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The synchronization of distant clocks is of considerable
importance for communications, multiprocessor computa-
tions, astronomy, geology, the global positioning system
(GPS), etc. Existing synchronization protocols fall into two
categories: Eddington adiabatic transfer[1] and Einstein
clock synchronization[2]. Eddington’s method requires that
the two parties(say Alice and Bob) exchange a running
clock, e.g., Alice sends her clock to Bob, and he compares it
with his own. This method does not require time-of-arrival
measurements, but it is usually impractical because a com-
plex system(a clock) must be exchanged. It is much easier to
implement Einstein’s method, in which all that is exchanged
is a sequence of signal pulses, e.g., Alice sends a signal pulse
to Bob, which he then returns to Alice. By recording the
signal’s times of departure and arrival, Alice and Bob can
synchronize their clocks. A variation of one or the other of
these protocols is invariably employed whenever two clocks
must be synchronized[3]: either it is necessary to exchange
clocks, or there is an explicit dependence on time-of-arrival
measurements. Typical examples of Einstein clock synchro-
nization are the “two way” protocols in which Alice and Bob
both exchange signals, phase-locked loop techniques, and
pseudorandom code correlation measurements such as are
used in GPS.

Here we discuss a synchronization protocol that is neither
equivalent to Eddington nor to Einstein synchronization, but
instead embodies the best features of each. As in Einstein’s
scheme, it is based on exchanging signals, thus avoiding the
technological problems associated with the exchange of
complex systems such as clocks(“shocks on clocks”) or en-
tangled systems[4]. As in Eddington’s scheme, no time-of-
arrival measurements are required, thus avoiding the prob-
lems associated with such measurements, e.g., those arising
from dispersion in the signal’s propagation medium. In this
paper we will focus on implementations that rely on classical

signals, but the method is well suited for intrinsically
quantum-mechanical clock synchronization protocols[5].

In Sec. I we introduce the “conveyor belt” protocol and
describe its basic features(some useful variations are dis-
cussed in Appendix A). A list of possible implementations in
different physical contexts is also given. In Sec. II we present
an implementation that relies on polarized laser pulses. Un-
der rather general conditions it is shown that this implemen-
tation’s attainable synchronization accuracy is unaffected by
any dispersion which may be present in the propagation me-
dium. In Sec. III we show how quantum-mechanical effects
may be used to enhance the protocol’s dispersion suppres-
sion: employing frequency-entangled pulses affords disper-
sion cancellation in even more general circumstances than is
the case for implementations using classical(laser) light
pulses.

I. “TIME INDEPENDENT” CLOCK SYNCHRONIZATION

In this section we describe in detail the conveyor belt
synchronization scheme, which was first proposed in Ref.
[5]. The two preconditions that must be satisfied are those
underlying Einstein’s protocol:(a) we need a physical me-
dium that supports signaling between Alice and Bob in
which the Alice-to-Bob and Bob-to-Alice transit timesTab
andTba are identical.(b) We require Alice and Bob to have
near-perfect, albeit unsynchronized, clocks, viz., their rela-
tive drift is negligible over a roundtrip time 2T, where T
=Tab=Tba. (In Appendix A we discuss some variations of our
scheme which permit some softening of these requirements.)

Our protocol can be explained by means of a simple il-
lustrative scenario. Suppose that there is a conveyor belt con-
necting Alice and Bob, as shown in Fig. 1, moving at speed
n. Upon initiation of the protocol, and continuing until its
completion, Alice pours sand onto the belt at pointsA andA8
according to the following schedule: when her clock readsta

she deposits sand at ratesta/2 at bothA andA8. Bob, for his
part, removes sand at ratestb from point B when his clock
reads tb. Alice completes the protocol by monitoring the
amount of sand at pointD—which is after pointA8 on the
conveyor belt—as a function ofta, and waiting for it to sta-
bilize to a constant valueQD. It is easy to see thatQD is
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proportional to the time difference between Alice’s clock and
Bob’s clock, as we now demonstrate.

