CONVOLUTION ESTIMATES FOR SOME MEASURES ON CURVES

DANIEL M. OBERLIN

ABSTRACT. Suppose that λ is a smooth measure on a curve in \mathbb{R}^3 . It is shown that $\lambda * L^p(\mathbb{R}^3) \subset L^q(\mathbb{R}^3)$ under certain conditions on λ, p , and q.

For $1 \leq p \leq \infty$, let L^p be the usual Lebesgue space formed with respect to Lebesgue measure on \mathbb{R}^n . It is well known that every complex Borel measure λ on \mathbb{R}^n acts as a convolution operator on $L^p: \lambda * L^p \subset L^p$. If λ is absolutely continuous with density in L^r for some r > 1, Young's inequality shows that for $1 \leq p < \infty$ we have $\lambda * L^p \subset L^q$ for some q = q(p) > p. One might say that such a measure is " L^p improving." If λ is singular, it is still possible for λ to be L^p -improving when p > 1. The Cantor-Lebesgue measures on \mathbb{R} are examples [1]. The purpose of this paper is to investigate similar behavior for a different class of singular measures, smooth measures supported on curves in \mathbb{R}^3 . Our motivation comes from the following two results.

THEOREM 1. Suppose $1 \le k < n$ and K is a smooth k-dimensional surface in \mathbb{R}^n . Suppose that λ is a smooth measure on K. If $\lambda * L^p \subset L^q$, then (1/p, 1/q) lies in the closed triangle in \mathbb{R}^2 with vertices (0,0), (1,1), and (n/(2n-k), (n-k)/(2n-k)).

PROOF. A theorem of Hörmander [3] implies that $p \leq q$. Estimating the norms of f and $\lambda * f$ when f is the characteristic function of a small ball shows that (1/p, 1/q) lies on or above the line L joining (1,1) and (n/(2n-k), (n-k)/(2n-k)). Since $\lambda * L^p \subset L^q$ implies $\lambda * L^{q'} \subset L^{p'}$, where p' and q' are the conjugate indices, (1/q', 1/p') also lies on or above L. This completes the proof.

THEOREM 2. Suppose K is a smooth (n-1)-dimensional surface in \mathbb{R}^n on which all n-1 principal curvatures are bounded away from zero. Suppose that λ is a smooth finite measure compactly supported away from the boundary. Then $\lambda * L^p \subset L^q$ if and only if (1/p, 1/q) lies in the closed triangle in \mathbb{R}^2 with vertices (0,0), (1,1), and (n/(n+1), 1/(n+1)).

PROOF. A theorem of Littman [4] implies that $\lambda * L^{(n+1)/n} \subset L^{n+1}$. Interpolation with trivial cases completes half the proof, and Theorem 1 gives the rest.

Theorems 1 and 2 lead naturally to the conjecture that if λ is a nice measure supported on a nice k-dimensional surface in \mathbb{R}^n , then $\lambda * L^p \subset L^q$ precisely when (1/p, 1/q) is in the closed triangle of Theorem 1. This conjecture seems difficult even when k = 1, n = 3. Our purpose here is to prove a partial result for this case. We consider certain measures λ on some curves in \mathbb{R}^3 and prove that $\lambda * L^p \subset L^q$ whenever (1/p, 1/q) lies in the triangle of Theorem 1 and on or above the line

©1987 American Mathematical Society 0002-9939/87 \$1.00 + \$.25 per page

Received by the editors October 23, 1985.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 43A22.

Partially supported by the National Science Foundation.

through (1/2, 1/3) and (2/3, 1/2). To show this it is sufficient, by duality and interpolation, to establish that $\lambda * L^{3/2} \subset L^2$.

THEOREM 3. Suppose that I is a closed interval in R and that the real-valued functions ϕ_1 and ϕ_2 are both polynomial functions or both trigonometric functions on I. Put $\phi(t) = (\phi_1(t), \phi_2(t))$ and, if j = 2 or 3, write $\phi^{(j)}$ for the jth derivative of the function ϕ . Suppose that given any $t_1, t_2 \in I$, the vectors $\phi^{(2)}(t_1)$ and $\phi^{(3)}(t_2)$ span \mathbb{R}^2 . Let λ be the measure on \mathbb{R}^3 defined by

$$\langle \lambda,g
angle = \int_I g(t,\phi_1(t),\phi_2(t))\,dt.$$

Then $\lambda * L^{3/2} \subset L^2$.

Here are two examples where Theorem 3 applies. EXAMPLE 1. $I = [a,b], \phi_1(t) = t^2, \phi_2(t) = t^3$. EXAMPLE 2. $I = [0,\pi/6], \phi_1(t) = \cos(t), \phi_2(t) = \sin(t)$.

