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Abstract

Convolutional architectures have proven ex-

tremely successful for vision tasks. Their hard

inductive biases enable sample-efficient learning,

but come at the cost of a potentially lower perfor-

mance ceiling. Vision Transformers (ViTs) rely

on more flexible self-attention layers, and have

recently outperformed CNNs for image classifi-

cation. However, they require costly pre-training

on large external datasets or distillation from pre-

trained convolutional networks. In this paper, we

ask the following question: is it possible to com-

bine the strengths of these two architectures while

avoiding their respective limitations? To this

end, we introduce gated positional self-attention

(GPSA), a form of positional self-attention which

can be equipped with a “soft” convolutional in-

ductive bias. We initialize the GPSA layers to

mimic the locality of convolutional layers, then

give each attention head the freedom to escape

locality by adjusting a gating parameter regu-

lating the attention paid to position versus con-

tent information. The resulting convolutional-

like ViT architecture, ConViT, outperforms the

DeiT (Touvron et al., 2020) on ImageNet, while

offering a much improved sample efficiency. We

further investigate the role of locality in learn-

ing by first quantifying how it is encouraged in

vanilla self-attention layers, then analyzing how it

is escaped in GPSA layers. We conclude by pre-

senting various ablations to better understand the

success of the ConViT. Our code and models are

released publicly at https://github.com/

facebookresearch/convit.
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1. Introduction

The success of deep learning over the last decade has largely

been fueled by models with strong inductive biases, al-

lowing efficient training across domains (Mitchell, 1980;

Goodfellow et al., 2016). The use of Convolutional Neural

Networks (CNNs) (LeCun et al., 1998; 1989), which have

become ubiquitous in computer vision since the success of

AlexNet in 2012 (Krizhevsky et al., 2017), epitomizes this

trend. Inductive biases are hard-coded into the architectural

structure of CNNs in the form of two strong constraints

on the weights: locality and weight sharing. By encourag-

ing translation equivariance (without pooling layers) and

translation invariance (with pooling layers) (Scherer et al.,

2010; Schmidhuber, 2015; Goodfellow et al., 2016), the

convolutional inductive bias makes models more sample-

efficient and parameter-efficient (Simoncelli & Olshausen,

2001; Ruderman & Bialek, 1994). Similarly, for sequence-

based tasks, recurrent networks with hard-coded memory

cells have been shown to simplify the learning of long-range

dependencies (LSTMs) and outperform vanilla recurrent

neural networks in a variety of settings (Gers et al., 1999;

Sundermeyer et al., 2012; Greff et al., 2017).

However, the rise of models based purely on attention in

recent years calls into question the necessity of hard-coded

inductive biases. First introduced as an add-on to recurrent

neural networks for Sequence-to-Sequence models (Bah-

danau et al., 2014), attention has led to a breakthrough in

Natural Language Processing through the emergence of

Transformer models, which rely solely on a particular kind

of attention: Self-Attention (SA) (Vaswani et al., 2017).

The strong performance of these models when pre-trained

on large datasets has quickly led to Transformer-based ap-

proaches becoming the default choice over recurrent models

like LSTMs (Devlin et al., 2018).

In vision tasks, the locality of CNNs impairs the ability to

capture long-range dependencies, whereas attention does

not suffer from this limitation. Chen et al. (2018) and Bello

et al. (2019) leveraged this complementarity by augmenting

convolutional layers with attention. More recently, Ra-

machandran et al. (2019) ran a series of experiments replac-

ing some or all convolutional layers in ResNets with atten-

tion, and found the best performing models used convolu-

https://github.com/facebookresearch/convit
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Figure 1. Soft inductive biases can help models learn without

being restrictive. Hard inductive biases, such as the architectural

constraints of CNNs, can greatly improve the sample-efficiency of

learning, but can become constraining when the size of the dataset

is not an issue. The soft inductive biases introduced by the ConViT

avoid this limitation by vanishing away when not required.

tions in early layers and attention in later layers. The Vision

Transformer (ViT), introduced by Dosovitskiy et al. (2020),

entirely dispenses with the convolutional inductive bias by

performing SA across embeddings of patches of pixels. The

ViT is able to match or exceed the performance of CNNs

but requires pre-training on vast amounts of data. More

recently, the Data-efficient Vision Transformer (DeiT) (Tou-

vron et al., 2020) was able to reach similar performances

without any pre-training on supplementary data, instead re-

lying on Knowledge Distillation (Hinton et al., 2015) from

a convolutional teacher.

