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Abstract. Convexity is known as an important cue in human vision. We
propose shape convexity as a new high-order regularization constraint
for binary image segmentation. In the context of discrete optimization,
object convexity is represented as a sum of 3-clique potentials penal-
izing any 1-0-1 configuration on all straight lines. We show that these
non-submodular interactions can be efficiently optimized using a trust
region approach. While the cubic number of all 3-cliques is prohibitively
high, we designed a dynamic programming technique for evaluating and
approximating these cliques in linear time. Our experiments demon-
strate general usefulness of the proposed convexity constraint on syn-
thetic and real image segmentation examples. Unlike standard second-
order length regularization, our convexity prior is scale invariant, does
not have shrinking bias, and is virtually parameter-free.

Keywords: segmentation, convexity shape prior, high-order function-
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Fig. 1. Segmentation with convexity shape prior: (a) input image, (b) user scribbles,
(c) segmentation with contrast sensitive length regularization. We optimized the weight
of length with respect to ground truth. (d) segmentation with convexity shape prior.

1 Introduction

Length-based regularization is commonly used for ill-posed segmentation prob-
lems, in part because efficient global optimization algorithms are well-known for
both discrete and continuous formulations, e.g. [1,2]. Nevertheless, the shrink-
ing bias and the sensitivity to the weight of the length term in the energy are
widely recognized as limitations of this form of regularization. These problems
motivate active research on optimization of higher-order regularization energies,
e.g. curvature [3,4,5,6], which can alleviate the shrinking bias and other issues.

We propose a new higher-order regularization model: convexity shape con-
straint, see Fig.1. Convexity was identified as an important cue in human vision
[7,8]. Many natural images have convex or nearly convex objects. Convex objects
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are also common in medical images. Yet, to the best of our knowledge, we are
the first to introduce a convexity shape prior into discrete segmentation energy.

We develop an energy-based formulation for convexity prior in discrete op-
timization framework and propose an efficient optimization algorithm for the
corresponding non-submodular high-order term Econvexity(S). The overall seg-
mentation energy E(S) can combine our convexity prior with user-defined hard-
constraints and linear intensity appearance [9], boundary length [1], color sepa-
ration [10], or any others standard submodular terms Esub(S)

E(S) = Econvexity(S) + Esub(S). (1)

Convexity of segment S is expressed as a penalty for all ordered triplet con-
figurations 1-0-1 along any straight line, see Fig.2(c). Similar straight 3-cliques
also appear in curvature modeling [6], but they also need 0-1-0 configurations to
penalize negative curvature. Moreover, they use only local triplets to evaluate
curvature. In contrast, convexity is not a local property of the segment bound-
ary. Therefore, we have to penalize 1-0-1 configurations on straight intervals of
any length. Consequently, our convexity energy model has a much larger number
of cliques. We propose an efficient dynamic programming technique to evaluate
and approximate these cliques in the context of trust region optimization [11].

Related Work: Many related shape priors were introduced in the past.
Common length-based regularizer [1] penalizes segment perimeter favoring smooth
solutions that are closer to circles and, therefore, more convex. However, as shown
in our experiments, this prior needs to be carefully balanced with the appearance
term as it has a strong shrinking bias. Connectivity regularizer [12,13] does not
have shrinking bias but might suffer from connecting thin structure artifacts.

Another related regularizer is the star shape prior [14,15], which imposes
convexity constraints only along the lines passing through a reference point given
by the user: these lines are allowed to enter and exit the object only once. In
contrast to our convexity prior, the star shape allows for non-convex objects.

There are also part-based shape priors [16,17,18]. A shape is partitioned into
several parts and each part imposes certain constraints on the direction of the
boundary with the background. This approach can model some simple convex
shapes, e.g. a rectangle, but it can not represent a general convexity prior.

Most related work is in [19], which models the object as an n-sided convex
polygon. It is a part-based approach that uses one foreground and n background
labels. For an accurate segmentation of an arbitrary convex object, e.g. a circle,
a finer discretization (i.e. more background parts) is required, significantly in-
creasing runtime. The larger the object, the worse is the problem. In contrast,
we can obtain an arbitrary convex object for any choice of orientation discretiza-
tion. Moreover, [19] relies on continuous optimization and is not efficient without
GPU. Additional related work on optimization is discussed in Sec. 4.3.