Following are some comments on the notation to be used in the proof of Theorem 3. The symbol f (resp. g) will denote an arbitrary continuous function of compact support on R^2 (resp. R^3). The symbol $\|\cdot\|_p$ will denote the norm of the indicated function in $L^p(R^2)$ or $L^p(R^3)$, whichever is appropriate. A sector Γ in the plane is defined to be the set of all points in the plane which have a polar representation $re^{i\theta}$ with $r \ge 0$, $c \le \theta \le d$, where c and d are fixed real numbers. The symbol C will denote a positive constant which may increase from line to line but which depends only on the data I and ϕ in the hypotheses of Theorem 3. Similarly, the symbol $C(\Gamma_1, \Gamma_2, \delta)$ appearing in the following lemma represents a "variable" constant which can always be chosen to depend only upon Γ_1, Γ_2 , and δ . The proof of this lemma is based on complex interpolation and follows fairly standard lines.

LEMMA. Suppose Γ_1 and Γ_2 are sectors such that $\Gamma_2 \cap (\Gamma_1 \cup -\Gamma_1) = \{0\}$. Suppose $\delta > 0$. There is a positive constant $C(\Gamma_1, \Gamma_2, \delta)$ such that the following holds: Suppose $J \subset R$ is a closed interval of length not exceeding δ^{-1} and suppose that $\Psi(t) = (\Psi_1(t), \Psi_2(t))$ is a twice differentiable function from J into R^2 such that

(i) for every $t \in J$: $\Psi'(t) \in \Gamma_1$, $\Psi^{(2)}(t) \in \Gamma_2$, $|\Psi'(t)| \ge \delta$, $|\Psi^{(2)}(t)| \ge \delta$;

(ii) for any $x \in \mathbb{R}^2$, J splits into disjoint subintervals J_1, \ldots, J_K with $K \leq \delta^{-1}$ such that the scalar product $x \cdot \Psi^{(2)}(t)$ is of constant sign on each t-interval J_n .

The measure μ on \mathbb{R}^2 defined by

$$\langle \mu, f \rangle = \int_J f(\Psi(t)) \, dt$$

satisfies

$$\|\mu * f\|_3 \le C(\Gamma_1, \Gamma_2, \delta) \|f\|_{3/2}.$$

PROOF. For $z \in C$ consider the distribution $d_z(s) = |s|^z$ on R. The map $z \to d_z$ defines a meromorphic distribution-valued function on C with simple poles at $z = -1, -3, -5, \ldots$ Thus $d_z/(\Gamma(z+1)/2)$ is an entire distribution-valued function of z (see [2] for details).

Now let y_1 be a unit vector orthogonal to no nonzero vector in Γ_1 and let y be a unit vector orthogonal to y_1 .

For $z \in C$ and test functions h on \mathbb{R}^2 , define the distribution T_z by

$$\langle T_z,h
angle = rac{1}{\Gamma((z+1)/2)} \int_J \int_{-\infty}^\infty h(\Psi(t)+sy) |s|^z \, ds \, dt.$$

We will establish that

(1)
$$\|T_{iy} * h\|_{\infty} \leq \left(C(\Gamma_1, \Gamma_2, \delta) / \Gamma\left(\frac{1+iy}{2}\right)\right) \|h\|_{1}$$

(2)
$$||T_{iy-3/2} * h||_2 \leq \left(C(\Gamma_1, \Gamma_2, \delta) / \Gamma\left(\frac{3-2iy}{4}\right)\right) ||h||_2,$$

(3)
$$T_{-1} * h = \mu * h.$$

Then the conclusion of the lemma will follow from the interpolation theorem in [5].

To show (1) is to show that T_{iy} is an L^{∞} function of appropriate norm. The map $(s,t) \to \Psi(t) + sy$ from $R \times J$ into R^2 is one-to-one by the assumptions on y and y_1 and the mean value theorem. It has Jacobian of absolute value $|\Psi'(t) \cdot y_1|$, a quantity which exceeds $1/C(\Gamma_1, \Gamma_2, \delta)$. Thus

$$\left|\int_{J}\int_{-\infty}^{\infty}h(\Psi(t)+sy)\,ds\,dt\right|\leq C(\Gamma_{1},\Gamma_{2},\delta)\|h\|_{1}.$$

This gives (1).

To obtain (2) we must estimate the Fourier transform of $T_{iy-3/2}$. Calculations in [2] show that the Fourier transform of $d_z/\Gamma((z+1)/2)$ at s is

$$2^{z+1}\pi^{1/2}|s|^{-z-1}/\Gamma(-z/2)$$
 .