Soft inductive biases The recent success of the ViT

demonstrates that while convolutional constraints can enable

strongly sample-efficient training in the small-data regime,

they can also become limiting as the dataset size is not

an issue. In data-plentiful regimes, hard inductive biases

can be overly restrictive and learning the most appropriate

inductive bias can prove more effective. The practitioner

is therefore confronted with a dilemma between using a

convolutional model, which has a high performance floor

but a potentially lower performance ceiling due to the hard

inductive biases, or a self-attention based model, which has

a lower floor but a higher ceiling. This dilemma leads to

the following question: can one get the best of both worlds,

and obtain the benefits of the convolutional inductive biases

without suffering from its limitations (see Fig. 1)?

In this direction, one successful approach is the combina-

tion of the two architectures in “hybrid” models. These

models, which interleave or combine convolutional and self-

attention layers, have fueled successful results in a variety

of tasks (Carion et al., 2020; Hu et al., 2018a; Ramachan-

dran et al., 2019; Chen et al., 2020; Locatello et al., 2020;

Sun et al., 2019; Srinivas et al., 2021; Wu et al., 2020). An-

other approach is that of Knowledge Distillation (Hinton

et al., 2015), which has recently been applied to transfer

the inductive bias of a convolutional teacher to a student

transformer (Touvron et al., 2020). While these two meth-

ods offer an interesting compromise, they forcefully induce

convolutional inductive biases into the Transformers, poten-

tially affecting the Transformer with their limitations.

Contribution In this paper, we take a new step towards

bridging the gap between CNNs and Transformers, by pre-

senting a new method to “softly” introduce a convolutional

inductive bias into the ViT. The idea is to let each SA layer

decide whether to behave as a convolutional layer or not,

depending on the context. We make the following contribu-

tions:

1. We present a new form of SA layer, named gated posi-

tional self-attention (GPSA), which one can initialize

as a convolutional layer. Each attention head then has

the freedom to recover expressivity by adjusting a gat-

ing parameter.

2. We then perform experiments based on the DeiT (Tou-

vron et al., 2020), with a certain number of SA layers

replaced by GPSA layers. The resulting Convolutional

Vision Transformer (ConViT) outperforms the DeiT

while boasting a much improved sample-efficiency

(Fig. 2).

3. We analyze quantitatively how local attention is natu-

rally encouraged in vanilla ViTs, then investigate the

inner workings of the ConViT and perform ablations

to investigate how it benefits from the convolution ini-

tialization.

Overall, our work demonstrates the effectiveness of ”soft”

inductive biases, especially in the low-data regime where

the learning model is highly underspecified (see Fig. 1), and

motivates the exploration of further methods to induce them.

Related work Our work is motivated by combining the

recent success of pure Transformer models (Dosovitskiy

et al., 2020) with the formalized relationship between SA

and convolution. Indeed, Cordonnier et al. (2019) showed

that a SA layer with Nh heads can express a convolution of

kernel size
√
Nh, if each head focuses on one of the pixels

in the kernel patch. By investigating the qualitative aspect of

attention maps of models trained on CIFAR-10, it is shown

that SA layers with relative positional encodings naturally

converge towards convolutional-like configurations, sug-

gesting that some degree of convolutional inductive bias is

desirable.

Conversely, the restrictiveness of hard locality constraints

has been proven by Elsayed et al. (2020). A breadth of

approaches have been taken to imbue CNN architectures

with nonlocality (Hu et al., 2018b;c; Wang et al., 2018; Wu
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(a) Sample efficiency (b) Parameter efficiency

Figure 2. The ConViT outperforms the DeiT both in sample

and parameter efficiency. Left: we compare the sample effi-

ciency of our ConViT-S (see Tab. 1) with that of the DeiT-S by

training them on restricted portions of ImageNet-1k, where we

only keep a certain fraction of the images of each class. Both mod-

els are trained with the hyperparameters reported in (Touvron et al.,

2020). We display the the relative improvement of the ConViT

over the DeiT in green. Right: we compare the top-1 accuracies

of our ConViT models with those of other ViTs (diamonds) and

CNNs (squares) on ImageNet-1k. The performance of other mod-

els on ImageNet are taken from (Touvron et al., 2020; He et al.,

2016; Tan & Le, 2019; Wu et al., 2020; Yuan et al., 2021).

et al., 2020). Another line of research is to induce a convolu-

tional inductive bias is different architectures. For example,

Neyshabur (2020) uses a regularization method to encour-

age fully-connected networks (FCNs) to learn convolutions

from scratch throughout training.