Contributions: We introduce a new discrete convexity shape regularizer. It
is virtually parameter free: there is almost no variation in segmentation results
for different values of the convexity weight, once the value is high enough, see
Sec. 4. This leads to scale invariance, another desirable property. We develop an
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Fig. 2. Left: Example of discretized orientations given by a 5× 5 stencil. One orienta-
tion di is highlighted. Middle: Set Li of all discrete lines on image grid that are parallel
to di. Right: Example of a triple clique (p, q, r) that violates convexity constraint.

optimization algorithm based on trust region and show how to use dynamic pro-
gramming to significantly improve efficiency. Finally, we experimentally validate
the advantage of our covexity vs. the length regularizer for segmentation.

The paper is organized as follows. Sec. 2 formulates convexity energy and
explains efficient evaluation. Sec. 3 explains trust-region optimization and its
efficient implementation. Sec. 4 demonstrates the usefulness of convexity shape
prior, and discusses alternative models, optimization schemes, and limitations.

2 Energy

Denote by Ω the set of all image pixels and let S ⊂ Ω be a segment. Let x be a
vector of binary indicator variables xp ∈ {0, 1}, p ∈ Ω such that S = {p | xp = 1}.
Due to one-to-one correspondence, we will use either x or S interchangeably.

In this paper we focus on convexity shape prior and propose a novel formu-
lation to incorporate this prior into segmentation energy. In continuous case,
segment S is convex if and only if for any p, r ∈ S there is no q on a line between
them s.t. q /∈ S. In discrete case, we approximate convexity constrains as follows.

Let i ∈ {1, . . . ,m} enumerate discrete line orientations, see Fig. 2a, and let
Li be the set of all discrete lines l ⊂ Ω of given orientation di such that

l = {p0, p1, ..., pn | pt = p0 + t · di, t ∈ Z+, pt ∈ Ω}. (2)

Fig. 2b illustrates set Li for one particular orientation di. One way to represent
discrete convexity constraint can be based on potential φ : {0, 1}3 → R defined
for all triplets of ordered pixels (p, q, r) along any discrete line l ∈

⋃

Li

φ(xp, xq, xr) =

{

∞ if (xp, xq, xr) = (1, 0, 1)

0 otherwise.

In practice we use some finite penalty ω redefining potential φ algebraically as

φ(xp, xq, xr) = ω · xp(1− xq)xr. (3)

The convexity energy Econvexity(x) integrates this triple clique potential

over all orientations, all lines and all triplets:

Econvexity(x) =
∑

l∈
⋃

Li

∑

(p,q,r)∈l

φ(xp, xq, xr). (4)
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As discussed below, 3rd-order energy (4) is hard to optimize for two reasons:
it is non-submodular and it has a prohibitively large number of cliques.

It is easy to verify that this energy is non-submodular [20]. It is enough

S T

to show that there exist segments S, T ⊂ Ω such that E(S) +
E(T ) < E(S∩T )+E(S∪T ). Consider the example on the right.
Since both S and T are convex, the left hand side is zero, while the
right hand side is infinite since the union of S and T is not convex. Therefore, our
energy cannot be optimized with standard methods for submodular functions.

At the first glance, is seems prohibitively expensive to even evaluate our
energy on reasonably sized images. For example, for an image of size 200× 300,
with just 8 orientations, there are roughly 32 billion triple cliques. In Sec. 2.1,
3.2 we show how to evaluate and approximate the Econvexity in time linear wrt

image size using dynamic programming. Then, in Sec. 3 we show how to optimize
our energy using trust region techniques [21,11]. Other sparser convexity models
and alternative optimization schemes are discussed in Sec. 4.3.

2.1 Energy Evaluation via Dynamic Programming

This section explains how to evaluate our convexity term Econvexity(x) efficiently.
We show how to compute the inner summation in (4) for one given line l. The
idea is to use dynamic programming to efficiently count the number of triplets
(1, 0, 1) on a line violating convexity constraints.

