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Let X be a real Banach space with dual X*. A monotone operator 
from X to X* is by definition a (generally multivalued) mapping T 
such that 

(x — y, x* — y*) è 0 whenever x* G T(x), y* G r(y) 

(where ( • , • ) denotes the pairing between X and X*). Such an opera
tor is said to be maximal if there is no monotone operator T' from X 
to X*, other than T itself, such that T'(x)Z)T(x) for every X. The 
effective domain D(T) and rawge i£(!T) of a monotone operator T are 
defined by 

D(T) = {x\ T(x) * 0} C I , 

je(z) = u {T(x)\xex} CI*. 
Minty [9] has shown that, when X is finite-dimensional and T is 

a maximal monotone operator, the sets D(T) and R(T) are almost 
convex, in the sense that each contains the relative interior of its con
vex hull. The purpose of this note is to announce some generalizations 
of Minty's result to infinite-dimensional spaces. 

A subset C of X will be called virtually convex if, given any rela
tively (strongly) compact subset K of the convex hull of C and any 
€>0 , there exists a (strongly) continuous single-valued mapping <t> 
from K into C such that ||#(x)— *|| =* f ° r every xÇ:K. I t can be 
shown that , in the finite-dimensional case, C is virtually convex if 
and only if C is almost convex, so that the following result contains 
Minty's result as a special case. 

THEOREM 1. Let X be reflexive, and let T be a maximal monotone 
operator from X to X*. Then the strong closures of D(T) and R(T) are 
convex. If in addition X is separable, or if X is an Lp space with 
\<p < oo, D{T) and R(T) are virtually convex. 

The proof of Theorem 1, which will appear in [12], is made possible 
by recent results of Asplund [ l ] , [2] concerning the existence of 
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single-valued duality mappings J: X-+X*, and results of Browder 
[5] concerning the invertibility of mappings of the form T+\J, X>0, 
where T is a maximal monotone operator. 

Since the subdifferential df of a lower semicontinuous proper con
vex function ƒ on X is a maximal monotone operator (Rockafellar 
[l4]), Theorem 1 yields a new result about the existence of subgradi-
ents. (It has been observed elsewhere [3] that the strong closures of 
D(df) and R(df) are convex even when X is not reflexive.) 

COROLLARY. Let X be reflexive and separable {or an Lp space with 
1 <p< 00), and let f be a lower semicontinuous proper convex f unction 
on X. Then D(df) and R(df) are virtually convex. 

Theorem 1 is applicable in particular to any single-valued mono
tone operator T with D(T)=X such that T is hemicontinuous, i.e. 
continuous from line segments in X to the weak* topology of X*, since 
such a T is known to be maximal (Browder [4]). 

The following convexity result covers certain cases where X is not 
reflexive. Here T is said to be locally bounded at a point x if there 
exists a neighborhood U of x such that the set 

T(U) = U{T{u)\uEU} 

is bounded in X*. 

THEOREM 2. Let T be a maximal monotone operator from X to X*. 
Suppose either that the convex hull of D(T) has a nonempty interior, or 
that X is reflexive and there exists a point of D{T) at which T is locally 
bounded. Then the interior of D{T) is a convex set whose {strong) closure 
is the closure of D{T). Moreover, T is locally bounded at every interior 
point of D(T), whereas T is not locally bounded at any boundary point 
ofD{T). 

The local boundedness assertion of Theorem 2 strengthens a result 
of Kato [8], according to which a monotone operator T is locally 
bounded at any interior point of D{T) where it is hemibounded. 

Theorem 2 will be deduced in [13] from a more general theorem for 
locally convex spaces. The theorem of Debrunner-Flor [6] plays an 
important role in the proof. 

The consequences of Theorem 2 include: 

COROLLARY 1. Let X be reflexive, and let T be a maximal monotone 
operator from X to X* such that the convex hull of R{T) has a nonempty 
interior. Then the interior of R{T) is a convex set whose closure is the 
(strong) closure of R(T). 
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COROLLARY 2. Let T be a maximal monotone operator from X to X*, 
and let Do be the subset of D(T) where T is single-valued. Then T is demi
continuous on Do, i.e. continuous as a single-valued mapping from Do 
in the strong topology to X* in the weak* topology. 

COROLLARY 3. Let X be reflexive, and let T be a maximal monotone 
operator from X to X*. Suppose there exists a subset B of X such that 0 
belongs to the interior of the convex hull of 

T(B) = U {T(x)\xEB}. 

Then there exists an x such that 0^T(x). 

COROLLARY 4. Let X be reflexive, and let T be a maximal monotone 
operator from X to X*. In order that R(T) be all of X*, it is necessary 
and sufficient that, whenever x*^T(xi)for i = \, 2, • • • , and ||x*||—»<», 
then the sequence x*, x*, • • • , has no strongly convergent subsequence. 

Corollary 2 may be compared with the result of Kato [8] that a 
single-valued monotone operator T is demicontinuous on any open 
subset of D(T) where it is hemicontinuous. Corollary 3 is a generaliza
tion of the main existence theorem of Minty [lO], which requires in 
effect that 0 be an interior point of the convex hull T0(B), where T0 

is some mapping such that To(x)QT(x) for every x and 

sup sup (x, x*) < oo. 
xeB a;*€r0(x) 

The necessary and sufficient condition in Corollary 4 is satisfied, in 
particular, when the following condition is satisfied: whenever 

*i G T(xi) for i = 1, 2, • • - , 
and 

lim||ff,-|| = oo, then lim||#,-|| = oo. 
i—»oo i—»oo 

(The two conditions are equivalent, of course, when X is finite-
dimensional.) The sufficiency of the latter condition for R(T) to be 
all of X* has previously been established by Browder [4, Theorem 4] . 
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