Most related to our approach, d’Ascoli et al. (2019) explored

a method to initialize FCNs networks as CNNs. This en-

ables the resulting FCN to reach much higher performance

than achievable with standard initialization. Moreover, if

the FCN is initialized from a partially trained CNN, the

recovered degrees of freedom allow the FCN to outperform

the CNN it stems from. This method relates more generally

to “warm start” approaches such as those used in spiked

tensor models (Anandkumar et al., 2016), where a smart

initialization, containing prior information on the problem,

is used to ease the learning task.

Reproducibility We provide an open-source implemen-

tation of our method as well as pretrained models

at the following address: https://github.com/

facebookresearch/convit.

2. Background

We begin by introducing the basics of SA layers, and show

how positional attention can allow SA layers to express

convolutional layers.

Multi-head self-attention The attention mechanism is

based on a trainable associative memory with (key, query)

vector pairs. A sequence of L1 “query” embeddings Q ∈
R

L1×Dh is matched against another sequence of L2 “key”

embeddings K ∈ R
L2×Dh using inner products. The re-

sult is an attention matrix whose entry (ij) quantifies how

semantically “relevant” Qi is to Kj :

A = softmax

(

QK⊤

√
Dh

)

∈ R
L1×L2 , (1)

where (softmax [X])ij = eXij/
∑

k e
Xik .

Self-attention is a special case of attention where a sequence

is matched to itself, to extract the semantic dependencies

between its parts. In the ViT, the queries and keys are linear

projections of the embeddings of 16 × 16 pixel patches

X ∈ R
L×Demb . Hence, we have Q = WqryX and K =

WkeyX , where Wkey,Wqry ∈ R
Demb×Dh .

Multi-head SA layers use several self-attention heads in

parallel to allow the learning of different kinds of interde-

pendencies. They take as input a sequence of L embeddings

of dimension Demb = NhDh, and output a sequence of L
embeddings of the same dimension through the following

mechanism:

MSA(X) := concat
h∈[Nh]

[SAh(X)]Wout + bout, (2)

where Wout ∈ R
Demb×Demb , bout ∈ R

Demb . Each self-

attention head h performs the following operation:

SAh(X) := AhXW h
val, (3)

where W h
val ∈ RDemb×Dh is the value matrix.

However, in the vanilla form of Eq. 1, SA layers are position-

agnostic: they do not know how the patches are located ac-

cording to each other. To incorporate positional information,

there are several options. One is to add some positional

information to the input at embedding time, before propa-

gating it through the SA layers: (Dosovitskiy et al., 2020)

use this approach in their ViT. Another possibility is to re-

place the vanilla SA with positional self-attention (PSA),

using encodings rij of the relative position of patches i and

j (Ramachandran et al., 2019):

Ah
ij := softmax

(

Qh
i K

h⊤
j + vh⊤

posrij
)

(4)

Each attention head uses a trainable embedding vh
pos ∈

R
Dpos , and the relative positional encodings rij ∈ R

Dpos

only depend on the distance between pixels i and j, denoted

denoted by a two-dimensional vector δij .

Self-attention as a generalized convolution Cordonnier

et al. (2019) show that a multi-head PSA layer with Nh

https://github.com/facebookresearch/convit
https://github.com/facebookresearch/convit
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(a) Input (b) Standard initialization

(c) Convolutional initialization, strength α = 0.5

(d) Convolutional initialization, strength α = 2

Figure 3. Positional self-attention layers can be initialized as

convolutional layers. (a): Input image from ImageNet, where the

query patch is highlighted by a red box. (b),(c),(d): attention maps

of an untrained SA layer (b) and those of a PSA layer using the

convolutional-like initialization scheme of Eq. 5 with two different

values of the locality strength parameter, α (c, d). Note that the

shapes of the image can easily be distinguished in (b), but not in

(c) or (d), when the attention is purely positional.

heads and learnable relative positional encodings (Eq. 4) of

dimension Dpos ≥ 3 can express any convolutional layer of

filter size
√
Nh ×

√
Nh, by setting the following:











vh
pos := −α

h
(

1,−2∆h
1 ,−2∆h

2 , 0, . . . 0
)

rδ :=
(

‖δ‖2, δ1, δ2, 0, . . . 0
)

Wqry = Wkey := 0, Wval := I

(5)

In the above,

• The center of attention ∆
h ∈ R

2 is the position to

which head h pays most attention to, relative to the

query patch. For example, in Fig. 3(c), the four heads

correspond, from left to right, to ∆
1 = (−1, 1),∆2 =

(−1,−1),∆3 = (1, 1),∆4 = (1,−1).

