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CONVOLUTION EQUATIONS IN SPACES

OF INFINITE DIMENSIONAL ENTIRE FUNCTIONS

OF EXPONENTIAL AND RELATED TYPES

BY

J. F. COLOMBEAU AND B. PERROT

Abstract. We prove results of existence and approximation of the solutions of the

convolution equations in spaces of entire functions of exponential type on infinite

dimensional spaces. In particular we obtain: let £ be a complex, quasi-complete

and dual nuclear locally convex space and Q a convex balanced open subset of E;

let %(ü) be the space of the holomorphic functions on Í2, equipped with the

compact open topology and %'(Q) its strong dual; let €%'(Q) denote the image of

%'(ü) through the Fourier-Borel transform W; equip this space ?F%'(Q) with the

image of the topology of %'(Q) via the map %. Then, "every nonzero convolution

operator on <ä%'(ü) is surjective" and "every solution of the homogeneous equa-

tion is limit of exponential-polynomial solutions". Our results are more generally

valid when £ is a Schwartz bornological vector space with the approximation

property. Previous results in Fréchet-Schwartz and Silva spaces are thus extended

to domains that are not Fréchet or D. /".-spaces.

1. Introduction. Let F be a complex Hausdorff locally convex space and ñ a

convex balanced open subset of F; let %(ü) denote the space of the holomorphic

functions on Í2 [10] equipped with the compact open topology; let ?F denote the

Fourier-Borel transform.

In some very usual cases for E(E = ^(R3; Q, S(R3; €),... using classical

notations of L. Schwartz) the image, denoted by §%'(<&), of %'(&) through the

Fourier Borel transform ÇF, is densely embedded in the Fock space of some Boson

fields [5].

Functionals of annihilation operators motivate the study of the solvability of

convolution equations in subspaces of <3%'(®)- Previous existence theorems, e.g.

[8], [9], [10], have been restricted to the case when F is a Fréchet space or a dual of

a Fréchet space.

By means of a representation of <3%'(Çl) as a bornological inductive limit of

Silva spaces we are able to extend such results in this paper to nonmetrizable

spaces such as F = fy and ^ ' (distributions).

2. Notations and main definitions. In order to state the results in their natural

setting and also for the convenience of some parts of the proofs we use the concept

of the "convex bornological vector spaces" introduced in [16] and the concept of
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192 J. F. COLOMBEAU AND B. PERROT

the Silva holomorphic functions ([4]). A result of [7] asserts that, in the usual cases

for E, the space of the holomorphic (i.e. G-analytic and continuous) functions on ß

is dense in the space of the Silva holomorphic functions on ß for the compact open

topology. Hence they have the same dual denoted by SC'(ß)- From now on, 3C(ß)

will denote the space of the Silva holomorphic functions on ß (to be defined

below).

We recall ([16], [13], [14]) that a complete convex bornological vector space F

(denoted by the letters b.v.s.) is an injective algebraic inductive limit of a family

(F,),e/ of Banach spaces such that if i < /', the canonical linear map from F, to F,

is injective and continuous. A subset of F is said to be bounded iff it is contained

and bounded in a Banach space E¡. Two such structures are identified iff they have

the same bounded sets.

We recall ([14]) that F is a Schwartz b.v.s. iff for each index / there exists an

index y e / such that the unit ball Bi of the Banach space F( is relatively compact

in the Banach space E,.

ß denotes a convex balanced subset of F such that, for each index /, ß n E¡ is

open in the Banach space Et. Let us recall that a subset K of ß is said to be strictly

compact in ß iff it is contained and compact in some open set ß n F, equipped

with the topology induced by that of the Banach space F,. In most of the usual

locally convex spaces, the strictly compact sets coincide with the compact sets.

In this paper F denotes a Schwartz b.v.s. separated by its dual and such that

there exists a basis (c,) of convex balanced bounded sets such that the normed

space Fc, spanned by c, and normed with the gauge of c„ is a Banach space with

the approximation property. These assumptions ensure the injectivity of the Four-

ier-Borel transform.

Remark 1. Each nuclear b.v.s. E admits a basis (c¡) of convex balanced bounded

sets such that each Ec is a separable Hubert space ([12], [13]). Hence the above

assumption on E is satisfied in a lot of usual spaces.