In terms of an external reference clock, showing timet,
we may expressta and tb—the times shown on the clocks in
Alice’s and Bob’s possession—as follows:

ta = t − t0
a and tb = t − t0

b. s1d

Here,t0
b− t0

a is the offset between Alice’s clock and Bob’s that
the conveyor belt protocol is trying to measure. Once the
initial transient is over, i.e., whentùmaxs2T+ t0

a,t+ t0
bd, we

find that

QD =
s

2
st − 2T − t0

ad − sst − T − t0
bd +

s

2
st − t0

ad s2d

=sst0
b − t0

ad, s3d

where the first term on the right-hand side of Eq.(2) is the
amount of sand that Alice deposited at pointA at time t
−2T, the second term is the amount of sand that Bob re-
moved from pointB at time t−T, and the third term is the
amount of sand that Alice added at positionA8 at time t.

The three main features of this scheme are(1) no time
measurements are needed,(2) the only role played by the
signal transit time between Alice and Bob is setting the du-
ration of the transient that must be endured before the syn-
chronization measurement can be made, and(3) the synchro-
nization precision only depends on the precision with which
sand may be added to, removed from, and measured on the
conveyor belt.

That our protocol differs dramatically from Einstein syn-
chronization can be seen from the fact that ours is transit-
time independent, i.e., except for its impact on the duration
of the conveyor-belt transient, the transit timeT—hence the
distance between Alice and Bob,L=nT—plays no role in the
protocol. Indeed, neither Alice nor Bob need to knowT to
run the protocol, nor can they to deduce this transit time by
measuring the post-transient amount of sand on the belt at
point D. A simple modification of our scheme, however, does
permit T to be measured, so that the distance between Alice
and Bob may be inferred ifn is known: Alice continues to
add sand at ratesta/2 at pointA, Bob ceases any action at
point B, and Alice removes sand at ratesta/2 from pointA8.
Once the ensuing transient is over, the amount of sand on the
conveyor belt at pointD will be

QD =
s

2
st − 2T − t0

ad −
s

2
st − t0

ad = − sT. s4d

If we use microwave signal propagation in lieu of a conveyor
belt and the imposition of a positive(negative) frequency
shift instead of adding(removing) sand, the ranging protocol
we have just described is then the familiar frequency-
modulated continuous wave(FMCW) radar[6].

Now, having illustrated the essentials of conveyor belt
clock synchronization in terms of the sand-based protocol,
let us address more realistic implementations. Alice and Bob
may exchange electrical signals, whose voltages are modu-
lated in accord with the conveyor belt idea. Alternatively,
they may transmit sound waves(as in sonar applications),
modulating their frequencies to achieve clock synchroniza-
tion via our protocol. The most appealing scenario, however,
involves light pulses. In this context Alice and Bob may
encode synchronization information on the pulses using the
polarization direction(through Faraday rotators), frequency
(through acousto-optic modulators), or phase (through
electro-optic modulators). An application of this type is ana-
lyzed in the next section.

II. DISPERSION-IMMUNE SYNCHRONIZATION

Dispersion-induced pulse spreading and pulse distortion
are among the principal performance-limiting factors in
schemes that are currently used to synchronize distant clocks
[3]. We can exploit our protocol’s independence of time-of-
arrival measurements to devise synchronization schemes that
thwart the ill effects of dispersion. In a previous paper[5] we
achieved this goal by means of quantum-mechanical effects.
Here, we show that classical pulses can be used to achieve
similar dispersion immunity under a wide range of condi-
tions.