• The locality strength α
h > 0 determines how focused

the attention is around its center ∆h (it can also by un-

derstood as the “temperature” of the softmax in Eq. 1).

When α
h is large, the attention is focused only on the

patch(es) located at ∆h, as in Fig. 3(d); when α
h is

small, the attention is spread out into a larger area, as

in Fig. 3(c).

Thus, the PSA layer can achieve a strictly convolutional

attention map by setting the centers of attention ∆
h to
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Figure 4. Architecture of the ConViT. The ConViT (left) is a ver-

sion of the ViT in which some of the self-attention (SA) layers

are replaced with gated positional self-attention layers (GPSA;

right). Because GPSA layers involve positional information, the

class token is concatenated with hidden representation after the

last GPSA layer. In this paper, we typically take 10 GPSA lay-

ers followed by 2 vanilla SA layers. FFN: feedforward network

(2 linear layers separated by a GeLU activation); Wqry: query

weights; Wkey: key weights; vpos: attention center and span em-

beddings (learned); rqk: relative position encodings (fixed); λ:

gating parameter (learned); σ: sigmoid function.

each of the possible positional offsets of a
√
Nh ×

√
Nh

convolutional kernel, and sending the locality strengths αh

to some large value.

3. Approach

Building on the insight of (Cordonnier et al., 2019), we in-

troduce the ConVit, a variant of the ViT (Dosovitskiy et al.,

2020) obtained by replacing some of the SA layers by a new

type of layer which we call gated positional self-attention

(GPSA) layers. The core idea is to enforce the “informed”

convolutional configuration of Eqs. 5 in the GPSA layers at

initialization, then let them decide whether to stay convo-

lutional or not. However, the standard parameterization of

PSA layers (Eq. 4) suffers from two limitations, which lead

us two introduce two modifications.

Adaptive attention span The first caveat in PSA is the

vast number of trainable parameters involved, since the num-

ber of relative positional encodings rδ is quadratic in the

number of patches. This led some authors to restrict the

attention to a subset of patches around the query patch (Ra-

machandran et al., 2019), at the cost of losing long-range

information.
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To avoid this, we leave the relative positional encodings

rδ fixed, and train only the embeddings vh
pos which de-

termine the center and span of the attention heads; this

approach relates to the adaptive attention span introduced

in Sukhbaatar et al. (2019) for Language Transformers. The

initial values of rδ and vh
pos are given by Eq. 5, where we

take Dpos = 3 to get rid of the useless zero components.

Thanks to Dpos ' Dh, the number of parameters involved

in the positional attention is negligible compared to the num-

ber of parameters involved in the content attention. This

makes sense, as content interactions are inherently much

simpler to model than positional interactions.

Positional gating The second issue with standard PSA is

the fact that the content and positional terms in Eq. 4 are po-

tentially of different magnitudes, in which case the softmax

will ignore the smallest of the two. In particular, the con-

volutional initialization scheme discussed above involves

highly concentrated attention scores, i.e. high-magnitude

values in the softmax. In practice, we observed that using a

convolutional initialization scheme on vanilla PSA layers

gives a boost in early epochs, but degrades late-time perfor-

mance as the attention mechanism lazily ignores the content

information (see SM. A).

To avoid this, GPSA layers sum the content and positional

terms after the softmax, with their relative importances gov-

erned by a learnable gating parameter λh (one for each

attention head). Finally, we normalize the resulting sum of

matrices (whose terms are positive) to ensure that the result-

ing attention scores define a probability distribution. The

resulting GPSA layer is therefore parametrized as follows

(see also Fig. 4):

GPSAh(X) := normalize
[

Ah
]

XW h
val (6)

Ah
ij := (1− σ(λh)) softmax

(

Qh
i K

h⊤
j

)

+ σ(λh) softmax
(

vh⊤
posrij

)

, (7)

where (normalize [A])ij = Aij/
∑

k Aik and σ : x (→
1/(1+e−x) is the sigmoid function. By setting the gating

parameter λh to a large positive value at initialization, one

has σ(λh) ≃ 1 : the GPSA bases its attention purely on

position, dispensing with the need of setting Wqry and

Wkey to zero as in Eq. 5. However, to avoid the ConViT

staying stuck at λh + 1, we initialize λh = 1 for all layers

and all heads.

