jf convex spaces. (I} A convex subset X of a real linear topological
space £ is an’example of a convex space. The topology of ¥'is the relative topology
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induced from E. The H-operator is the usual convex hull determined by the linear
space structure of E. Suppose H e #(X). Since the linear subspace ¥ spanned
by H is finite dimensional, there exists a topological isomorphism I from ¥ into R.
The restriction #({H) of I'to H is a structure mapping on H. We always take the
structure @ of this type whenever we regard a convex subset of a real linear topological
spacc as a COnVex space.

() The n-dimensional real projective space P"(R) is another cxample of a convex
space. P"(R) is the quotient space of R"*!\{0} by the following equivaleace relation
~: x~y if and only if there exists a nonzero real number ¢ such that x = fy. We
use the following notations:

7 R IN{0} — P"(R) is the quotient mapping,

S = {xe R+ ||xi| = 1, where
el = (P + PP A M2 for x = (', %% o, 2T},
mo= {xeS" IS0 u {xe 8™ >0, 5™ = 0} v
wi{res X In0, ¥ = ¥ =0tu.. U{xeS" x>0, = .. = X"}

For each % e P'(R) there exists a unique element x e §7 such that n(x) = %, so we
denote by A the mapping which corresponds each % e P'(R) to the element x & 5% .
The mapping 4 is a bijection from P"(R) onto 5%, and 27" is continuous as ™' is
the restriction of m to S7%. We define a mapping 6: S% — R® by

Bt 2 2 = (L L x for (L ¥ T e Sh

Then € is an into-homeomorphism and the image #(S%) is a convex subset of R”.
We denote by # the composition.fe Ai: P"(R)— R". Then y is injective and the
inverse #~! is continuous. We define an H-operator on P'(R) by

{y = {(n(4)y)  for
For He o#(P"(R)) the structure mapping ¢(H ) on H is the restriction of 5 to H.

A<=PYR).

3. Some theorems, The following theorem is obtained by Browder [1] when X is
a compact convex subset of a real lincar topological space. The method of the proof
of the theorem is same as [1].

TrECREM 1. Let (X, ->, &) be a compact convex space and I’ be a mapping from X
into &£ (X), where fbr x & X, Tx is a nonempty convex set in X. Suppose further that
forye X, T~y = {xe X: yeTx} is open in X. Then there exists xq € X such that
Xg € TxO. .

Proof, Since T is nonempty for xe X, {T’ ~133};ex is an open covering of X.
Since X is compact, there exists a finite subset F = {y1, ¥z, .es Vuy of X such that
{T~1y}i~1 is an open covering of X. Setting H = {F) and 4; = Hn Ty, for
i=1,2,..,n {4}~ is an open covering of H. Let ¢ = P(H) be the structure
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mﬂpp.ing on H. P-utting_dFl = @(H) = {pF) and 4; = p(d), {4}, is an opety
covering of FI Since H is compact, there exists a continuous partition of unity
{6,925, . 9y} subordinate to {4;}. A mapping f from H into itself is defined by

S® = Zlgi(.ﬁ)yi for Xefl,

where §; = o(y) fori=1,2, ..., n. Since £is continuous, f has & fixed poiunt £, e #
by the Brguwer fixed point theorem. Put x, = @™ }(%,). If the set of indices /’s such
that g(%g) # 008 {i;, fay .ers iyl then

™
20 =kzlg ik(f()) yiu

and X,€d, for k=1,..,m Hence x, ed, T Yy, e Y. €Txy for
fc =1,.., m.r Since Tix, is convex, {y, , ..., Yigr Txg; where we write <y, o0y ;D

: : m
instead of {{y,,..,», }>. Hence we have

Xo = ¢ &) = (P—l(kglyxk(io)yzk)

€0 N Fiys ooy Fiud)
= {Prys vons Y < Txg

Before stating the next theorem, we give some definitions. Let (X, {D, D)
be a convex space and f a real-valued function on X. The function £ is said to be
comvex if fo (H)™" is convex in the usual sense for He # (X), quasi-convex if
the set {J-C € X: f(x)<c}isconvex for ce R and guasi-concave if— -f 18 quasi-convex,
thn Xis a convex subset of a real linear topelogical space, these definitions coincide
with the usual ones. |

Prorostrion 3. () If f and g are convex and r is a nonnegative number, then
f+g and rf are convex. ’

