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CONVOLUTION ESTIMATES
FOR SOME MEASURES ON CURVES

DANIEL M. OBERLIN

ABSTRACT. Suppose that A is a smooth measure on a curve in R3.   It is

shown that A * LP(R3) C Lq(R3) under certain conditions on X,p, and q.

For 1 < p < oo, let IP be the usual Lebesgue space formed with respect to

Lebesgue measure on Rn. It is well known that every complex Borel measure A on

Rn acts as a convolution operator on Lp: A * Lp C Lp. If A is absolutely continuous

with density in Lr for some r > 1, Young's inequality shows that for 1 < p < cxd we

have A * Lp C Lq for some q = q(p) > p. One might say that such a measure is "Lp-

improving." If A is singular, it is still possible for A to be Lp-improving when p > 1.

The Cantor-Lebesgue measures on R are examples [1]. The purpose of this paper

is to investigate similar behavior for a different class of singular measures, smooth

measures supported on curves in R3. Our motivation comes from the following two

results.

THEOREM 1. Suppose 1 < k < n and K is a smooth k-dimensional surface in

Rn. Suppose that A is a smooth measure on K. If X*LP C Lq, then (1/p, 1/q) lies in

the closed triangle in R2 with vertices (0,0), (1,1), and(n/(2n—k),(n—k)/(2n—k)).

PROOF. A theorem of Hörmander [3] implies that p < q. Estimating the

norms of / and A * / when / is the characteristic function of a small ball shows that

(1/p, 1/q) lies on or above the line ¿joining (1,1) and (n/(2n — k), (n — k)/(2n — k)).

Since A * Lp C Lq implies A * Lq C Lp , where p' and q' are the conjugate indices,

(1/q', 1/p') also lies on or above L. This completes the proof.

THEOREM 2. Suppose K is a smooth (n — 1)-dimensional surface in Rn on

which all n — 1 principal curvatures are bounded away from zero. Suppose that

A is a smooth finite measure compactly supported away from the boundary. Then

A * Lp C Lq if and only if (1/p, 1/q) lies in the closed triangle in R2 with vertices

(0,0), (1,1), and (n/(n + 1), l/(n + 1)).

PROOF. A theorem of Littman [4] implies that A * L^n+1^n C Ln+l. Interpo-

lation with trivial cases completes half the proof, and Theorem 1 gives the rest.

Theorems 1 and 2 lead naturally to the conjecture that if A is a nice measure

supported on a nice fc-dimensional surface in Rn, then A * Lp c Lq precisely when

(1/p, 1/q) is in the closed triangle of Theorem 1. This conjecture seems difficult

even when k = 1, n = 3. Our purpose here is to prove a partial result for this case.

We consider certain measures A on some curves in R3 and prove that A * Lp C Lq

whenever (1/p, 1/q) lies in the triangle of Theorem 1 and on or above the line
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through (1/2,1/3) and (2/3,1/2).   To show this it is sufficient, by duality and

interpolation, to establish that A * L3/2 C L2.

THEOREM 3. Suppose that I is a closed interval in R and that the real-valued

functions <f>\ and cf>2 are both polynomial functions or both trigonometric functions

on I. Put <p(t) = (4>i(t), 4>2(t)) and, if j = 2 or 3, write (¡ft) for the jth derivative of

the function 4>. Suppose that given any tx,t2 € I, the vectors <p^(ti) and (f>^(t2)

span R2. Let A be the measure on R3 defined by

(\,g)= Í g(t,4>i(t),<t>2(t))dt.

Then A * L3/2 c L2.

Here are two examples where Theorem 3 applies.

EXAMPLE  1. I =[a,b], (px(t) =t2, 4>2(t) = t3.

EXAMPLE 2.7= [0,7r/6], cpi(t) = cos(i), (f>2(t) = sin(i).

