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Abstract

Signed distance fields obtained from polygonal meshes are commonly used in various applications. However, they can have

C1 discontinuities causing creases to appear when applying operations such as blending or metamorphosis. The focus of this

work is to efficiently evaluate the signed distance function and to apply a smoothing filter to it while preserving the shape of the

initial mesh. The resulting function is smooth almost everywhere, while preserving the exact shape of the polygonal mesh. Due

to its low complexity, the proposed filtering technique remains fast compared to its main alternatives providing C1-continuous

distance field approximation. Several applications are presented such as blending, metamorphosis and heterogeneous modelling

with polygonal meshes.
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1. Introduction

Polygonal meshes are the most common representation of object

geometry in computer graphics. The mesh allows to represent ge-

ometry in a format easy to understand and convenient to modify.

On the other hand, this format restricts the number of operations

on geometric objects or does not allow to perform some of these

operations easily. For example, the metamorphosis between two

meshes can be hard to implement if these meshes have different

genus. Therefore, an alternative representation of the mesh object

is sometimes needed to provide greater flexibility and a larger spec-

trum of available operations such as, for example, implicit skinning

and gradient-based blending [VBG*13, GBC*13].

The representation of polygonal meshes by discrete or continuous

scalar fields has recently attracted a lot of attention in research as

well as in application areas because of its properties. Scalar fields

can be used efficiently for such operations as controllable blending,

metamorphosis between meshes with different topology, surface

offsetting, robust mesh repair and others. Applications include

function-based heterogeneous object modelling and rendering,

rapid prototyping and digital fabrication and simulation of different

physical properties in medicine and geology (see [COSL98,

FPRJ00, Ju04, LW11, PK08, JBS06] and references therein).

Methods for representing meshes using scalar fields can be dis-

tinguished as exact and approximate ones. For exact methods, the

iso-value is guaranteed to be zero only on the initial mesh surface,

meaning that all the features of the initial models are preserved by

the scalar field representation. For approximate methods, such as

Radial-Basis Functions (RBFs) [YT02, MYC*01], Multi-level Par-

tition of Unity (MPU) [OBA*03] or Moving Least Squares (MLS)

[SOS04] some given approximation error is allowed. Exact and ap-

proximate methods are both suitable for visualization, animation,

reconstruction and other purposes. However, in some applications,

such as medical simulations, approximation errors are not allowed

and therefore approximate methods cannot be used.

While the iso-value of the scalar field is required to be zero on

the polygonal mesh surface, it is not required to carry any geometric
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Figure 1: Offset of the Stanford bunny, (a) and (b) using signed

distances, (c) and (d) using our method.

information in the general case. However, we can distinguish cases

where the (absolute) field value corresponds to the Euclidean dis-

tance to the polygonal mesh. In this case, the scalar field is called

a distance field. We distinguish between signed distance fields and

unsigned distance fields. For unsigned distance fields, the iso-value

is the distance (or sometimes squared distance) to the mesh and is

positive everywhere but on the initial mesh surface. On the other

hand, with signed distance fields, the sign is defined by the position

of the evaluated point relatively to the interior or the exterior of the

mesh object.

One problem of the distance function is that it can lack C1 con-

tinuity, which results in creases when further operations, such as

blending, are applied to the distance field. Gradient-based blending

[GBC*13] also relies on C1 continuity. Most approximate methods

provide C1 continuity, but for some applications, such as source-

based material interpolation, the exact surface needs to be preserved

and simultaneously C1 continuity away from the surface is desired.

A smooth approximation of the distance function can be obtained

by taking the convolution with some smooth function (see Figure 1).

The convolution is then numerically evaluated. In order to keep the

method efficient, an efficient evaluation of the signed distance field

is used.