Let xl denote a vector of binary indicator variables on line l. Let s, t, v ∈
Z+, s < t < v be non-negative integers enumerating the set of pixels on l as in
definition (2). With some abuse of notation we denote by xs, xt, xv the corre-
sponding binary variables for pixels ps, pt, pv ∈ l and rewrite

Econvexity(xl) =
∑

(p,q,r)∈l

φ(xp, xq, xr) = ω ·
∑

t

∑

s<t

∑

v>t

xs · (1− xt) · xv.

Consider pixels ps, pt, pv ∈ l. We say pixel ps precedes pixel pt on line l if
s < t. Similarly, pixel pv succeeds pixel pt if v > t. Let C−(t) be the number of
pixels ps preceding pixel pt such that xs = 1, and C+(t) be the number of pixels
pv succeeding pixel pt such that xv = 1:

C−(t) =
∑

s<t xs, C+(t) =
∑

v>t xv. (5)

To count the number of all violating configuration (1, 0, 1) for ordered triplets
on line l we first consider one fixed pixel pt ∈ l with zero label xt = 0. Each
preceding pixel with label one and each succeeding pixel with label one form
configuration (1, 0, 1). Thus, the total combinatorial number of ordered triplets
(ps, pt, pv), s < t < v, with configuration (1, 0, 1) is given by C+(t) · C−(t), see
Fig. 3. Summing over all zero label pixels on line l gives

Econvexity(xl) = ω ·
∑

t

C+(t) · C−(t) · (1− xt).
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Fig. 3. Evaluation of Econvexity. The top row shows current configuration xl of pixels
on line l. The second and the third rows show the number of pixels ps with xs = 1
before and after each pixel pt, that is, functions C

−(t) and C+(t). The last row shows
the number of violated constraints for each pt with xt = 0.

Note that C−(t) = C−(t − 1) + xt−1. Hence both C+(t) and C−(t) can be
computed for all pixels on a line in one pass using running sums. For a particular
orientation di, each pixel appears in one line only. Therefore, the total number
of operations needed to compute Econvexity(x) is O(mN), where N = |Ω| is the
number of pixels in the image and m is the number of distinct orientations.

3 Optimization

This section describes our optimization algorithm for segmentation energy (1)
with the convexity shape prior. In terms of indicator variables x this energy is

E(x) = Econvexity(x) + Esub(x) (6)

where Esub is any submodular term1 that can be optimized with graph cuts,
e.g. boundary length [1], color separation [10], etc. As mentioned earlier, our
energy term Econvexity is non-submodular. Therefore, (6) is hard to optimize.
An additional difficulty is the large number of triple cliques in Econvexity(x).

For optimization, we use iterative trust region framework [21], which has
been shown promising for various non-submodular energies [11,6,22]. In each
iteration, we construct an approximate tractable model Ẽk of the energy E in
(6) near current solution xk. The model is only accurate within a small region
around xk called “trust region”. The approximate Ẽk is then optimized within
the trust region to obtain a candidate solution. This step is called trust region

sub-problem. The size of the trust region is adjusted in each iteration based on
the quality of the current approximation. See [21] for a review of trust region.

Algorithm 1 summarizes our approach. Line 2 computes unary approximate
energy Ek

approx for the non-submodular Econvexity around xk. Line 3 combines

Ek
approx with the submodular Esub. The resulting Ẽk is submodular and coin-

cides with the exact energy E on xk. The trust region sub-problem requires
minimization of Ẽk within a small region ||x − xk|| ≤ dk around xk. Unfortu-
nately, minimizing Ẽk under distance constraints is NP-hard [22]. Instead, we
use a simpler formulation of the trust region sub-problem proposed in [22,11]
based on unconstrained optimization of submodular Lagrangian

Lk(x) = Ẽk(x) + λk||x− xk||. (7)

1 The submodularity of the last term in (6) is assumed for clarity. The proposed trust
region approach can approximate non-submodular terms jointly with Econvexity.
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Here parameter λk controls the trust region size indirectly instead of distance dk.
The distance term in (7) can be expressed using unary terms [11,22]. Therefore
Lk(x) is a submodular function. Line 5 solves (7) for some fixed λk using one
graph-cut. The candidate solution x∗ is accepted whenever the original energy
decreases (line 11). The Lagrange multiplier λk is adaptively changed (line 13),
based on the quality of the current approximation and as motivated by empirical
inverse proportionality relation between λk and dk (see discussion in [11]).