The configuration for classical light-pulse clock synchro-
nization via the conveyor belt protocol is shown in Fig. 2. In
essence, it is a polarization-based, time-delay interferometer.
A linearly polarized(sayl) laser source emits intense light
pulses of center frequencyv0 and bandwidthDv. Conveyor-
belt encoding and decoding is achieved by means of time
delays. In particular: at pointsA andA8, Alice delays the 45°
(z) polarization with respect to the −45°({) polarization
by an amount proportional to the time shown on her clock
and at pointB, Bob delays the −45° polarization with respect
to the 45° polarization by an amount proportional to the time
shown on his clock, with Bob’s proportionality constant be-
ing twice Alice’s. The net effect of these actions, as seen at
the input port to the polarizing beam splitter PBS, is to delay
thez component of the returning light pulse relative to that
pulse’s { component bytD=bst0

b− t0
ad, where b is Bob’s

proportionality constant(a dimensionless quantity). Alice
now obtains the desired synchronization information by mea-
suring J↔, the average photon number in the horizontally-
polarized component of the return pulse, by means of the
polarizing beam splitter and the integrating photodetector
D↔. Because no time-of-arrival information is sought in this
measurement, dispersion can be neglected if thez compo-
nent encounters the same dispersion as its{ counterpart. As

FIG. 1. Representation of the conveyor belt synchronization
scheme. Alice pours sand on the conveyor belt at positionsA and
A8, while Bob scoops away sand at the intermediate positionB.
Measuring the amount of sand at positionD—once an initial tran-
sient has passed—directly reveals the time difference between their
two clocks.
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shown below, where we analyze the behavior of the Fig. 2
system, this common-mode dispersion condition can be re-
laxed in several ways.

Before delving into the mathematics, an initial comment
about our theoretical approach is warranted. We will employ
quantum photodetection theory in our treatment, despite the
fact that semiclassical(shot-noise) theory is quantitatively
correct for the Fig. 2 system because it uses coherent-state
(classical) light [7]. Our choice in this regard makes it more
difficult to connect our work to the literature on laser radar
[8], which relies on semiclassical theory and could be used,
e.g., to address the performance of time-of-arrival measure-
ments for light-pulse Einstein synchronization. Our reason
for choosing to use quantum theory is to enable an easy
transition to assessing the additional benefits that accrue
from the use of nonclassical light—specifically entangled
states—in conveyor belt synchronization. Semiclassical pho-
todetection is unable to treat such systems correctly.

The average photon flux arriving at detectorD↔ at timet
is given by[9]

I↔std = kCuE↔
s−dstdE↔

s+dstduCl, s5d

where uCl is the quantum state of the light emitted by the
source and the field operators at the detector are given by

E↔
s+dstd = fE↔

s−dstdg† =E dvA↔svde−ivt. s6d

The annihilation operatorA↔svd destroys a↔ polarized
photon of frequencyv at the location of detectorD↔. The
average photon flux arriving at detectorDl is obtained in a
similar manner. In order to connect the operatorsA↔svd and
Alsvd with those at the source, we first express thel and↔

components in terms of theirz and{ counterparts

A↔svd =
1
Î2

fA
z

svd − A
{

svdg, s7d

Alsvd =
1
Î2

fA
z

svd + A
{

svdg. s8d

The annihilation operatorsA
z

andA
{

may be now linked to
the corresponding annihilation operatorsa

z
and a

{
at the

source position by accounting for the time-varying delays
that Alice and Bob impose in the conveyor belt protocol.
Their actions are equivalent to what occurs in the Fig. 3
arrangement, in which the two polarizations impinge on op-
posite faces of a moving mirror. Electro-optic modulators
would be employed in an actual application, but the idealized
Fig. 3 setup affords us an easy route to calculating the field
evolution from the source to the detector.

Alice has two Fig. 3 setups, one at pointA and one at
point A8. At time t0

a she starts moving both of her mirrors
with constant speedv, imparting—in the nonrelativistic,v
!c, limit—a Doppler frequency shiftvv /c s−vv /cd to the
{ (z) polarization of an incoming frequency-v field, where
c is the phase velocity in the propagation medium at fre-
quencyv. Bob, on the other hand, starts moving his mirror—
located at positionB—at time t0

b with constant speed 2v in
the opposite direction to what Alice employs. Thus, his ac-
tion leads to a Doppler frequency shift −2vv /c s2vv /cd on
the{ (z) polarization of an incoming frequency-v field. It
follows that the overall annihilation operator transformation
that we are after is

a
z

svd → A
z

svd = a
z

svde−ivtD+ivt+ik
z

svd, s9d

a
{

svd → A
{

svd = a
{

svdeivtD+ivt+ik
{

svd, s10d

where the termt;2L /c accounts for the distanceL separat-
ing Alice and Bob, and

tD ; − 4vst0
b − t0

ad/c s11d

contains the time shift that is needed to synchronize Alice’s
clock with Bob’s. Note that we have neglected propagation