2. Related Work

Methods of representing polygonal meshes with signed distance

fields have been increasingly popular because of their numerous ap-

plications. These methods can be classified from different points of

view into discrete and continuous distance fields, exact and approx-

imate ones, signed or unsigned. In [JBS06], various methods are

surveyed according to how the distance is evaluated and propagated

Table 1: Comparison between different methods for computing a distance

field to a polygonal mesh. For the time complexity, n corresponds to the

number of the triangles in the input mesh.

Method C1 continuity Exactness Complexity

LP-distance [BFP13] Yes Yes O(n)

BSP [FPA11] Yes Yes O(n) in the best case

RBF [CBC*01] Yes No O(n)

MPU [OBA*03] Yes No O(n)

CSRBF [MYC*01] Yes No O(log n)

Signed distances No Yes O(log n)

across the discrete volume. Below we discuss several methods for

computing the signed distance to meshes as well as applications of

these methods.

Approximate signed distance fields were presented in [WK03]

where a piecewise linear approximation of the signed distance func-

tion was used. In [COSL98], the distance function was interpolated

for a mesh with planar cross-sections. The signed distance field can

be approximated from its values given at the nodes of a voxel grid,

as first introduced in [RP66]. Some discrete approximation meth-

ods sample the signed distance or an approximation at the nodes of

an octree grid [FPRJ00, Ju04]. An approximation of the distance

field to a point cloud was presented in [CT11]. An approximation

to the signed distance to noisy point cloud data is discussed in

[MdGD*10]. A physics-based level set method can be used as well

as in [ZO02]. Approximate methods can be very fast to evaluate

the signed distance value, however they are inaccurate and cannot

provide a continuous real function without a proper interpolation

procedure and therefore cannot be used in a number of applications.

A continuous approximation of the signed distance to a polygonal

mesh can be obtained by representing the object with set-theoretic

operations on the half-spaces bounded by the planes passing through

the polygonal faces [FPA11]. This method provides a continuous

function, but the distance query can be slow and numerically unsta-

ble especially for large input meshes.

The signed distance to a polygonal mesh can be computed from

the heat flow [CWW13] or by anisotropic diffusion [CDR00]. These

methods use numerical solutions of partial differential equations

and therefore require discretization with either a regular grid or a

volumetric mesh resulting in inaccuracies.

Table 1 compares different methods for computing a distance

field to a polygonal mesh. Most of the methods have linear (time)

complexity with respect to the number of triangles in the input

mesh. In addition, most of these methods are performing expensive

operations per triangle or per vertex, making them slow in practice

for large meshes.

In this paper, we deal with exact distance fields and therefore

consider only methods for representing the input polygonal mesh

exactly. These methods can be separated into two categories:

� Methods utilizing a full enumeration of all the geometric entities,

i.e. vertices and faces or half-spaces built on the faces of the initial

polygonal mesh;

c© 2015 The Authors
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Figure 2: (a) The signed distance field to the Stanford bunny; (b)

An approximation of the distance field with the Lp distance field

for p = 1; (c) The colour-map used in (a) and (b). The black line

corresponds to values close to the zero-set (narrow range of zero).

� Methods calculating the iso-value of the scalar field using pre-

built data structures over the initial geometric data.

Methods from the first category usually have at least linear time

complexity and are expensive for large input polygonal meshes.

For example, Lp−distance fields [BFP13] provides a smooth ap-

proximation of the signed distance, however the computational cost

is high, and the method is slow for large polygonal meshes. The

particular case p = 1, corresponding to the inverse of the sum of

Mean-Value Coordinates (MVC) weights [JSW05], is illustrated in

Figure 2(b). Another example is the BSP-fields method [FPA11],

where the resulting function is constructed by applying set-theoretic

operations to the half-spaces bounded by the initial polygonal mesh

faces. This method is more suitable for meshes with a small num-

ber of polygons, because each face supporting plane is involved at

least once in the computation of the scalar field value at a given

point. In the case of n faces, at least n half-spaces and n − 1 set-

theoretic operations are used, however if the Binary Space Parti-

tioning (BSP)-tree is splitting faces during its construction, which

happens in practice for most polygonal meshes, the plane equations

and set-theoretic operations are used several times per split face. In

addition, the implementation used for the set-theoretic operations

affects the resulting field significantly. For example, min/max op-

erations result in C1 discontinuities. On the other hand, SARDF

operations [FPS08] preserve C1 and the approximate distance but

are computationally more expensive.