Algorithm 1: Trust Region Convexity

1 Repeat Until Convergence

2 Compute approximation Ek
approx(x) for Econvexity(x) around xk (see Sec. 3.1)

3 Ẽk(x) = Ek
approx(x) + Esub(x) // keep the submodular part unchanged

4 //Trust region sub-problem: optimize approximate energy

5 x∗ ←− argmin
x
Lk(x) (7)

6 //Update current solution

7 Evaluate Econvexity(x
k), Econvexity(x

∗) (see Sec. 2.1)

8 Evaluate Ek
approx(x), E

k
approx(x

∗) (see Sec. 3.2)

9 R = E(xk)− E(x∗) //actual reduction in energy

10 P = Ẽk(x
k)− Ẽk(x∗) //predicted reduction in energy

11 xk+1 ←−

{

x∗ if R/P > τ1
xk otherwise

12 //Adjust the trust region

13 dk+1 ←−

{

λk/α if R/P > τ2
λk · α otherwise

3.1 Linear Approximation of Econvexity

In this section we derive linear approximation Ek
approx(x) for the energy term

Econvexity(x) in (4) around current solution xk

Ek
approx(x) =

∑

l∈
⋃

Li

∑

(p,q,r)∈l

φk(xp, xq, xr)

where φk(xp, xq, xr) is a linear approximation of the corresponding triple clique
potential φ(xp, xq, xr) in (3) around xk, as explained below.

Property 1. For any potential φ(x) : {0, 1}n → R of n binary variables x =
(x1, . . . , xn) and any subset A ⊂ {0, 1}n of n + 1 distinct binary configurations
of x, there is a linear function LA(x) = a0 + a1x1 + a2x2 + . . .+ anxn such that
φ(x) = L(x) for any x ∈ A.

For example, Fig.2 in [22] shows linear approximations of any pairwise po-
tential (n = 2) that are exact for n+ 1 = 3 out of 2n = 4 binary configurations.

Based on Prop. 1, one way to approximate potential φ(x) in (3) is to com-
pute n+1 unknown coefficients of LA(x) by solving a system of n+1 equations
φ(x) = LA(x) for n + 1 binary configurations in some chosen A. We take an
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alternative practical approach that avoids solving systems of equations and im-
plicitly selects a specific set A. Note, any discrete potential φ can be written as
a combination of multilinear functions of variables (x1, . . . , xn), see (3). In this
case, it is easy to verify that Taylor expansion φk of the potential φ around con-
figuration xk is a linear function satisfying Prop. 1. That is, φk(x) agrees with
φ(x) on configuration xk and n other “neighboring” configurations obtained by
flipping one of the variables in xk = (xk

1 , . . . , x
k
n). Omitting the constant terms,

Taylor expansion of (3) around xk yields2:

φk(xp, xq, xr) = (1− xk
q ) · x

k
r · xp − xk

r · xk
p · xq + (1− xk

q ) · x
k
p · xr. (8)

The components in (8) have an intuitive interpretation. Consider the first
component (1 − xk

q ) · x
k
r · xp. Recall that pixels p, q, r are on a line and q is

between p and r. If the current configuration xk is such that xk
q = 0, and xk

r = 1,
then assigning label 1 to pixel p violates convexity, assuming q and r keep their
labels unchanged from xk. The unary term (1−xk

q )·x
k
r ·xp penalizes this violation:

assignment xp = 1 carries a penalty, whereas xp = 0 is not penalized. The other
two components in (8) have similar intuitive interpretations.