FIG. 2. Proposal for dispersion-immune synchronization. The
laser produces intensel-polarized pulses that travel from Alice to
Bob, where they are reflected back to Alice. At pointsA and A8,
Alice delays the 45° polarization with respect to the −45° polariza-
tion by an amount proportional to the time shown on her clock. At
point B, Bob delays the −45° polarization with respect to the 45°
polarization by an amount proportional to the time shown on his
clock. These delays are in accord with the conveyor belt protocol,
i.e., Bob’s proportionality constant is twice Alice’s. The polarizing
beam splitter PBS separates the incoming beam into itsl and ↔
polarization components. These components are directed to inte-
grating detectorsDl andD↔ respectively, which measure the num-
ber of photons impinging on them. As discussed in the text, signal
multiplexers allow pulses to travel through the dispersive medium
in a common polarization state, thus avoiding polarization-
dependent propagation effects.

FIG. 3. Model of the time-varying delays introduced by Alice at
points A and A8 in the Fig. 2 system. The left polarizing beam
splitter (PBS) separates the two polarization components so that
they impinge on opposing faces of a mirror moving at speedv in
the direction shown. The right PBS recombines the polarizations.
Bob uses a similar setup at pointB in the Fig. 2 system, but his
mirror moves at speed 2v in the opposite direction from what is
shown here. Electro-optic modulators would be used, instead of the
moving mirror, in an actual system.
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loss in the roundtrip between Alice and Bob. Because we
assume coherent state light in our classical clock synchroni-
zation protocol, no loss of generality ensues from this as-
sumption. In essence, any propagation loss in an actual
implementation can be accounted for by attenuating the input
state used in the analysis below.

The tD expression in Eq.(11) is easily derived in the
nonrelativistic limitv!c by observing that 4vst0

b− t0
ad is the

path length increase which the interferometer introduces for
the{ polarization relative to thez polarization(see Fig. 4).
In Eqs.(9) and (10) the terms

k
z

svd ; k
z

t svd + k
z

f svd, s12d

k
{

svd ; k
{

t svd + k
{

f svd s13d

represent the dispersive propagation medium encountered by
the z and{ polarizations;t refers to propagationto Bob,
while f refers to propagationfrom him. We neglected Dop-
pler frequency shifts in deriving these dispersion terms; see
Appendix B for a fully relativistic calculation. Equations(9)
and (10) show that our interferometer encodes the time-
difference information into both polarization components,
whereas for synchronization purposes it would be sufficient
to encode such information on just one.(Thus, the scheme
adopted here is an instance of the differential conveyor belt
protocol described in Appendix A.) However, as will be
clarified later, the use of only one polarization component
does not provide dispersion immunity.

The initial state of the system is al-polarized coherent-
state light pulse. It can be described in the frequency domain
as a tensor product of monochromatic coherent states of the
form

uCl ; ^
v

uasvdllu0l↔ = ^
v

uasvd/Î2l
z

uasvd/Î2l
{

, s14d

where the ket subscripts refer to polarizations anduasvdl is a
coherent state of frequencyv with amplitude functionasvd
that has center frequencyv0 and bandwidthDv, e.g., a
Gaussian. Using Eqs.(7)–(10) to express the↔-polarized
output field in terms of thez-polarized and{-polarized
input fields and then employing Eq.(14) we obtain