The second category of exact methods includes optimized evalu-

ations of the signed distance field (as used for example in Figure 2a).

These are discussed in the next section.

In this work, we stay within the class of methods dealing with a

continuous real function representing the signed Euclidean distance

to the polygonal mesh, which was first introduced in [PT92]. These

methods have been increasingly popular because of their numer-

ous applications, such as collision detection [GBF03], rendering

[Har96], intersection free mesh offset or shell [LW11, PK08] and

heterogeneous object modelling [BST04]. Surveys of applications

can be found in [JBS06]. In the following section, we discuss differ-

ent techniques for the efficient evaluation of signed distance fields.

3. Signed Distance Fields

Formally, the signed distance function can be defined as:

f (p) = sign(p; �) dist(p; �),

where � is a point set bounded by the polygonal mesh �,

dist(p; �) = inf
x∈�

‖x − p‖

is the unsigned distance from p to the polygon mesh �, and

sign(p; �) =

⎧

⎪

⎨

⎪

⎩

+1 p ∈ �

0 p ∈ � = ∂�

−1 otherwise

(1)

is the sign function.

Naive computation of the distance from a point to the mesh is

an expensive procedure. However, it can be accelerated by using

spatial structures, pre-processing and sorting the mesh polygons,

application of different traversal strategies for the selected spatial

structure and using hardware acceleration. In [SFP13], different

spatial structures, building and traversal strategies are discussed in

details and compared to present the optimal way to calculate the

distance function to a polygonal mesh. This work also discusses

how to improve the performance of a single query of the distance by

using packet sampling. Often the function has to be sampled several

times within a small volume. In ray-tracing, a similar problem occurs

and is referred to as coherent rays processing. The related process

is called packet sampling. Each sample is likely to go through the

same branches of the tree, and it is inefficient to iteratively do each

query separately. Instead, all the sample points are grouped and the

tree is traversed once for all, which improves cache efficiency.

Evaluation of the sign can be done by different approaches. One

of the fastest yet reliable methods is the angle-weighted pseudo

normals method introduced in [BA05]. This method requires the

input polygonal mesh to be watertight, i.e. free from holes and

self-intersecting triangles. Ray-casting is another common solution

[Req96], however it is at best O(log n) and requires robust ray–

surface intersection procedures to avoid numerical errors. Slower,

but more robust solutions exist for non-watertight meshes, for ex-

ample, by computing the winding number [JKSH13]. In our exper-

iments, we only considered watertight meshes and therefore used

only the angle-weighted pseudo normals approach. Note that the

sign computation generally does not depend on the distance com-

putation and the distance can be evaluated for both watertight and

non-watertight meshes, while the methods used for sign computa-

tion directly depends on the quality of the input mesh.

4. Convolution

As mentioned above, the (signed) distance function is generally not

C1 (non-differentiable at some points). However, a smooth function

approximating the distance function can be obtained by convolution

with some suitable functions. If f is the signed distance function, it

can be replaced by the function g defined by

g(p) =
∫

R3

f (p − s h(p)) w(s)ds, (2)

c© 2015 The Authors
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where w is a normalized smooth kernel function, h is a function

that controls the kernel size, such that h(p) = 0 if f (p) = 0, and

s is a displacement vector over the whole space where the signed

distance field f is defined. Some examples of functions w and h are

discussed below.