Approximation in (8) gives three unary terms for each triple clique. Consider
line l. Pixel p can be either the leftmost, middle, or rightmost member of a clique
on that line. Sum the terms from all triple cliques on line l involving pixel p.
First with p being on the left, then in the middle and finally on the right of the
clique. All these terms contribute to the unary potential for a single pixel p:

ul
p(xp) =

∑

(p,q,r)∈l

(1− xk
q ) · x

k
r · xp −

∑

(q,p,r)∈l

xk
q · xk

r · xp +
∑

(q,r,p)∈l

(1− xk
r ) · x

k
q · xp. (9)

The full Taylor based unary term for pixel p sums ul
p(xp) over all lines,

up(xp) =
∑

l∈
⋃

Li
ul
p(xp) (10)

Fig. 5 illustrates the resulting unary terms arising from such approximation.
They encourage any holes in the foreground segment to be filled in, and any
protrusions to be erased. Efficient computation of (10) is discussed in Section 3.2.

There is a relation between the Taylor unary terms in (10) and parallel
ICM algorithm, noted in [23]. However, our trust region framework has many
differences from parallel ICM [23]. See [22] for a detailed comparison.

3.2 Energy Approximation via Dynamic Programming

Naive computation of the summations in (10) is too costly. We now explain how
to compute the unary terms in (10) efficiently. Similarly to Sec. 2.1, the speedup
is achieved with running sums on each line. In (10), each up sums over all lines
l ∈
⋃

Li. As in Sec. 2.1 we first show how to efficiently compute ul
p(xp) in (9).

2 Here we assume ω = 1. If ω 6= 1, all the derived formulas should be multiplied by ω.
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Fig. 4. First row shows synthetic images with added noise σnoise = 0.2; Second and
third rows show contours and masks of segmentation, ω = 0.1. We used log-likelihood
appearance terms, (µfg = 0, σfg = 0.1) and (µbg = 1, σbg = 0.1). The convexity prior
removes noise, connects components and fills holes while preserving sharp corners.

 

 

Fig. 5. First and second rows show unary approximation terms of Econvexity as in
(10) during the first and second iterations of trust region for the examples in Fig. 4.
Red-yellow colors denote preference to background, and blue-cyan colors - preference
to foreground. Unary terms encourage filling of holes and removal of protrusions.

Let s, t, v ∈ Z+ enumerate pixels on l and rewrite (9)

ut(xt) = xt

(

∑

s>t

∑

v>s

(1− xk
s) · x

k
v −
∑

s<t

∑

v>t

xk
s · xk

v +
∑

v<t

∑

s<v

xk
s · (1− xk

v)

)

. (11)

In (11), the first sum counts the number of pixel pairs (ps, pv) such that t < s < v
and xk

s = 0, xk
v = 1. The second sum counts the number of pixels pairs (ps, pv)

such that s < t < v and xk
s = xk

v = 1. The last sum counts the number of pixels
pairs (ps, pv) such that s < v < t and xk

s = 1, xk
v = 0.

Let C− and C+ be as in (5). Recall that each of them can be computed in
one pass over the line. Then the second sum in (11) is simply C−(t) ·C+(t). For
the other two sums, we need additional running sums.

Denote by A−(t) the number of pixel pairs (ps, pv) preceding pixel pt such
that xk

s = 1, xk
v = 0 and pixel ps precedes pixel pv,

A−(t) =
∑

v<t

∑

s<v

xk
s · (1− xk

v).

Given C−, we compute A− in one pass over line l using A−(0) = A−(1) = 0 and
recurrence A−(t) = A−(t− 1) + (1− xk

t−1) · C
−(t− 1).

Similarly, we define A+(t) as the number of pixel pairs (ps, pv) succeeding
pixel pt such that xk

s = 0, xk
v = 1 and pixel pv succeeds pixel ps,

A+(t) =
∑

s>t

∑

v>s

(1− xk
s) · x

k
v .
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Fig. 6. Illustration of robustness to parameter ω: results for length regularization are
shown with blue color and for convexity shape prior - with green. See text for details.

A+ is computed analogously to A−, given C+. Then the first sum in (11) is
A+(t) and the third sum is A−(t), and ut(xt) = A+(t)−C−(t) ·C+(t) +A−(t).

Computing A− and A+ is linear in the number of pixels on a line. For ori-
entation di, each pixel appears on one line only. Therefore we can compute A−

and A+ for all lines in O(mN) time, where m is the number of orientations and
N = |Ω|. Then the unary term for each pixel is computed in O(m) time. Thus
the total time to compute Taylor based unary terms for all pixels is O(mN).