@) If f is convex, then f is qifasi-convex,

. (i) f is quasi-convex if and only if the set {xe X: f(x)<c} is convex for ce R.
S_, Proof. (i) P?t He #(X) and ¢ = ¢(H) be the structure mapping on H.
1o (F+9)e 07" =g 4g0p™ 0 and (f) 097 = r(f p7E), (fig) ot
and (tf)e@ " are convex. Hence S+g and rf are convex,

() Let 4, = {x& X: f(x)<c} for ee R. To show A4, is convex, it is sufficient
to. Sht')W that {Fy< A, for finite subset F of 4,. Let @ = B({FY) be the structure
m;ipn'lg on {Fy and A, = (£& (p(F): fo p(R)<c}. Since A, is convex by hy-
pothesis and @(F)<d,, oKPY) = (@ (F)) = A,. Therefore (Fy = p~(A)c 4,.

(i) Suppose f is.quasi-convex. The equality

{x§X: f<e} = dU {reX: f(x)<d) |
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holds. Hence, by (v) of Proposition 1, {x e X f(x)<c} is convex. Conversely sup-
pose {xe X: f(x)<d} is convex for de R. The equality

{xeX: f(¥<c} = N {xeX: f(x)<d}
d<e

holds. Hence, by {iv) of Proposition 1, {xe X: f(x)<¢} is convex.

The next theorem is obtained by Fan [2] when X is a compact convex subset
of a real linear topological space.

TaeoreM 2. Let (X, <+>, ®) be a compact convex space. Let { .}y be a family
of real-valied lower semicontinuous convex functions defined on X. Then there exists
an x € X satisfying
vel,

fx)yge  for
if and only if, for any finite set of indices vy, ¥a, ..., ¥, of J and for any n nonnegative
n

Z A; =1, there exists a ye X satisfying

numbers Ly, Ay, .oy Ay such that
. F=1

T hfase

Proof. The “only if” part is easy. We prove the “if” part. Suppese that for
each xe Y there exists vel such that f(x)>c. Setting G, = {x € X: fi{x)>c},
{G,}yer is an open covering of X. Since X is compact, therc exists a finite subco-
vering {G,,, .. Gs,} Of {G}yer. Let {gy, ..., g,} be a continuous partition of unity
subordinate to {G,,, ..., G, and put

D3 = YDA for  (m)eXxX

and

d(x) = D(x,x) for xeX.

Since d is lower semicontinuous on ¥ by Lemma 3 of [6], 4 takes its minimum m.

Hence we have

dxyzm>c for xeX.

We define a mapping 7 from X into #/(X) by

Tx = {peX: D(x,)<m} for xeX.

_ Then T’ is nonempty and convex by hypothesis and T “ly = {xe X: Dix, y)<m}

is open as g;’s are continuous. Hence by Theorem 1 there exists x, € X such that
Xp€ Txg, i.e. d(xg)<m. This is a contradiction.

The following theorem is obtained by Sion [4] when X and Y are compact
convex subsets of real linear topological spaces, The method of the proof of the
theorem is same as [4]. '

THEOREM 3. Let (X, (>, D)yand (¥, [], ¥) be compact convex.spaces and f a real-
valued function on X'x Y such that (-, y) is quasi-concave and upper semicontinuous

2 — Fundamenta Mathematicae CXI. 2
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on X for ye X and f(x,*) is 2

‘ ' quasi-corvex and lower semicontinuous o ‘"
ots on ¢

Then we have : Thorxe k.

max min /' (x, ¥) = min max £
max min () i xexf(v,y)-

We need some lemmas. The following two lemmas and their proofs are in [dj

Lemma 1. Let 8 be an n-dimensional simplex with vertices day, .., a,. If
o iy

1 ; :
{dgs ey Ay} is an open covering of S and S~\A; is convex Jor i =0, ..., n and ap ¢ A
. g )

for 1£j(i,j=0,..,n), then {%Ai #* O,
=0

Lemma 2. Let ay, ..., a, be ¢lements of R* where k<n. Then
»

ﬂ <a03 AR ] [‘2,, s ﬂ,,) # ﬁ »

] =0
where we indicate by &, that this element is to be omitted.