Architectural details The ViT slices input images of size

224 into 16× 16 non-overlapping patches of 14× 14 pixels

and embeds them into vectors of dimension Demb = 64Nh

using a convolutional stem. It then propagates the patches

through 12 blocks which keep their dimensionality constant.

Each block consists in a SA layer followed by a 2-layer

Feed-Forward Network (FFN) with GeLU activation, both

equipped with residual connections. The ConViT is simply

a ViT where the first 10 blocks replace the SA layers by

GPSA layers with a convolutional initialization.

Similar to language Transformers like BERT (Devlin et al.,

2018), the ViT uses an extra “class token”, appended to the

sequence of patches to predict the class of the input. Since

this class token does not carry any positional information,

the SA layers of the ViT do not use positional attention:

the positional information is instead injected to each patch

before the first layer, by adding a learnable positional em-

bedding of dimension Demb. As GPSA layers involve posi-

tional attention, they are not well suited for the class token

approach. We solve this problem by appending the class

token to the patches after the last GPSA layer, similarly to

what is done in (Touvron et al., 2021b) (see Fig. 4)1.

For fairness, and since they are computationally cheap, we

keep the absolute positional embeddings of the ViT active

in the ConViT. However, as shown in SM. F, the ConViT

relies much less on them, since the GPSA layers already use

relative positional encodings. Hence, the absolute positional

embeddings could easily be removed, dispensing with the

need to interpolate the embeddings when changing the input

resolution (the relative positional encodings simply need to

be resampled according to Eq. 5, as performed automatically

in our open-source implementation).

Training details We based our ConVit on the DeiT (Tou-

vron et al., 2020), a hyperparameter-optimized version of

the ViT which has been open-sourced2. Thanks to its ability

to achieve competitive results without using any external

data, the DeiT both an excellent baseline and relatively easy

to train: the largest model (DeiT-B) only requires a few days

of training on 8 GPUs.

To mimic 2× 2, 3× 3 and 4× 4 convolutional filters, we

consider three different ConViT models with 4, 9 and 16

attention heads (see Tab. 1). Their number of heads are

slightly larger than the DeiT-Ti, ConViT-S and ConViT-B

of Touvron et al. (2020), which respectively use 3, 6 and 12

attention heads. To obtain models of similar sizes, we use

two methods of comparison.

• To establish a direct comparison with Touvron et al.

(2020), we lower the embedding dimension of the Con-

ViTs to Demb/Nh = 48 instead of 64 used for the

DeiTs. Importantly, we leave all hyperparameters

(scheduling, data-augmentation, regularization) pre-

sented in (Touvron et al., 2020) unchanged in order to

1We also experimented incorporating the class token as an
extra patch of the image to which all heads pay attention to at
initialization, but results were worse than concatenating the class
token after the GPSA layers (not shown).

2https://github.com/facebookresearch/deit

https://github.com/facebookresearch/deit
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Name Model Nh Demb Size Flops Speed Top-1 Top-5

Ti
DeiT 3 192 6M 1G 1442 72.2 -

ConViT 4 192 6M 1G 734 73.1 91.7

Ti+
DeiT 4 256 10M 2G 1036 75.9 93.2

ConViT 4 256 10M 2G 625 76.7 93.6

S
DeiT 6 384 22M 4.3G 587 79.8 -

ConViT 9 432 27M 5.4G 305 81.3 95.7

S+
DeiT 9 576 48M 10G 480 79.0 94.4

ConViT 9 576 48M 10G 382 82.2 95.9

B
DeiT 12 768 86M 17G 187 81.8 -

ConViT 16 768 86M 17G 141 82.4 95.9

B+
DeiT 16 1024 152M 30G 114 77.5 93.5

ConViT 16 1024 152M 30G 96 82.5 95.9

Table 1. Performance of the models considered, trained from scratch on ImageNet. Speed is the number of images processed per

second on a Nvidia Quadro GP100 GPU at batch size 128. Top-1 accuracy is measured on ImageNet-1k test set without distillation (see

SM. B for distillation). The results for DeiT-Ti, DeiT-S and DeiT-B are reported from (Touvron et al., 2020).

Train Top-1 Top-5
size DeiT ConViT Gap DeiT ConViT Gap

5% 34.8 47.8 37% 57.8 70.7 22%
10% 48.0 59.6 24% 71.5 80.3 12%
30% 66.1 73.7 12% 86.0 90.7 5%
50% 74.6 78.2 5% 91.8 93.8 2%

100% 79.9 81.4 2% 95.0 95.8 1%

Table 2. The convolutional inductive bias strongly improves

sample efficiency. We compare the top-1 and top-5 accuracy

of our ConViT-S with that of the DeiT-S, both trained using the

original hyperparameters of the DeiT (Touvron et al., 2020), as

well as the relative improvement of the ConViT over the DeiT.