4 Experiments

Below we apply convexity shape prior to image segmentation. We discretized
orientations using 11×11 stencil yielding 40 orientations for all synthetic images.
For natural images we found a 5×5 stencil yielding 8 orientations sufficient. The
code is available from http://vision.csd.uwo.ca/code/.

4.1 Synthetic Images

First we validate our method on synthetic images with noise N (0, 0.2), see Fig. 4.
We assume given target appearance distributions for foreground and background,
and combine standard log-likelihood data terms with the convexity shape prior

E(x) = Eapp(x) + Econvexity(x).

Here Eapp(x) =
∑

p∈Ω Dp(xp) is the appearance term, Dp(xp) = − logPr(Ip|xp)
and Econvexity(x) is as in (4). Fig. 4 demonstrates that our convexity prior re-
moves noise, insures connectivity and fills in holes while preserving sharp corners.

http://vision.csd.uwo.ca/code/


10 L. Gorelick, O. Veksler, Y. Boykov, C. Nieuwenhuis

0.01    5   10
0

2

4

6

8

10

x 10
5

Regularizer weight ω

d
is

ta
n

c
e

 f
ro

m
 G

ro
u

n
d

 T
ru

th

Robustness: Convexity vs. Length

 

 

length regularizer

contrast sensitive length regularizer

convexity regularizer

B

Input

User Scribbles

No regularization
ω= 0.1

ω=2.3 ω= 0.01 ω= 2.4

A B

ω= 10

A

ω= 0.01

Fig. 7. Illustration of robustness to parameter ω: results for length regularization are
shown with blue color and for convexity shape prior - with green. See text for details.

4.2 Real Images

Next, we use convexity prior in interactive segmentation of natural images with
user scribbles. The convexity prior is especially useful for images where there
is an overlap between the foreground and background appearance, see Figures
6-9. Such overlap often leads to holes in the foreground or larger parts of the
background erroneously segmented as the foreground, see Figures 6-8(bottom-
right). The convexity prior prevents such results. Length regularization is either
too weak to remove the noise or too strong causing shrinking.

We now specify the details of our interactive segmentation. For appearance
we use the recent submodular L1 color separation term proposed in [10]. This
term is based on L1 distance between unnormalized histograms of foreground and
background colors. Unlike standard appearance models, the color separation does
not require re-estimation of the parameters and can be efficiently and globally
optimized. We use 16 bins per color channel and combine the color separation
term with the convexity prior, subject to hard constraints on the user scribbles

E(x) = EL1(x) + Econvexity(x).

We then compare with the standard length regularization

E(x) = EL1(x) +
∑

(pq)∈N

ω[xp 6= xq].

Figures 6-8 show segmentation results on two natural and one medical image.
We vary the weight ω for our convexity prior in (3) and optimize as discussed
in Sec. 3. Similarly, we vary the weight ω for the length regularizer above and
optimize with one graph-cut [10]. We then plot the distance between the resulting
segment and the ground truth as a function of ω (green line - for convexity prior,



Convexity Shape Prior for Segmentation 11

0.01   5  10   30   50   70   90
0

0.5

1

1.5

2
x 10

4

Regularizer weight ω

d
is

ta
n

c
e

 f
ro

m
 G

ro
u

n
d

 T
ru

th

Robustness: Convexity vs. Length

 

 

length regularizer

convexity regularizer

ω= 0.01 ω= 5ω= 0.1

B

A

B

Input

User Scribbles

No regularization

ω= 1

A

ω= 0.01 ω= 0.1 ω= 1 ω= 90

Fig. 8. Illustration of robustness to parameter ω: results for length regularization are
shown with blue color and for convexity shape prior - with green. See text for details.

blue - for length). We also show segmentations for several key points on the plot
(green frames - for convexity, blue - for length) and compare them with the
results obtained without regularization. The length regularization is either too
weak to remove the noise or too strong and has a shrinking bias.

We experiment both with contrast sensitive length (ω depends on pixel pair
(p, q) as in [9]) and pure length, see Fig. 7. There is no significant difference
in their performance. The same sensitivity to the parameter values is observed;
compare the red (contrast sensitive) curve with the blue one (pure length).