Following are some comments on the notation to be used in the proof of The-

orem 3. The symbol / (resp. g) will denote an arbitrary continuous function of

compact support on R2 (resp. R3). The symbol || • ||p will denote the norm of the

indicated function in LP(R2) or LP(R3), whichever is appropriate. A sector T in

the plane is defined to be the set of all points in the plane which have a polar rep-

resentation re10 with r > 0, c < 6 < d, where c and d are fixed real numbers. The

symbol C will denote a positive constant which may increase from line to line but

which depends only on the data I and cfi in the hypotheses of Theorem 3. Similarly,

the symbol C(Fi,r2,¿) appearing in the following lemma represents a "variable"

constant which can always be chosen to depend only upon Ti,T2, and 8. The proof

of this lemma is based on complex interpolation and follows fairly standard lines.

LEMMA. Suppose Ti and T2 are sectors such that T2 fl (Ti U — Tx) = {0}.

Suppose 8 > 0. There is a positive constant C(Fi,r2,<5) such that the following

holds: Suppose J C R is a closed interval of length not exceeding 8"1 and suppose

that ty(t) = (^i(i), $2(t)) is a twice differentiable function from J into R2 such

that

(i) for every t G J: $'(*) G Tu *(2)(i) e F2, |*'(i)| > 8, |*(2)(i)l > 6\
(ii) for any x S R2, J splits into disjoint subintervals J\,.. ■ ,Jk with K < ¿_1

such that the scalar product x ■ ty(2\t) is of constant sign on each t-interval Jn.

The measure p on R2 defined by

(p,f)=J f(*(t))dt

satisfies

llM*/ll3<c7(r1,r2,i5)||/||3/2.

PROOF. For z G C consider the distribution dz(s) = \s\z on R. The map z —►

dz defines a meromorphic distribution-valued function on C with simple poles at

2 = —1, —3, —5,_Thus dz/(F(z + l)/2) is an entire distribution-valued function

of z (see [2] for details).

Now let y x be a unit vector orthogonal to no nonzero vector in Ti and let y be

a unit vector orthogonal to y\.
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For z G C and test functions h on R2, define the distribution Tz by

1
(Tz,h) = twrmLLhm)+ayWdsdt-

i + îV
We will establish that

(1) 112* *

(2) \iiy-3/2*hh<  c7(r1,r2,¿)/r

2

3 - 2iy
\h\ 2-

(3) T_!*h = p*h.

Then the conclusion of the lemma will follow from the interpolation theorem in [5].

To show (1) is to show that Tiy is an L°° function of appropriate norm. The

map (s,t) —» V(t) + sy from Rx J into R2 is one-to-one by the assumptions on y

and t/i and the mean value theorem. It has Jacobian of absolute value |*'(f) ■ yi\,

a quantity which exceeds l/C(Ti,r2,8). Thus

u:h(V(t) + sy)dsdt <c(ruT2,6)\\h\\1.

This gives (1).

To obtain (2) we must estimate the Fourier transform of T¿y_3/2. Calculations

in [2] show that the Fourier transform of dz/Y((z + l)/2) at s is

2z+1Tt1'2\s\-z-l/Y(-z/2).

Thus the Fourier transform of Tz is given by

fz(x) = ß(x) ■ 2z+1n1/2\x ■ y\-z-1/T(-z/2)

(from which (3) follows). To establish (2) it is therefore sufficient to show that

(4) |x|1/2|/k(x)| < C(ri,r2,6)    forxGñ2.

Note that the hypotheses guarantee that

(5) \x-^'(t)\ + \x-^2\t)\>\x\/C(Tl,T2,8),        xeR2,t(EJ.

Now fix nonzero x G R2 and put p(t) = x ■ V(t). By (ii), J splits into disjoint

subintervals Ji,..., Jk with K < ¿_1 such that p^(t) has constant sign on each

J„. Write n = |x|/2C(ri,r2,¿) and let J¿ = Jn n {\p'(t)\ < r¡}. Since p'(t) is

monotone on Jn, I„ is an interval and so Jn\Ik 1S the disjoint union of I2 and I3,

where each of I2 and I3 is an interval or empty. By (5) we have either p^2'(t) > n

or p^2'(i) < -n on /¿. Therefore

(6) ,1/2

/-

e-ix-"Wdt <4

by van der Corput's lemma [7]. If j = 2 or j = 3 we have p'(t) monotone and either

p'(t) > n or p'(t) < —n on /¿. Thus, by van der Corput's lemma again,

(7)
\Jll

e-»-*W dt < minfry1/2 • length^),z?-1/2} < 8~l/2,
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where the last inequality is because length (J) < ¿_1. Adding all inequalities (6)

and (7) gives (4) since there are at most 3K < 3<5_1 such terms. This completes

the proof of the lemma.