Both models are trained on a subsampled version of ImageNet-1k,

where we only keep a variable fraction (leftmost column) of the

images of each class for training.

achieve a fair comparison. The resulting models are

named ConViT-Ti, ConViT-S and ConViT-B.

• We also trained DeiTs and ConViTs using the same

number of heads and Demb/Nh = 64, to ensure that

the improvement due to ConViT is not simply due to

the larger number of heads (Touvron et al., 2021b).

This leads to slightly larger models denoted with a “+”

in Tab. 1. To maintain stable training while fitting these

models on 8 GPUs, we lowered the learning rate from

0.0005 to 0.0004 and the batch size from 1024 to 512.

These minimal hyperparameter changes lead the DeiT-

B+ to perform less well than the DeiT-S+, which is not

the case for the ConViT, suggesting a higher stability

to hyperparameter changes.

Performance of the ConViT In Tab. 1, we display the

top-1 accuracy achieved by these models evaluated on the

ImageNet test set after 300 epochs of training, alongside

their number of parameters, number of flops and throughput.

Each ConViT outperforms its DeiT of same size and same

number of flops by a margin. Importantly, although the

positional self-attention does slow down the throughput

of the ConViTs, they also outperform the DeiTs at equal

throughput. For example, The ConViT-S+ reaches a top-

1 of 82.2%, outperforming the original DeiT-B with less

parameters and higher throughput. Without any tuning, the

ConViT also reaches high performance on CIFAR100, see

SM. C where we also report learning curves.

Note that our ConViT is compatible with the distillation

methods introduced in Touvron et al. (2020) at no extra cost.

As shown in SM. B, hard distillation improves performance,

enabling the hard-distilled ConViT-S+ to reach 82.9% top-1

accuracy, on the same footing as the hard-distilled DeiT-

B with half the number of parameters. However, while

distillation requires an additional forward pass through a

pre-trained CNN at each step of training, ConViT has no

such requirement, providing similar benefits to distillation

without additonal computational requirements.

Sample efficiency of the ConViT In Tab. 2, we investi-

gate the sample-efficiency of the ConViT in a systematic

way, by subsampling each class of the ImageNet-1k dataset

by a fraction f = {0.05, 0.1, 0.3, 0.5, 1} while multiply-

ing the number of epochs by 1/f so that the total number

images presented to the model remains constant. As one

might expect, the top-1 accuracy of both the DeiT-S and its

ConViT-S counterpart drops as f decreases. However, the

ConViT suffers much less: while training on only 10% of

the data, the ConVit reaches 59.5% top-1 accuracy, com-

pared to 46.5% for its DeiT counterpart.

This result can be directly compared to (Zhai et al., 2019),

which after testing several thousand convolutional models
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reaches a top-1 accuracy of 56.4%; the ConViT is therefore

highly competitive in terms of sample efficiency. These find-

ings confirm our hypothesis that the convolutional inductive

bias is most helpful on small datasets, as depicted in Fig. 1.

4. Investigating the role of locality

In this section, we demonstrate that locality is naturally

encouraged in standard SA layers, and examine how the

ConViT benefits from locality being imposed at initializa-

tion.

SA layers are pulled towards locality We begin by in-

vestigating whether the hypothesis that PSA layers are nat-

urally encouraged to become “local” over the course of

training (Cordonnier et al., 2019) holds for the vanilla SA

layers used in ViTs, which do not benefit from positional

attention. To quantify this, we define a measure of “nonlo-

cality” by summing, for each query patch i, the distances

‖δij‖ to all the key patches j weighted by their attention

score Aij . We average the number obtained over the query

patch to obtain the nonlocality metric of head h, which

can then be averaged over the attention heads to obtain the

nonlocality of the whole layer ℓ:

Dℓ,h
loc :=

1

L

∑

ij

A
h,ℓ
ij ‖δij‖,

Dℓ

loc :=
1

Nh

∑

h

Dℓ,h
loc (8)

Intuitively, Dloc is the number of patches between the center

of attention and the query patch: the further the attention

heads look from the query patch, the higher the nonlocality.