Our model is scale invariant due to infinity cost constraints. In practice, we
have to choose finite ω. There is almost no variation in segmentation results
for different values of ω, once the value is high enough, making it a virtually
parameter-free regularizer. In fact, for each image we can compute finite ω such
that violating a single constraint is more expensive than the initial solution. In
cases where using such large ω leads to poor local minimum, gradually increasing
the weight ω (annealing) can potentially escape to a better solution.

4.3 Alternative convexity models and optimization

Below we discuss some variations of our convexity model and optimization.

Central Cliques Model: One natural question regarding our model is
whether we need all the triple cliques on a line to enforce convexity.

p

q

r

Indeed, it is sufficient to use a smaller subset consisting
only of central triple cliques (p, q, r), i.e. |p − q| = |q − r|,
see example on the right. This reduces the number of triple
cliques from O(n3) to O(n2) for a line with n pixels. How-
ever, our dynamic programming procedures for evaluation
(Sec. 2.1) and for approximation (Sec. 3.2) are no longer
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Input User Scribbles Length Regularization Convexity Regularization

ω=0.005 ω=1ω=0.32 ω=0.33

ω=0.005 ω=1ω=0.795 ω=0.796

ω=0.005 ω=1ω=2 ω=8

ω=0.005 ω=0.1ω=0.57 ω=0.575

Fig. 9. Additional results comparing between length and convexity regularizers. Except
for the second row, all images demonstrate sensitivity to length weight ω.

E1=2214, T=2.4 sec. E2=1835, T=52 sec.283x177

400x266 E1=15020, T=4.6 sec. E2= 14666, T=122 sec.

Input User Scribbles No Regularization All Cliques Central Cliques

Fig. 10. Comparison between the full convexity model with all triple cliques vs. central
cliques convexity model. The later does not allow efficient evaluation and approximation
of Econvexity using dynamic programming and therefore is much slower.

applicable. Brute force computation takes O(n2) operations per line with n pix-
els, as opposed to linear time with our dynamic programming for the full model.
Nonetheless, we compare between our full model and the central cliques model,
see Fig.10. Since the resulting segmentations have no convexity violations their
energies can be directly compared. The energy is slightly better with the central
cliques, but its running time is 25-30 times longer. The difference in time will be
even more significant for larger images.

Alternative Optimization Methods: The most related optimization
method is LSA [22], which is also based on trust region framework. However, it
was designed for non-submodular energies with only pairwise cliques. For this
class of energies, LSA reports state-of-the-art results [22]. LSA approximates the
energy by replacing non-submodular pairwise cliques with their Taylor expan-
sions while preserving all submodular pairwise cliques. Even though our con-
vexity prior is not pairwise, it is possible to reduce each triple clique to several
pairwise potentials using an additional auxiliary node [24] and optimize them
with LSA. We call this reduced version r-LSA. Reducing all triple cliques would
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Ours

no DP

QPBO

TRWS

E=3569.3 

T=1.2 sec.

E=6424.7

T= 1.6 sec.

E=6781.7

T= 1.9 sec.

E=26653

T= 10.9 sec.

E=38320

T=18.9 sec.

E=3569.3

T=38.3 sec.

E=6424.7

T=389.8 sec.

none 

T=444 sec.

none 

T=426.08 sec.

none

T=481.69 sec.

E=3569.3

T=247.8 sec.

E=6424.7

T=307.7 sec.

E=6781.7 

T=540.9 sec.

ω=0.1 ω=0.18 ω=0.19 ω=1 ω=10

E=68345 

T=8270 sec.

E=259880 

T=8377sec.

E=3569.3 

T=38.4 sec.

E=6424.7

T=40 sec.

E=6781.7

T=42.2 sec.

E=26612

T=457.7 sec.

r-LSA

E=356930

T=457.7 sec.

ω=5

none 

T=433 sec.

E=46305

T=417.9 sec.

E=34925

T= 8.3 sec.

E=163065

T= 8596.4 sec.