A Silva holomorphic function / on ß is a G-analytic function such that (if the

b.v.s. F is the injective algebraic inductive limit of the Banach spaces E¡) each

restriction of / to ß n E¡ is holomorphic (in the usual sense of Banach spaces) on

the open subset ß n F, of the Banach space F,. The space 9C(ß) (of the Silva

holomorphic functions on ß) is equipped with the topology of the uniform

convergence on the strictly compact subsets of ß.

Remark 2. When F is a dual nuclear l.c.s. the following description of ¥%'(E)

holds ([1], [2]). <5%'(E) is the subspace of the homolorphic functions on the strong

dual F' of F such that there exists a convex balanced bounded subset B of F and a

real number c > 0 such that

|<i>(r)|<cem*

for each Fin F' (where \T\B = supxeB\T(x)\).

Let us denote as usual by Fx the bornological dual of the b.v.s. F; Fx is

equipped with its natural bornology of the equibounded sets.

We recall that, in the general case, <3r%'(ü) is contained in %(E x) and, for a in

F x, we denote by t0 the translation operator, (Ta<j>)(ß) = </>(<* + ß) where a, ß are
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CONVOLUTION EQUATIONS 193

in F x and <£ is in %(E x) and it is proved (Lemma 1) that ra is a linear continuous

map from $%\Q) to <$%'<$£).

As usual, a linear continuous map from l3%'(Q) to %%'($£) which commutes

with the translations is called a convolution operator on ^%'(ß).

3. Statement of the results. Let F be a Schwartz b.v.s. separated by its dual and

such that there exists a basis (c¡) of convex balanced bounded sets such that each

Ec is a Banach space with the approximation property. For example, F = ^(ß),

^'(ß), S(ß), &'(Q), S(R"), S'(R"), 3C(Q), %(K), %'(Q), ... with the usual

notations for these spaces of finite-dimensional functions.

Existence Theorem. Every nonzero convolution operator on ?F3C'(ß) is surjective.

Let 0 be a convolution operator on *$%'(&). Let P&xpQ, denote the vector

subspace of ?F%'(Q) spanned by the functions of the type Pex where P is in F®"

for some variable n and where x is in ß.

Approximation Theorem. Every solution u of the homogeneous equation 0« = 0

is a limit for the topology of ^^'(ß) of solutions in P&xpU.

4. Proof.

Lemma 0. The strong topology %ß(Sl) is the bornological topology of the equicon-

tinuous bornology of %'(&).

Proof. From [7] 3C(ß) (Silva holomorphic functions) is a "completely reflexive

l.c.s." according to the terminology of [14]. If T%'(£ï) denotes the above bornologi-

cal topology, the dual of T%'(ü) is %(Q,). Hence by Mackey's theorem [3] the

strong topology on %'(&) is stronger than T%'(&). The converse is obvious.    □

Lemma 1. For each a in F x the translation operator ra is linear continuous from

fDC'(0) to <5%'(QI).

Proof. It suffices to show that it is linear bounded (Lemma 0). It is immediate to

show that via the map ¥~ ' (we recall that £F is an injective map) ra correspond to

the map I ^> eal from 3C'(ß) to %'(Q) (where (eal)(<p) = l(ea ■ <p) if / is in %'(Q)

and if tp is in %(ü)) and this last map is linear bounded from %'(Q,) to %'(ß).    □

Let T be in (f SC'(ß))' and let T* be the map from $%'(Q) to DC(F*) defined

by (T*<f>)(a) = T(ra<b) (it is easy to prove that the range of this map is in %(E x)).

Lemma 2. T* is a convolution operator on C3%'(Q') and conversely each convolution

operator on ^^'(ß) is a T* for some T. If 21 denotes the algebra of the convolution

operators on '$%'('&), the map

($%'(Q))'     -»      31
T -»     T*

is a bijection.

Proof, (f %'(Ü))' '-X%"(Q,) = %(ti) algebraicaUy (since %(Q) is "completely

reflexive" [7] it is a semireflexive Les.). If T is in (^%'(ü))' then '<5(T) is an

element of OC(ß). The following diagram is commutative.
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194 J. F. COLOMBEAU AND B. PERROT

f"0C'(8)

3C'(ß)
where U is the map defined by

(£/(/))(*) = l("»(T)>p)     (l e SC'(ß), * g 3C(ß)).