I↔std = UE dvasvdsinSvtD −
k
z

svd − k
{

svd
2

D
3 e−ivst−td+ifk

z
svd+k

{
svdg/2U2

s15d

for the average photon flux at theD↔ detector. Dispersion in
the propagation medium enters this expression through sum
and difference terms, i.e.,k

z
svd+k

{
svd and k

z
svd

−k
{

svd. The sum term does not contribute to the output of
an integrating detector

J↔ ;E dtI↔std. s16d

To suppress the difference term—and hence achieve disper-
sion immunity—the two polarization components must un-
dergo the same dispersion in their roundtrip propagation be-
tween Alice and Bob, viz.,

k
z

svd = k
{

svd. s17d

Under this constraint, the average photon number satisfies

J↔st0
b − t0

ad = 2pE dvuasvdu2sin2f4vvst0
b − t0

ad/cg, s18d

where our notation emphasizes the fact that the average pho-
ton number depends on the offset between Alice’s clock and
Bob’s. As shown in Fig. 5, the average photon number con-
sists of an envelope of duration,vDv /c that is modulated
by fringes of frequency 8vv0/c, which result from interfer-
ence between thez and{ return pulses at the polarizing
beam splitter. The mean value of this average photon number
fringe pattern isJ/2, where

J ;E dtUE dvasvde−ivtU2

= 2pE dvuasvdu2 s19d

is the average photon number of the input state(14). (Re-
member that propagation loss is ignored in our treatment.)
The extent of the fringe pattern is set by the clock offset
ut0

b− t0
au beyond which thez and { return pulses do not

overlap at the polarizing beam splitter, so that no interference
occurs. Whent0

b− t0
a=0, the average photon numberJ↔st0

b

− t0
ad vanishes, because thez and{ return pulses then ar-

rive in synchrony and in phase, forming al-polarized field at
the polarizing beam splitter. If we include propagation loss,
then the occurrence of a perfectJ↔s0d null requires that the
z and{ pulses encounter the same loss in their roundtrip
travel between Alice and Bob. Such will be the case if(a) we
model loss by assigning imaginary components to the disper-
sionsk

z
svd andk

{
svd and (b) we require that Eq.(17) be

FIG. 4. Explanation of the delaytD, from Eq.(11), that is due to
the moving mirrors. Prior to the onset of mirror motion, the total
optical path length for thez polarization isL=2L1+2L2. When the
mirrors are moving, by the time the signal reaches pointA, the first
mirror has increased the path length by 2vsL1/c− t0

ad. This means
that the z-polarized signal will incur a propagation delaysL1

+L2d /c+2vsL1/c− t0
ad /c en route to pointB. However, during this

time interval, Bob’s mirror has reduced the path length for thez

polarization by 4vfsL1+L2d /c+2vsL1/c− t0
ad /c− t0

bg. Proceeding in a
like manner for the path length increase atA8, and summing up all
the contributions, we can show that the overall delaytD is given by
Eq. (11) to first order inv /c.
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satisfied for the resulting complex-valued dispersions.
Alice completes the conveyor-belt synchronization proto-

col by using a sequence of pulses—shifted in time—to locate
the null of theJ↔ interference pattern(see the last paragraph
of Sec. II for a more complete description). The accuracy of
such a measurement will be,c/vv0

ÎSNR, wherec/vv0 is
the fringe width, and SNR is the measurement signal-to-
noise ratio that is achieved with this pulse sequence. When
SNR@1, this accuracy can become comparable to the period
2p /v0 of the optical carrier without violating our nonrela-
tivistic constraint, i.e., while maintainingv!c. Note that
Alice can double the SNR of her synchronization by also
observing the average photon numberJlst0

b− t0
ad from theDl

detector. By energy conservation,

Jlst0
b − t0

ad + J↔st0
b − t0

ad = J, s20d

so that this additional measurement has a complementary
fringe pattern, whose global maximum is located at the offset
between Alice’s clock and Bob’s.