Thus the Fourier transform of T_z is given by

$$\hat{T}_{z}(x) = \hat{\mu}(x) \cdot 2^{z+1} \pi^{1/2} |x \cdot y|^{-z-1} / \Gamma(-z/2)$$

(from which (3) follows). To establish (2) it is therefore sufficient to show that

(4)
$$|x|^{1/2}|\hat{\mu}(x)| \leq C(\Gamma_1,\Gamma_2,\delta) \text{ for } x \in \mathbb{R}^2$$

Note that the hypotheses guarantee that

(5)
$$|x \cdot \Psi'(t)| + |x \cdot \Psi^{(2)}(t)| \ge |x|/C(\Gamma_1, \Gamma_2, \delta), \quad x \in \mathbb{R}^2, \ t \in J.$$

Now fix nonzero $x \in \mathbb{R}^2$ and put $p(t) = x \cdot \Psi(t)$. By (ii), J splits into disjoint subintervals J_1, \ldots, J_K with $K \leq \delta^{-1}$ such that $p^{(2)}(t)$ has constant sign on each J_n . Write $\eta = |x|/2C(\Gamma_1, \Gamma_2, \delta)$ and let $I_n^1 = J_n \cap \{|p'(t)| < \eta\}$. Since p'(t) is monotone on J_n , I_n^1 is an interval and so $J_n \setminus I_n^1$ is the disjoint union of I_n^2 and I_n^3 , where each of I_n^2 and I_n^3 is an interval or empty. By (5) we have either $p^{(2)}(t) \geq \eta$ or $p^{(2)}(t) \leq -\eta$ on I_n^1 . Therefore

(6)
$$\eta^{1/2} \left| \int_{I_n^1} e^{-ix \cdot \Psi(t)} dt \right| \le 4$$

by van der Corput's lemma [7]. If j = 2 or j = 3 we have p'(t) monotone and either $p'(t) > \eta$ or $p'(t) < -\eta$ on I_n^j . Thus, by van der Corput's lemma again,

(7)
$$\eta^{1/2} \left| \int_{I_n^j} e^{-ix \cdot \Psi(t)} dt \right| \le \min\{\eta^{1/2} \cdot \operatorname{length}(I_\eta^j), \eta^{-1/2}\} \le \delta^{-1/2}$$

where the last inequality is because length $(J) \leq \delta^{-1}$. Adding all inequalities (6) and (7) gives (4) since there are at most $3K \leq 3\delta^{-1}$ such terms. This completes the proof of the lemma.

PROOF OF THEOREM 3. Let $\tilde{\lambda}$ be defined by

$$\langle ilde{\lambda},g
angle = \int_{R^3} g(-x)\,d\lambda(x).$$

Since $\langle \tilde{\lambda} * \lambda * g, g \rangle = \|\lambda * g\|_2^2$, it is enough to show that

(8)
$$\|\lambda * \lambda * g\|_3 \le C \|g\|_{3/2}$$

for continuous compactly supported functions g on \mathbb{R}^3 . Writing I = [a, b] and $I_u = [\max\{a, a - u\}, \min\{b, b - u\}]$ for $|u| \leq b - a$ we have

$$\begin{split} \langle \tilde{\lambda} * \lambda, g \rangle &= \int_{a}^{b} \int_{a}^{b} g(t - s, \phi_{1}(t) - \phi_{1}(s), \phi_{2}(t) - \phi_{2}(s)) \, ds \, dt \\ &= \int_{a - b}^{b - a} \int_{I_{u}} g(u, \phi_{1}(s + u) - \phi_{1}(s), \phi_{2}(s + u) - \phi_{2}(s)) \, ds \, du \end{split}$$

For $|u| \leq b - a$, define the measure λ_u on \mathbb{R}^2 by

$$\langle \lambda_u, f \rangle = \int_{I_u} f(\phi_1(s+u) - \phi_1(s), \phi_2(s+u) - \phi_2(s)) ds$$

We will prove that

(9)
$$\|\lambda_u * f\|_3 \le C |u|^{-2/3} \|f\|_{3/2}$$

Assume (9) for the moment and write g(t,x) $(t \in R, x \in R^2)$ for a continuous compactly supported function on R^3 . Then

$$\begin{split} \|\tilde{\lambda} * \lambda * g\|_{3} &= \left\| \left\| \int_{a-b}^{b-a} \lambda_{u} * g(t-u, \cdot)(x) \, du \right\|_{3,x} \right\|_{3,t} \\ &\leq \left\| \int_{a-b}^{b-a} \|\lambda_{u} * g(t-u, \cdot)(x)\|_{3,x} \, du \right\|_{3,t} \\ &\leq C \left\| \int_{a-b}^{b-a} |u|^{-2/3} \|g(t-u,x)\|_{3/2,x} \, du \right\|_{3,t} \end{split}$$

By the boundedness of the Riesz potential of order $\frac{1}{3}$ as a mapping from $L^{3/2}(R)$ to $L^3(R)$ (see p. 119 of [6]), this last term is dominated by

$$C \| \| g(t,x) \|_{3/2,x} \|_{3/2,t} = C \| g \|_{3/2}.$$

Thus (8), and so Theorem 3, will be proved when (9) is established.