It is easy to prove that U is bounded for the equicontinuous bornology on %'(Qi)

hence continuous (Lemma 0). Hence T* is continuous by definition of the topology

of 9%'(Q).

Let y be the map

3i   _>   (s-gc'(a))'
0    -»    í>->(6*)(0))      (*eff3C'(0)).

then y (F*) = Fand (y©)* = 0.

f: 9C'(ß) -» 5"3C'(ß) is an isomorphism hence

*9: (<5%'(U))' -+ DC "(G) = 3C(0) is a bijection.   D

Lemma 3. // S ¿s in (f 9C'(ß))' then   "f (S) « i/ie efemewi of 3C(ß) de/merf ¿>v
CffWX«) = S(ex).

The proof is immediate if we recall that 0C"(ß) is identified with %(Q¡) by the

formula <j>(ôx) = <¡>(x) (where Sx G 3C'(ß) is the Dirac measure at the point x).   □

Let us recall that Sxp(ß) c %(E x) is the vector span of the functions ex where

x is in ß.

Lemma 4. SxpSl is dense in '&%'(&).

Proof. Let 5 be an element of (9%'(Q))' such that S(ex) = 0 for each x in ß.

By Lemma 3, '^(S) = 0 in %(Q) hence S = 0 in (ff3C'(0))'.   D

If X, Y are in ($%'(&))' we define an element X* Y of (5"DC'(Q))' by the formula

*%(X*Y) ='<5(X)-'$(Y) G %(Q),

and the following two formulas are immediate from the definitions.

(1) Vx G ß   (X* Y)(ex)= X(ex) ■ Y(ex).

(2) VS, T G (ygC'fß))' then ('(F*))(S) = F*S.

Lemma 5. Lei /, g t« SC(ß), g ^ 0, be such that for each affine subspace S of

dimension 1 of E in which g is not identically zero, then the restriction f,s is divisible

by the restriction g,s, with the quotient as a holomorphic function in S. Then f is

divisible by g with the quotient as a holomorphic function in ß.

Proof. Apply Proposition 13 of [11], which asserts the same result in the case of

Banach spaces.   □

Lemma 6. Let X, T be in (<5%'(Q))', T ¥= 0. Let us assume that if P is in F®" and

if x is in ß,
T*Pex = 0=>X(Pex) = 0

then  t(5(X) is divisible by  "3(T) with the quotient as a holomorphic function in ß.

£     9%'(Q)

\9

ü       %'(Q)
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Proof. Apply Lemma 5 and for more details see the proof of Proposition 14 of

[11]-   D
Proof of the Approximation Theorem. If 0 = 0 the result is true since

P&xpQ is dense in &%'(Q). If 0 * 0 let T = y0 (hence F* = 0). Let X be in

(&%'(Q))' and such that X is null on P&xpSl n Ker 0 : T*Pex = 0 => X(Pex) = 0,

hence by Lemma 6 there exists an element h of %(Q) such that "3(X) = h"3(T).

Let S ="»~x(h) e($%'(Q))'. Then '9.(a) = h hence *9{X) -'&% • *9T

= "»(%*T) hence X = %*T = T*Q, (by (1)). Hence (by (2)) * ='(F*)(S)

= '0 (2). If <|> is in Ker 0, X(<¡>) = 2(0<í>) = 0 hence the result.   □

Lemma 7. Let <d be a nonzero convolution operator on 9%'(Çï). Then

'6(f 3C'(0))' = (Ker 0)°, the polar of Ker 0 in (9%'(Q)y.

Proof. The inclusion '0(f5C'(ß))' c (Ker 0)° is immediate. Conversely let X

be in (Ker 0)°. Using the proof of the Approximation Theorem, X ='0(2.) for

some 2 in (9%'(Q))'.   □

Lemma 8 (Surjectivity lemma in Silva spaces). Let E and F be two Silva spaces

and u a linear continuous map from E to F and let tu be its transpose: Then u is

surjective iff tu is injective and tu(F') is weakly closed in E'.

This Lemma 8 is considered as a "well-known" result but we prefer to sketch its

proof.