Fig. 11. Comparison between our method without dynamic programming (no DP),
r-LSA, QPBO and TRWS on the central clique model with 8 orientations. We use
thresholded appearance terms for initialization when needed. As ω increases, making
the energy more difficult, QPBO was not able to label any pixel (shown in gray) and
TRWS did not converge after 5000 iterations, which took several hours. For ω large
enough to enforce convexity, all methods except ours fail.

result in a prohibitively large number of auxiliary nodes and pairwise cliques
for our full convexity model. Even for the central clique model the number of
resulting pairwise cliques is quite large. An n × n image with m orientations
for central cliques produces O(mn3) pairwise potentials, which is very costly
both to optimize and to evaluate. Nonetheless, we tried this approach on a small
91 × 122 image. The first two rows in Figure 11 compare r-LSA approach to
our method. We apply both methods to the central clique model3 and vary ω.
Note that r-LSA is an order of magnitude slower than the slow version of our
method. As the value of ω increases, r-LSA fails to obtain satisfactory solutions.
We believe that there could be serious drawbacks in splitting clique φ(xp, xq, xr)
into individual submodular and supermodular parts and then approximating the
supermodular part. One sign of a problem is that there are infinitely many such
decompositions and it is not clear which one would give a better approximation.

Our full model with all triple cliques is also prohibitively expensive for stan-
dard optimization methods designed for non-submodular energies, such as QPBO
[25] and TRWS [26]. However, we can use these methods to optimize the more
compact central clique model as well. The last two rows in Figure 11 show seg-
mentation results of QPBO and TRWS for several values of ω. For values of

3 Even though the full model is more efficient for our method, for this experiment we
use central cliques to have identical energies for direct comparison.
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ω that are not sufficiently large to enforce convexity, all four methods, QPBO,
TRWS, r-LSA and Trust Region, return globally optimum, but useless solu-
tions. However, when ω is large enough, QPBO, TRWS and r-LSA fail to obtain
a satisfactory result. Our trust region approach obtains good results in all cases.

4.4 Optimization Limitations

Trust region framework is a local iterative optimization and therefore we can only
guarantee a local minimum [11]. Figure 12 demonstrates some sensitivity with
respect to initialization. A trivial initialization with all pixels in the foreground,
denoted by “init 1” and delineated by the red contour, leads to a local minimum.
Initializing with the maximum likelihood label per pixel, denoted by “init 2”
results in a global optimum, verified by geometrical arguments. Empirically, we
obtain better results starting with maximum likelihood labels. This is consistent
for all the experiments, both on synthetic and real images.

Init 1 Local Minimum Init 2 Global Minimum

E= 4550E= 5850

E= 8150E= 17475

Fig. 12. Local optimization of convexity shape prior might yeild different segmentation
results for different initializations. We used 40 orientations, ω = 10 and given target
appearance models (µfg = 0, σfg = 0.1), (µbg = 1, σbg = 0.1).

5 Conclusion and Future Work

We propose convexity prior as a new regularizer and develop efficient discrete
optimization based on trust region and dynamic programming. Our regularizer
is scale invariant, does not have shrinking bias, and is virtually parameter-free.

In the future, we plan to explore meaningful relaxations of strict convexity.
For example, we can explore contrast sensitive convexity, which is similar to
contrast sensitive length. The penalty for convexity violation by triplet (p, q, r)
can carry a smaller weight if there is a high contrast on a line connecting pixels
p and r. This formulation is straightforward, but the main difficulty will be
extending our dynamic programming algorithms to handle this case. Another
direction is to extend our model to handle objects with multiple convex parts.



Convexity Shape Prior for Segmentation 15

References

1. Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph
cuts. In: International Conference on Computer Vision. (2003) 26–33

2. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational
models with convex regularization. SIAM Journal on Imaging Sciences 3 (2010)
1122–1145

3. Schoenemann, T., Kahl, F., Masnou, S., Cremers, D.: A linear framework for
region-based image segmentation and inpainting involving curvature penalization.
Int. Journal of Computer Vision (2012)

4. Bredies, K., Pock, T., Wirth, B.: Convex relaxation of a class of vertex penalizing
functionals. J. Math. Imaging and Vision 47(3) (2013) 278–302

5. Olsson, C., Ulen, J., Boykov, Y., Kolmogorov, V.: Partial enumeration and cur-
vature regularization. In: International Conference on Computer Vision (ICCV),
Sydney, Australia (December 2013)
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