In essence, our scheme embodies the precision of phase-
locking schemes such as Ref.[10], while maintaining the
ability to directly recover the time difference between Alice’s
clock and Bob’s. Interestingly, because we measure the av-
erage photon number, i.e., the constant quantityJ↔st0

b− t0
ad,

our protocol is immune to dispersion provided that condition
(17) is satisfied. How can we enforce such a condition in
practice? Usually dispersion in an optical system is polariza-
tion dependent, so that Eq.(17) cannot be satisfied directly.
However, it is possible to transfer the polarization degree of
freedom to other degrees of freedom that undergo the same
dispersion. For example, if the medium is sufficiently homo-
geneous in space, then Alice may send her pulses as copo-
larized, spatially separated beams—which she recombines in
an appropriate interferometer after they return from Bob—to
achieve the equivalent of Eq.(17). Alternatively, if the me-
dium is sufficiently stable in time, then Alice may send two
copolarized, temporally separated pulses that she recombines
in a manner akin to the polarization-restoration scheme de-
scribed in Ref.[11] to achieve the equivalent of Eq.(17).

Multipulse protocol.Alice needs to identify the global

minimum—the null—of theJ↔ fringe pattern in order to
complete the conveyor-belt clock synchronization protocol.
In order to do so she will send a sequence of pulses, and
employ the resulting↔ photon number measurements from
the D↔ detector. For each pulse, she will vary slightly the
delays that she imposes at pointsA andA8, adding a distinct
constantTk to her starting timet0

a for the kth pulse, viz., she
will treat the first pulse as if her clock’s initial time weret0

a

+T1, she will treat the second pulse as if her clock’s initial
time weret0

a+T2, etc., something she can accomplish without
knowing t0

a. Bob, however, will continue to base his delays
on the time shown on his clock. From↔ photon number
measurements made on this pulse sequence, Alice can esti-
mate the fringe patternJ↔st0

b− t0
ad, and hence pinpoint the

location of the null.

III. QUANTUM DISPERSION CANCELLATION

The use of quantum resources can improve the perfor-
mance of traditional clock synchronization and positioning
protocols[12]. The same is true for conveyor belt synchro-
nization. In particular, the use of frequency-entangled pulses
offers greater immunity to dispersion than is obtainable from
the classical version of the protocol, as we now will show.
Suppose that the input state to the Fig. 2 interferometer is a
stream of time-resolved, frequency-entangledsv1+v2

=2v0d biphotons from a type-II phase matched parametric
downconverter. Instead of measuring the photon number at
the output of theD↔ detector, we now detect photon coinci-
dences, i.e., near-simultaneous arrivals of photons at theD↔
andDl detectors. It can then be shown that condition(17) for
dispersion-immune classical operation is replaced by the fol-
lowing less stringent condition under which the quantum
system is not degraded by dispersion:

k
z

sv0 + vd + k
{

sv0 − vd = k
z

sv0 − vd + k
{

sv0 + vd.

s21d

Interestingly, Eq.(21) does not require the two polarization
components to undergo the same dispersion: this effect re-
sults from the quantum frequency-correlations of the two

FIG. 5. (a) Plot of J↔st0
b− t0

ad versust0
b− t0

a from Eq. (18) for Gaussian pulses. Here the velocity of the phase variation is 8vv0/c
=109 s−1 and the bandwidth isDv=1013 s−1. (b) Magnification of the box in the previous plot:J↔st0

b− t0
ad has null att0

a= t0
b.
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photons[13–15]. As shown in Ref.[13], Eq. (21) will be
satisfied when the odd-order terms in the Taylor-series ex-
pansions ofk

z
svd andk

{
svd aboutv0 are equal. We now

present the essentials of the quantum dispersion cancellation
derivation.