Proof. By Proposition 5, §4, Chapter IV of [3], u is surjective iff tu is a

topological isomorphism between F' and tu(F') for the weak topologies a(F', F)

and a(tu(F'), E). This isomorphism follows from the closed graph theorem between

the two Fréchet spaces F' and tu(F') and from the semireflexivity of F and F.    □

Lemma 9. Let E be a Silva space. Then each nonzero convolution operator on

f 9C'(ß) is surjective.

Proof. In this case ([6], [7]) 3C(ß) is a Fréchet-Schwartz space, hence 9%'(Q) is

a Silva space and '0 is injective. Let X be in (<$%'(££))' and such that '6(X) = 0.

Let F = yo, hence T* = 0 and T*X = 0 (by (2)). Hence  '9(T*X) = 0 hence

'<5(T)'9(X) = 0 hence '9(X) = 0 hence X = 0. It suffices now to apply Lemmas

7 and 8.   □

Let (cn) be an increasing sequence of convex balanced bounded subsets of F

such that each cn is relatively compact in the Banach space Ec and that Ec is a

Banach space with the approximation property. Let S be the Silva space which is

the bornological inductive limit of the spaces Ec. Consider ß n S as contained in

the b.v.s. S and denote by %(Q n S) the space of the holomorphic functions on

ß n S  for the bornological structure of S. Let r denote the restriction map r:

%(Q)^%(Q,n &).

Lemma 10. r(%CQ,)) is dense in SC(ß n &)for the topology of uniform convergence

on the compact subsets of ß D & ■

The proof follows immediately from Lemma 11 below.
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196 J. F. COLOMBEAU and b. perrot

Lemma 11. If Ec has the approximation property then the restriction map 5C(ß)—»

%(ü n Ec) has a dense range.

Proof. If /is in 3C(ß n Fc), approximate / by its Taylor expansion at the origin.

Since Ec has the approximation property, each polynomial on Ec can be approxi-

mated by finite linear combinations of finite products of continuous linear forms,

and a continuous linear form on Ec can be uniformly approximated on compact

subsets of Ec by restrictions of continuous linear forms on F.    □

Proof of the Existence Theorem. Let 0 be a nonzero convolution operator on

9%'(il). Consider the following commutative diagram

%'(Q)       *       DC'(Q)

i9 19

9%'(Q)     X     9%'(Q)

where % is the map induced by 0 through the isomorphism 9. Obviously 0 is

surjective iff % is surjective. If K is a strictly compact subset of F contained in ß

and if e is a strictly positive real number let

VKe= i<P G 9C(ß) such that sup  |<p(x)| < e).
1 x<EK '

Let VKe be its polar in %'(Q). If K is a strictly compact subset of F contained in ß

then the closed convex balanced hull of K is still contained in ß (because K is

compact in some Banach space EB and the closed convex balanced hull of K in EB

is still contained in ß).

Let.y be an element of H'(ü). We shall show that there exists an element x of

OC'(ß) such that tylx = v. Since % is nonzero, let z be an element of %'(Sl) such

that %z ¥= 0.

The set {y, z) is contained in some VK e (where Ky may be supposed convex

balanced as already explained). In Lemma 2 it has been proved that % is bounded

for the equicontinuous bornology on OC'(ß). Hence ali(VK e ) is an equicontinuous

set hence there exist e2 > 0 and a strictly compact subset K2 contained in ß such

that %( VK e ) c VK, e. Let F, be a convex and balanced strictly compact subset of

F such that EK¡ —> ET¡ is compact, ß n EK is an open set in the Banach space EK.

Let d (resp. t) be the distance in EK (resp. ET) deduced from the norm of EK

(resp. ET¡). Let Kp = {x G ß n EK¡ such that t(x, CEj. ß) > \/p and d(x, 0) < p).

Each compact set in EK which is contained in ß is also compact in ET so it is

contained in some Kp • KpEr\ the closure in ET of Kp, is compact in ET and

contained in ß. Hence A', u K2Et< u K2 is contained in ß and compact in some

Banach space Fc where c, is a convex and balanced bounded subset of E. Hence

the closed convex balanced hull of K{ u K2 u K2 in Fc, denoted by T(K} u K2 u

K2), is still contained in ß. From the assumptions on the space E one may assume

that Ec is a Banach space with the approximation property and that c, is strictly

compact in F. Hence there exists a, > 0 such that T(KX u K2 u K'2) + atct c ß.