In Fig. 5 (left panel), we show how the nonlocality metric

evolves during training across the 12 layers of a DeiT-S

trained for 300 epochs on ImageNet. During the first few

epochs, the nonlocality falls from its initial value in all

layers, confirming that the DeiT becomes more “convolu-

tional”. During the later stages of training, the nonlocality

metric stays low for lower layers, and gradually climbs back

up for upper layers, revealing that the latter capture long

range dependencies, as observed for language Transform-

ers (Sukhbaatar et al., 2019).

These observations are particularly clear when examining

the attention maps (Fig. 15 of the SM), and point to the

beneficial effect of locality in lower layers. In Fig. 10 of

the SM., we also show that the nonlocality metric is lower

when training with distillation from a convolutional network

as in Touvron et al. (2020), suggesting that the locality of

the teacher is partly transferred to the student (Abnar et al.,

2020).

Figure 5. SA layers try to become local, GPSA layers escape

locality. We plot the nonlocality metric defined in Eq. 8, averaged

over a batch of 1024 images: the higher, the further the attention

heads look from the query pixel. We trained the DeiT-S and

ConViT-S for 300 epochs on ImageNet. Similar results for DeiT-

Ti/ConViT-Ti and DeiT-B/ConViT-B are shown in SM. D.

Figure 6. The gating parameters reveal the inner workings of

the ConViT. For each layer, the colored lines (one for each of the

9 attention heads) quantify how much attention head h pays to

positional information versus content, i.e. the value of σ(λh), see

Eq. 7. The black line represents the value averaged over all heads.

We trained the ConViT-S for 300 epochs on ImageNet. Similar

results for ConViT-Ti and ConViT-B are shown in SM D.

GPSA layers escape locality In the ConViT, strong lo-

cality is imposed at the beginning of training in the GPSA

layers thanks to the convolutional initialization. In Fig. 5

(right panel), we see that this local configuration is escaped

throughout training, as the nonlocality metric grows in all

the GPSA layers. However, the nonlocality at the end of

training is lower than that reached by the DeiT, showing

that some information about the initialization is preserved

throughout training. Interestingly, the final nonlocality does

not increase monotonically throughout the layers as for the

DeiT. The first layer and the final layers strongly escape

locality, whereas the intermediate layers (particularly the

second layer) stay more local.

To gain more understanding, we examine the dynamics of

the gating parameters in Fig. 6. We see that in all layers,

the average gating parameter Ehσ(λh) (in black), which

reflects the average amount of attention paid to positional

information versus content, decreases throughout training.
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This quantity reaches 0 in layers 6-10, meaning that posi-

tional information is practically ignored. However, in layers

1-5, some of the attention heads keep a high value of σ(λh),
hence take advantage of positional information. Interest-

ingly, the ConViT-Ti only uses positional information up

to layer 4, whereas the ConViT-B uses it up to layer 6 (see

App. D), suggesting that larger models - which are more

under-specified - benefit more from the convolutional prior.

These observations highlight the usefulness of the gating

parameter in terms of interpretability.

The inner workings of the ConViT are further revealed by

the attention maps of Fig. 7, which are obtained by prop-

agating an embedded input image through the layers and

selecting a query patch at the center of the image3. In layer

10, (bottom row), the attention maps of DeiT and ConViT

look qualitatively similar: they both perform content-based

attention. In layer 2 however (top row), the attention maps

of the ConViT are more varied: some heads pay attention

to content (heads 1 and 2) whereas other focus mainly on

position (heads 3 and 4). Among the heads which focus on

position, some stay highly localized (head 4) whereas others

broaden their attention span (head 3). The interested reader

can find more attention maps in SM. E.

Ref.
Train
gating

Conv
init

Train
GPSA

Use
GPSA

Full
data

10%
data

a (ConViT) ✓ ✓ ✓ ✓ 82.2 59.7
b ✗ ✓ ✓ ✓ 82.0 57.4
c ✓ ✗ ✓ ✓ 81.4 56.9
d ✗ ✗ ✓ ✓ 81.6 54.6

e (DeiT) ✗ ✗ ✗ ✗ 79.1 47.8
f ✗ ✓ ✗ ✓ 78.6 54.3
g ✗ ✗ ✗ ✓ 73.7 44.8

Table 3. Gating and convolutional initialization play nicely to-

gether. We ran an ablation study on the ConViT-S+ trained for 300

epochs on the full ImageNet training set and on 10% of the train-

ing data. From the left column to right column, we experimented

freezing the gating parameters to 0, removing the convolutional

initialization, freezing the GPSA layers and removing them alto-

gether.