The clock synchronization signature that we are seeking is
embedded in the probability that theD↔ and Dl detectors
both register photons within a coincidence interval whose
duration Tc greatly exceeds 1/Dv, the reciprocal of the
downconverter’s fluorescence bandwidth, while still being
short enough that the probability of two biphotons being
present in this time interval is negligible. This probability
can be calculated by considering a biphoton initial state of
the following form:

uCl ; E dvfsvduv0 + vl
z

uv0 − vl
{

, s22d

wherefsvd is the state’s spectral function versus detuning
v=0 from frequency degeneracy, i.e., when both component
photons are at the center frequencyv0. The coincidence
probability is then given by

Prst0
b − t0

ad =E dt E
t−Tc/2

t+Tc/2

dt8pst,t8d, s23d

where

pst,t8d ~ kCuE↔
s−dstdEl

s−dst8dEl
s+dst8dE↔

s+dstduCl s24d

is the joint probability density for detectorsD↔ and Dl to
register photons at timest and t8, respectively. Unlike the
classical case considered earlier, in which the clock synchro-
nization signature appeared in a fringe pattern, the coinci-
dence probability Prst0

b− t0
ad exhibits a “Mandel dip”(quan-

tum interference) [16] of width Dv−1 whose null location is
specified by the offset between Alice’s clock and Bob’s:

Pst0
b − t0

ad ~E dvufsv − v0du2sin2f4vsv − v0dst0
b − t0

ad/cg.

s25d

Thus, Alice can perform quantum dispersion-cancelling
clock synchronization by a time-shifting procedure similar to
what we outlined in the last paragraph of Sec. II for the
classical case, obtaining an accuracy,1/DvÎSNR. An
analogous quantum dispersion-cancelling synchronization
result was reported in Ref.[5], using a different interferom-
eter.

For the same SNR value, the classical synchronization
system will outperform the quantum synchronization system
when v /c.Dv /v0, a condition that is unlikely to be satis-
fied for typical ,THz downconverter bandwidths. On the
other hand, we may well inquire whether a frequency-v0
fringe pattern might be imposed onto the quantum system’s
Mandel dip, dramatically enhancing its accuracy. From Ref.
[14] it appears that certain experimental configurations allow

fringes to be retained with use of the biphoton state(22). As
the authors of Ref.[14] point out, however, there is no quan-
tum dispersion cancellation in the regime in which the
fringes are present, i.e., when the variable delay in their ex-
periment is placedafter the beam splitter. In fact, it can be
shown that this regime does not exploit the quantum corre-
lation which is present in the state(22): the signal from one
of the two detectors is used only to “filter out” a singlel
polarized photon from the state(22) which is then sent into
the interferometer. This means that the fringes-present re-
gime in Ref.[14] is equivalent to a single-photon interferom-
eter. So, had the authors of Ref.[14] measured the average
photon flux resulting from a coherent-state input—instead of
the coincidences resulting from a biphoton input—they
would have obtained the same fringes.

IV. CONCLUSIONS

We have presented an optical implementation of the “con-
veyor belt” clock synchronization protocol that uses classical
sources and, under rather general conditions, is not disturbed
by the presence of a dispersive medium. The advantages of
using quantum sources have been discussed and compared
with previous results on the same topic[5].
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APPENDIX A

In this appendix we discuss ways to relax some of the
requirements, described in Sec. I, for the conveyor belt syn-
chronization protocol.

1. Differential conveyor belt

So far, we have assumed that the Alice-to-Bob and Bob-
to-Alice propagation times are identical, viz.,Tab=Tba=T.
This amounts to having Bob located at the midpoint of the
conveyor belt in Fig. 1. We can eliminate this constraint by
means of a differential version of our protocol. Differential
schemes—such as the two-way method for Einstein clock
synchronization—are conventionally employed to get rid of
asymmetries. The strategy we choose is to introduce a sec-
ond conveyor belt that proceeds in the opposite direction
with respect to the first one(i.e., it runs fromA8 to A), as
shown in Fig. 6. The protocol is carried out as before: Alice
and Bob, respectively, add and remove sand at pointsA, A8,
andB, but now they do this on both conveyor belts. After the
initial transient is over, the amount of sand that Alice mea-
sures at the output of the first conveyor belt(point D1 in Fig.
6) is given by
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QD1
=

s

2
st − T − T8 − t0

ad − sst − T8 − t0
bd +

s

2
st − t0

ad

= sst0
b − t0

ad +
s

2
sT8 − Td, sA1d

whereT is the transit time fromA to B andT8 is the transit
time from B to A8. Likewise, the amount of sand that Alice
measures, after the initial transient, at pointD2 at the output
of the second conveyor belt satisfies