Let K2 = T(KX u K2 u K2) + a}cv Then K2 is a convex balanced strictly compact

subset of F and K2 is contained in ß. Define the sequence of subsets (K%)pfEN in
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ß n EK in the same way as it was done before with K{ instead of K2. Hence each

compact set in EK which is contained in ß is contained in some KP. There exists a

strictly compact subset K3 of F, K3 contained in ß, such that sll(VK £) c F^,,

(e3 > 0) because we have already proved that the map % is bounded for the

equicontinuous bornology of %'(&).

Now we shall do with K2 u K3 u K2 u K3 the work already done with Kt u K2

U K2. Y(K2 u K\ u K\ u K3) is compact in some Banach space FCj (with the

approximation property) and contained in ß. Hence there exists a2 > 0 such that

T(K2 u K3 u K¡ u K¡) + a2c2 c ß. Let K3 = T(K2 u K3 u K\ u K¡) + a2c2.

Then K3 is a convex balanced strictly compact subset of F and is contained in ß.

Define now the sequence (KP)p£N and K'4 such that ^(VK ^ c P*;,e4- The

recurrence is obvious. We obtain sequences Kn, K'n, cn, en > 0, an > 0 such that:

Kn+l = f(Ä-„ U K~rl U AT' U • • •  UC' U A„'+1) + «nc„ C ß

and EK c F, c F^    with continuous inclusions.

Let S denote the inductive limit of the Banach spaces Fc which is also the

inductive limit of the Banach spaces E¡^. S is a Silva space and we may apply

Lemma 10. The restriction map r: %(tt) -» 3C(ß n S) has a dense range hence its

transpose V: %'(ti nê)-> 3C'(ß) is injective, hence via V, 3C'(ß n S) may be

identified as a subspace of %'(Ü). One may choose the sequence (e„) converging to

0 hence since each compact set of S contained in ß is contained in some Kn (this

follows from the construction of the sets Kn via the sequences (Kp)p^N) the sets

WK.t,= (<P e 3C(fi n S) such that  sup   |<p(x)| < e„)
1 ATEA-, J

are a basis of neighbourhoods of 0 in the compact open topology of DC(ß n S).

Hence their polars WK in %'(^ n S) are a basis of the equicontinuous bornol-

ogy of %'(Q n S).

From the density result obtained in Lemma 10 it follows easily that V( JÍ^ ) =

V^ . Since ^(Fj^ ) c V¡^ , the subspace 5C'(ß n S) is mapped into itself

by 01 and the restriction %/K.(anS) of % to 9C'(^ n S) is bounded for the

equicontinuous bornology on %'(Sl n S).

Now we are going to show that %/oc(anS) induces a nonzero convolution

operator on 9%'(Q n &) (via the map 9). It is easy to show that the operator on

9%'(Q ne) induced by 'îlygcrnnS) v'a tne Fourier-Borel transform ÍF is the

restriction of 0 to 9%'(Çh n S) (since 3C'(ß n S) is considered as a subspace of

OC'(ß), ^OC^ß n S) is considered as a subspace of ^^'(ß))- The continuity of

0/53C(nn6) follows from the fact that ^i/oc(nn£) *s bounded for the equicontinuous

bornology on %'($l n S), that 9 is an isomorphism and from Lemma 0. Since z is

in %'(Ü n S), 0/sDC'(SinS) is nonzero. The fact that 0/^oc(OnS) 's translation

invariant for the translations ra (where a is in &x ) comes easily from an argument

of continuity and the fact that if i denotes the natural injection from S to F then

its transpose H from Fx to Sx has a dense range (because the Silva space S is

semireflexive and because the b.v.s. F is separated by its dual).

From Lemma 9 it follows that the convolution operator G/stiC(OnS) *s surjective.
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198 J. F. COLOMBEAU AND B. PERROT

Since v is in %'(ß n S) there exists an element x of 9C'(Q n &) such that

G&'/<X<Sir\&)(x) = v.

Considering * in %'(Q,) we have %x = v hence the theorem is proved.    □
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