By the hypotheses of Theorem 3 there is an $\eta > 0$ such that

(10)
$$|\phi^{(2)}(t)|, |\phi^{(3)}(t)| \ge \eta \text{ if } t \in I.$$

The sets

$$K_1 = \{\phi^{(2)}(t)/|\phi^{(2)}(t)|: t \in I\}, \qquad K_2 = \{\phi^{(3)}(t)/|\phi^{(3)}(t)|: t \in I\}$$

are disjoint closed intervals on the unit circle in \mathbb{R}^2 . If i = 1 or 2, define Γ_i to be the sector $\{rv: r \geq 0, v \in K_i\}$. The hypotheses of Theorem 3 imply that

 $\Gamma_2 \cap (\Gamma_1 \cup -\Gamma_1) = \{0\}$ and thus that the Γ_i are convex. By (10), for i = 1 or 2 the set $\phi^{(i+1)}(I)$ lies in a proper closed subset Γ'_i of $\Gamma_i \setminus \{0\}$, and Γ'_i can be chosen to be convex. Fix $\delta > 0$ such that

(α) { $x \in \mathbb{R}^2$: $|x| < \delta$ } $\cap \Gamma'_i = \emptyset$ for i = 1, 2; (β) $b - a \le \delta^{-1}$;

(γ) For $u \in [a-b, b-a]$ and $x \in \mathbb{R}^2$, I_u splits into disjoint subintervals J_1, \ldots, J_K with $K \leq \delta^{-1}$ such that $x \cdot (\phi^{(2)}(t+u) - \phi^{(2)}(t))$ is of constant sign on each t-interval J_n . (This is where we use the hypothesis that ϕ_1 and ϕ_2 be both polynomial or trigonometric functions.)

Now fix $u \in [a - b, b - a]$. Define $\Psi(t)$ on I_u by

$$\Psi(t)=rac{1}{u}(\phi(t+u)-\phi(t)).$$

Letting Γ_1, Γ_2 , and δ be as above, we claim that $\Psi(t)$ satisfies the hypotheses of the lemma. The hypothesis (i) for $\Psi'(t)$ follows from

$$\Psi'(t) = rac{1}{u} \int_t^{t+u} \phi^{(2)}(s) \, ds$$

combined with the convexity of Γ'_1 and (α) . The hypothesis (i) for $\Psi^{(2)}(t)$ follows similarly. The hypothesis (ii) is a consequence of (γ) , and the hypothesis that length(J) not exceed δ^{-1} is covered by (β) . Thus it follows, with the notation of the lemma, that

(11)
$$\|\mu * f\|_3 \le C \|f\|_{3/2}.$$

For functions f on \mathbb{R}^2 and $u \in \mathbb{R}$, put $D_u f(x) = f(ux), x \in \mathbb{R}^2$. Then

$$\lambda_u * f(x) = \int_{I_u} f(x - u\Psi(t)) dt = \int_{I_u} f\left(u\left(\frac{x}{u} - \Psi(t)\right)\right) dt = D_{1/u}(\mu * (D_u f))(x).$$

Now (9) follows from (11) and the fact that

$$||D_u f||_p = |u|^{-2/p} ||f||_p.$$

REFERENCES

- 1. M. Christ, Convolution estimates for Cantor-Lebesgue measures, preprint.
- 2. I. M. Gelfand and G. E. Shilov, Generalized functions, Academic Press, New York, 1964.
- L. Hörmander, Estimates for translation-invariant operators in L^p spaces, Acta Math. 104 (1960), 93-140.
- W. Littman, L^p L^q estimates for singular integral operators, Proc. Sympos. Pure Math., vol. 23, Amer. Math. Soc., Providence, R.I., 1973.
- 5. E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 87 (1958), 159-172.
- _____, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N.J., 1970.
- 7. A. Zygmund, Trigonometric series, Cambridge Univ. Press, Cambridge, 1959.

DEPARTMENT OF MATHEMATICS, FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306-3027