QD2
=

s

2
st − T8 − T − t0

ad − sst − T − t0
bd +

s

2
st − t0

ad

= sst0
b − t0

ad +
s

2
sT8 − Td. sA2d

Clearly,

QD1
+ QD2

= 2sst0
b − t0

ad sA3d

provides the desired synchronization information without re-
quiring T=T8.

Note that the differential scheme requires that the forward
transmission times fromA to B and fromB to A8 equal the
backward transmission times fromB to A and A8 to B, re-
spectively. These equalities can be achieved in optical imple-
mentations in which the forward(backward) transmitter and
backward(forward) receiver atA sA8d are colocated.

2. Imperfect clocks

The requirement that Alice and Bob possess perfect
clocks—i.e., that their clocks run at the same rate and do not
drift appreciably during a signal roundtrip time—may also
be softened. To do so, Alice must monitor the amount of sand
on the conveyor belt as a function of time, since it will not be
a constant, even after the initial transient has passed. For
example, suppose Alice and Bob have drift-free clocks that
run at different rates. Insofar as the conveyor belt protocol is
concerned, this is equivalent to saying that Alice and Bob
have clock’s running at the same rate, but that Bob uses

proportionality constants8, instead ofs, when he removes
sand from pointB. Equation(2) then becomes

QD =
s

2
st − 2T − t0

ad − s8st − T − t0
bd +

s

2
st − t0

ad

= ss− s8dst − Td + s8t0
b − st0

a. sA4d

Alice can now use a feedback loop to null out the
t-dependent part of Eq.(A4) and thus make her proportion-
ality constant, hence her clock rate, the same as Bob’s. A
similar procedure will also work if Bob’s clock drifts
slowly—with respect to the signal roundtrip time—with re-
spect to Alice’s.

3. Periodic ramps

The conveyor belt protocol requires Alice to deposit sand
at ratesta/2 and Bob to remove sand at ratestb. With the
passage of time, these requirements will soon get out of
hand. The essential behavior of the conveyor belt protocol
can be retained, however, by periodically restarting the pro-
tocol at time intervals that are long compared to both the
roundtrip propagation time and the offset between Alice’s
clock and Bob’s. A more convenient alternative might be for
Alice and Bob to periodically reverse their rates, as shown in
Fig. 7. In fact, this periodic-ramp approach is what is used in
FMCW radar[6].

APPENDIX B

In this appendix we derive the relativistic corrections to
Eqs. (11)–(13). These corrections only matter if we violate
v /c!1.

FIG. 7. Two examples of the periodic-ramps protocol. The lines
plot the amounts of sand that Alice(solid) and Bob(dashed) must
move tos.0d or from s,0d the conveyor belt versus time:(a) Alice
and Bob periodically restart the protocol and(b) Alice and Bob
periodically reverse their rates.

FIG. 6. Differential conveyor belt scheme: Bob is not required
to be at the midpoint of the transmission line.
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We use Lorentz transformations to go from the source
outputs(in the laboratory reference frame), to the fields at
the moving mirrors(in the mirrors’ reference frames), to the
return pulses(back in the laboratory reference frame), as
described in Ref.[5]. It is then possible to show that Eqs.
(11)–(13) become

tD ; −
4v/c

1 − sv/cd2st0
b − t0

ad, sB1d

k
z

svd ; k
z

t sv/xd + k
z

f svxd, sB2d

k
{

svd ; k
{

t svxd + k
{

f sv/xd, sB3d

wherex;s1+v /cd / s1−v /cd. Moreover, a relativistic correc-
tion must also be applied to the delayt appearing in Eqs.(9)
and (10):

t ;
2L

c
S1 + sv/cd2

1 − sv/cd2D . sB4d
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