The scalar field defined by the function g has the same zero

level set as the function f . It comes from the requirements to the

function h: if f (p) = 0 then h(p) = 0, p − s h(p) = p. Therefore,

f (p − s h(p)) = 0 if f (p) = 0.

If we perform the substitution u = sh(p), we have du = h(p)ds

and, providing that h(p) �= 0, we can introduce the function wh(u) =
1

h(p)
w( u

h(p)
) and rewrite (2) as

g(p) =
∫

R3

f (p − u) wh(u)du. (3)

From (3), g looks like a convolution: g = f ⋆ wh. The smoothness

of g as defined in (2) will depend on the definition of w and h.

4.1. Kernel size function h

The function h is introduced to smoothly interpolate the values

from 0 to 1 as we move away from the zero level set. It should be

monotonically increasing on R
+, smooth and such that h(0) = 0

and h(t) = 1, for t ≥ fc, given a capping value fc. One of ways to

define such a function h is to use the smoothstep function:

h(p) = 3r(p)2 − 2r(p)3, (4)

where r(p) = min(
|f (p)|

fc
, 1). Note that this function does not depend

on the sign of f . Reducing the kernel size to zero on the mesh surface

preserves the exact surface representation by g.

4.2. Kernel function w

The kernel function w should take its maximum at 0 and smoothly

converge to 0 as its argument goes to infinity with any of its coor-

dinates. There are various ways to define such functions; examples

are the Gaussian function and the bump function.

The Gaussian function is defined as wa(u) =
(

a

π

)
3
2 e−a||u||2 , where

the parameter a ∈ R
+ controls the width of the Gaussian (the stan-

dard deviation σ = 1/
√

2 a is also sometimes used). The larger a

is, the closer g will approximate f . Gaussian curves for different

values of a (1, 10, 20 and 30) are illustrated in the one-dimensional

case in Figure 3.

For the bump function, we use the following definition:

w(u) =

{

Ce
1

||u||2−1 if ||u|| < 1,

0 otherwise,
(5)

wb(u) = b−3w
(u

b

)

, (6)

where C is such that
∫

w = 1 and the parameter b controls the width

of the bump function. The smaller b is, the closer g will approximate

Figure 3: Gaussian weight function for different values of the

parameter a: 1 (blue), 10 (purple), 20 (yellow) and 30 (green).

Figure 4: Bump function for various values of the parameter b:

0.15 (green), 0.2 (yellow), 0.5 (purple) and 1 (blue).

f . Bump functions for various values of b (0.15, 0.2, 0.5 and 1) are

illustrated in Figure 4 (in one dimension).

Unlike the Gaussian functions, the bump functions have compact

support.

For p such that |f (p)| ≥ fc, h(p) = 1, thus g = f ⋆ w. For the

choices of w proposed above, g is smooth. Otherwise, the distance

function appears in wh via h and therefore g is not necessarily

smooth (it can have discontinuous partial derivatives, same as the

distance function).

4.3. Selection of parameters

The parameter fc controls the distance to the boundary outside of

which g is guaranteed to be smooth. It needs to be small enough to

exclude points where f is not smooth, or taken as small as possible

otherwise.

The parameter a or b, depending on the choice for the ker-

nel function, controls the width of the kernel function. It gives a

c© 2015 The Authors
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Figure 5: Plot of the distance to the boundary of the segment [0, 1].

trade-off between how close g approximates the distance function

f and the shape of the level sets of g. It should be selected based

on the type of applications.

As an illustration, we consider the distance to the boundary of

the segment [0, 1] (illustrated in Figure 5). For the weight function,

a Gaussian is used with a = 50. At first, we set: fc = 1. Note that

in this case the discontinuity of the derivative of f happens at

x = 0.5; since 0.5 < fc, the discontinuity of the derivative will not

be smoothed. See Figure 6 for the plot of g(x) corresponding to this

case. Note the discontinuity of the derivative of g at x = 0.5 in the

zoom (right image).