PROOF OF THEOREM 3. Let À be defined by

(\g) = /   g(-x)d\(x).
Jr3

Since (A * A * g, g) = || A * g\\2, it is enough to show that

(8) \\X*X*gh<C\\gh/2

for continuous compactly supported functions g on R3. Writing / = [a, 6] and

Iu = [max{a, a — u}, min{6,6 — u}} for |u| < b — a we have

rb     rb

(X*X,g)=        /   g(t-s,Mt)-Ms),Mt)-Ms))dsdt
Ja   Ja

pb—a    /■

=  / /   g(u,<i>1(s + u)-<j)i(s),<l)2(8 + u)-<i>2(s))dsdu.
J a — b    J Iu

For \u\ < b — a, define the measure Au on R2 by

(Au,/)= /   f((j)i(s + u)-(j>i(s),<t>2(s + u)-^2(s))ds.

We will prove that

(9) ||Au*/|¡3<e7¡u|-2/3¡|/||3/2.

Assume (9) for the moment and write g(t,x) (t G R, x G R2) for a continuous

compactly supported function on R3. Then

rb—a

|A* A*cz||3

<

po—a

/       Xu * g(t - u,-)(x)
Ja-b

cb—a

Ja-b

du
3,3

<C

-b

*b—a

\XU * g(t - u,-)(x)\\3tX du

3,í

3,t

co—a

/ |ur2/3||ff(£-U,z)||3/2iXrili
Ja-b 3,t

By the boundedness of the Riesz potential of order | asa mapping from L3^2(R)

to L3(R) (see p. 119 of [6]), this last term is dominated by

C||||ff(i,x)||3/2,I||3/2,t = C||g||3/2.

Thus (8), and so Theorem 3, will be proved when (9) is established.

By the hypotheses of Theorem 3 there is an n > 0 such that

(10) \<t>M(t)\,\<t>W(t)\>r!    iît El.

The sets

Kx = {*(a)(t)/|*(a)(t)|:t € I},        K2 = {^3\t)/\^(t)\:te 1}

are disjoint closed intervals on the unit circle in R2.   If i = 1 or 2, define r¿ to

be the sector {rv.r > 0,  v G A¿}.   The hypotheses of Theorem 3 imply that
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T2 n (Fi U -rx) = {0} and thus that the r¿ are convex. By (10), for i = 1 or 2 the

set <¡)(l+1\l) lies in a proper closed subset T¿ of r¿\{0}, and T¿ can be chosen to

be convex. Fix 8 > 0 such that

(a) {x G R2: \x\ <¿}íir; = 0 for i = 1,2;
Iß) b-a^S-1;
(7) For u G [a — 6,6 — a] and x G R2, Iu splits into disjoint subintervals Ji,..., Jk

with K < (5_1 such that x-((j>^(t+u) — (j>(2\t)) is of constant sign on each ¿-interval

Jn. (This is where we use the hypothesis that fa and fa be both polynomial or

trigonometric functions.)

Now fix u G [a — b, b — a]. Define *(i) on /„ by

*(í) = -0A(í+ «)-#*)).
u

Letting ri,r2, and »5 be as above, we claim that ^!(t) satisfies the hypotheses of

the lemma. The hypothesis (i) for W(t) follows from

9'(t) = - [   U <t>W(s)ds
u Jt

combined with the convexity of T'x and (a). The hypothesis (i) for ^!^(t) follows

similarly. The hypothesis (ii) is a consequence of (7), and the hypothesis that

length(J) not exceed ¿_1 is covered by (ß). Thus it follows, with the notation of

the lemma, that

(11) UWlk < qi/IU/2.
For functions / on R2 and u G R, put Duf(x) — f(ux), x G R2. Then

K * f(x) = j f(x- u*(i)) dt = j f (u (Ï - *(i))) dt = Dx/U(p * (Duf))(x).

Now (9) follows from (11) and the fact that

||L\/||P = |u|-2/l/||p.
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