. ?EMMA 3. Let (X, <>, ®) be a convex space; Y a finite ser and f a real-valwed
‘ Junction on Xx Y sulch that f(-, y) is quasi-coneave and upper sewitcontinvous on X
Jor ye Y. Suppose, in addition, that 'V is minimal with respect 1o the propert): ,
each x& X there exists a ye Y such that F(x, yy<c. Then there exists x e
that Flxo, Y)<c for el ye v. ‘ ) .
o Projf. .Seftxng Y = {yo,....,y,,} and d; = {xe X: f(x,p)<c} fori= 0.
o s ,,} 1s an open covering of X and X\ 4, is convex for i = 1 n Bm‘lthoe
‘minimality of ¥, for each 7 there exists a,e X such that a,¢ 4, fo’r”/:,;é -i gince

{ag, iy o, 3= XNA, and i
_ : and XN\A, is convex for § =
<X \A4;. Hence we have l 17 o - 0

o & & such

. ) .
) _Do<.(1m v B sty =@

Let o 'be't_he st;uctiu-e mapping on
d; = @(a) for i =1,..., n. Since oa

N<lo, o, 8y d) = 0.

. i=0

Hence, . il Ay 1 i )

j{i (p(};ynlzinma 2,))(;.10, ...,.ao,,) s & n-dimensional ‘simplex. I we g
;= [y 0 s @) for i =0, . n, then {4,, ... A1 is sen ing

of (&, s d> and §i¢zj for i # j. Since Wi A s an open coverng

<50! neey ﬁn>\Zl = (P((aO- ey an))\‘p(Ai N {aq, ey ﬂ">)

oy ooy @)y 180 @ = By, ..., a,>) and
s ees By s ByY) = Loy oy Bpy oy B0

S ;
= 9({dy, ..., ay (X\An))
and : ) i
{85ty iy [ (XNA)) s comves, (g, ey B5/4, is convex for i =0 #
H v Lemm ists - .
ence, by Lemmia 1, there exists %, such that Zoe N A, Puitting x, = ¢~ (%)
i=0 ’

- H .
we have x, E:D‘:A"" ie. fxes ¥)<e for i = 0,y n.
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LremMa 3. Ler X be a finite set and (¥, [-1,¥) be a convex space and f be a real-
valued function on X x ¥ such that f(x, ") is quasi-convex and lower semicontinuous

‘on Y for each x € X. Suppose, in addition, that X is minimal with respect to the property:
for ecach ye Y there exists an xe X such that f{x, vy>c. Then there exists ype T

such that (>, yoy>c for all xe X.
The proof of Lemma 3 is same as the proof of Lemma 3.

Proof of Theorem 4. It is easily seen that
max min £ {x; y)<min mas f (x, 7).
xeX ye¥ yel¥ xeX
Suppose
max min £ (x, ¥)<c<min max f(x.r).
rzeX ye¥ yeY¥ xeX

Let 4, = {ve¥: f{x,n>c} and B, = {xe X: f(x.y)<c}. Since the family
£4.) .y is an open covering of ¥, there exists a finite subcovering {A.,, .., A}
of {4, cx- Similarly, since the family {B,}, v is an open covering of X, there exists
2 finite subcovering {B,,, . By} Of {B}ycy. If we put X, ={xy,..»x,} and
¥y == {3y, wes Yuls then for each y e [Y;] there exists an x € X, such that £ (x, ) >¢
and for each x & (X,) there exists a y e ¥; such that f(x, y)<e. Let X, be a-minimal
subset of X, such that for.each y € [¥,] there exists an xe X, such that f(x, y)>ec.
Let ¥, be a minimal subset of ¥y such that for cach x € {X,) there exists ay e Y,
such that f(x, ¥)<c. By repeating this process of alternately reducing the X;and ¥,
after a finite number of steps, we can choose a finite subset X, of X and a finite
subset ¥, of ¥ such that X is minimal with respect to the property: for each y € [ 1]
there exists an x € Xp such that f(x, »)>¢; and Y is minimal with respect to the
property: for each x € { Xy} thercexists a y & ¥, such that £ (x, y}<c. An application .
of Lemma 3.to the subspace {Xg) yields that there exists an xg € {Xpp such that
Flxg, ¥y <e for all ye Y, Since the function f(xo,°) on Y is quasi-convex,
F Gy, M <e for all ye[Y,]. Similarly, by Lemma 3', there exists a )0 € [¥)) such
that f(x, ¥o)>c¢ for all xe {Xo). Then c< f (xg, ¥o)<<e, which is a contradiction.
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