Strong locality is desirable We next investigate how the

performance of the ConViT is affected by two important hy-

perparameters of the ConViT: the locality strength, α, which

determines how focused the heads are around their center of

attention, and the number of SA layers replaced by GPSA

layers. We examined the effects of these hyperparameters

on ConViT-S, trained on the first 100 classes of ImageNet.

As shown in Fig. 8(a), final test accuracy increases both with

the locality strength and with the number of GPSA layers;

in other words, the more convolutional, the better.

3We do not show the attention paid to the class token in the SA
layers

(a) Input (b) DeiT

(c) ConViT

Figure 7. The ConViT learns more diverse attention maps.

Left: input image which is embedded then fed into the models. The

query patch is highlighted by a red box and the colormap is loga-

rithmic to better reveal details. Center: attention maps obtained

by a DeiT-Ti after 300 epochs of training on ImageNet. Right:

Same for ConViT-Ti. In each map, we indicated the value of the

gating parameter in a color varying from white (for heads paying

attention to content) to red (for heads paying attention to position).

Attention maps for more images and heads are shown in SM. E.

In Fig. 8(b), we show how performance at various stages of

training is impacted by the presence of GPSA layers. We

see that the boost due to GPSA is particularly strong during

the early stages of training: after 20 epochs, using 9 GPSA

layers leads the test-accuracy to almost double, suggesting

that the convolution initialization gives the model a substan-

tial “head start”. This speedup is of practical interest in

itself, on top of the boost in final performance.

Ablation study In Tab. 3, we present an ablation on the

ConViT, denoted as [a]. We experiment removing the posi-

tional gating [b]4, the convolutional initialization [c], both

gating and the convolutional initialization [d], and the GPSA

altogether ([e], which leaves us with a plain DeiT).

Surprisingly, on full ImageNet, GPSA without gating [d]

already brings a substantial benefit over the DeiT (+2.5),

which is mildly increased by the convolutional initializa-

tion ([b], +2.9). As for gating, it helps a little in presence

4To remove gating, we freeze all gating parameters to λ = 0 so
that the same amount of attention is paid to content and position.
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Figure 8. The beneficial effect of locality. Left: As we increase

the locality strength (i.e. how focused each attention head is its

associated patch) and the number of GPSA layers of a ConViT-S+,

the final top-1 accuracy increases significantly. Right: The benefi-

cial effect of locality is particularly strong in the early epochs.

of the convolutional initialization ([a], +3.1), and is un-

helpful otherwise. These mild improvements due to gating

and convolutional initialization (likely due to performance

saturation above 80% top-1) become much clearer in the

low data regime. Here, GPSA alone brings +6.8, with an

extra +2.3 coming from gating, +2.8 from convolution ini-

tialization and +5.1 with the two together, illustrating their

complementarity.

We also investigated the performance of the ConViT with

all GPSA layers frozen, leaving only the FFNs to be trained

in the first 10 layers. As one could expect, performance

is strongly degraded in the full data regime if we initial-

ize the GPSA layers randomly ([f], -5.4 compared to the

DeiT). However, the convolutional initialization remarkably

enables the frozen ConViT to reach a very decent perfor-

mance, almost equalling that of the DeiT ([e], -0.5). In

other words, replacing SA layers by random “convolutions”

hardly impacts performance. In the low data regime, the

frozen ConViT even outperforms the DeiT by a margin

(+6.5). This naturally begs the question: is attention really

key to the success of ViTs (Dong et al., 2021; Tolstikhin

et al., 2021; Touvron et al., 2021a)?

5. Conclusion and perspectives

The present work investigates the importance of initializa-

tion and inductive biases in learning with vision transform-

ers. By showing that one can take advantage of convolu-

tional constraints in a soft way, we merge the benefits of

architectural priors and expressive power. The result is a sim-

ple recipe that improves trainability and sample efficiency,

without increasing model size or requiring any tuning.

Our approach can be summarized as follows: instead of

interleaving convolutional layers with SA layers as done

in hybrid models, let the layers decide whether to be con-

volutional or not by adjusting a set of gating parameters.

More generally, combining the biases of varied architec-

tures and letting the model choose which ones are best for a

given task could become a promising direction, reducing the

need for greedy architectural search while offering higher

interpretability.

Another direction which will be explored in future work

is the following: if SA layers benefit from being initial-

ized as random convolutions, could one reduce even more

drastically their sample complexity by initializing them as

pre-trained convolutions?
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