By setting fc = 0.25, we can get a smooth approximation g as

illustrated in Figure 7. In this particular case, we can compute the

derivative of g analytically and evaluate it at x = 0.5 to verify that

it is 0.

By varying the parameter a, we affect the shape of the level sets

at the expense of the distance approximation. Figure 8 illustrates

the results obtained for a = 10, 100, 1000 and 10 000 (note that

an increasing value of a corresponds to a decreasing width for the

kernel function).

While g is continuous, it is possible to create additional extrema,

or extra zero level sets for some selection of fc and a (or b). For ex-

ample, extra zero level sets can be obtained by picking a small value

for fc (to limit or avoid the domain with discontinuous derivative)

and a large Gaussian width. This case is illustrated in Figure 9. This

example was produced by considering the distance to the boundary

of the segment [0, 1] (see Figure 5) and by setting fc = 0.1 and

a = 2.0.

It is possible to prevent additional zero level sets by using a

modified version of (2):

g(p) = sign(p; �)

∫

R3

|f (p − s h(p))|w(s)ds,

where we use the unsigned distance in the integrand, and compute

the sign of the function at the end. While this approach solves the

problem of the extra zero level sets, it does not prevent additional

extrema (with respect to the exact signed distance function).

Alternatively, we can achieve a similar result when a bump func-

tion (with compact support) is used, by setting its parameters ap-

propriately. We remark that the capping distance fc and the width

of the bump function b are related if we want to prevent additional

zero level sets. If b is set, then fc has a lower bound depending on b

in order to prevent the filtering region to cross the surface boundary

(where the sign of f changes), and therefore create additional zero

level sets. Similarly, a given fc implies an upper bound on b. Since

we want to avoid any non-zero weighted s to cross the surface, the

following inequality must hold for all p:

b h(p) ≤ |f (p)|

using (4), it expands to

b (3(min(
|f (p)|

fc

, 1))2 − 2(min(
|f (p)|

fc

, 1))3) ≤ |f (p)|.

Through substitutions and solving, we reach the following results:

b ≤
8fc

9
, (7)

fc ≥
9b

8
. (8)

5. Numerical Evaluation

In the general case, the integral defined in (2) cannot be evaluated

analytically and therefore a numerical approximation is required.

The convolution (2) can be approximated by the following finite

summation:

g(p) ≈
n

∑

i=1

f (p − si h(p)) wi, (9)

where n is the number of samples, f (p) is the distance function

being filtered at the point p, si is the ith sample, wi = w(si) is the

weight associated to the sample si and h is the function controlling

the size of the kernel. Equation (9) can be used when the samples si

are on a regular grid.

It is possible to get better results by sampling, for example, from

the distribution with density w (assuming that w is normalized). In

this case, an approximation of (2) is obtained by

1

n

n
∑

i=1

f (p − si h(p)), (10)

where si are sampled from the distribution with density w. This cor-

responds to the standard Monte-Carlo approximation of integrals.

The quality of the result depends on the number of samples, their

distribution and weights. Because most of the samples are likely

to be in the same neighbourhood, packet sampling can be used to

evaluate efficiently all the samples at once. We discuss below further

details for the filter evaluation.

c© 2015 The Authors
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Figure 6: Plot of g using fc = 1.0. Right: zoom near the point x = 0.5.

Figure 7: Plot of g using fc = 0.25. Right: zoom near the point x = 0.5.

Figure 8: Influence of the kernel width on the level set shapes. First row: left: a = 10; right: a = 100. Second row: left: a = 1000; right:

a = 10 000.

5.1. Sample distribution and weights

To efficiently and accurately evaluate (2) numerically the samples

should be distributed inside some volume. Equation (2) suggests

sampling in the entire space, at least for the Gaussian kernel, while

for the bump function we only need to sample into a finite volume.

For practical reasons, when (9) is used for the approximation, we

limit ourselves to a finite volume (called a unit volume) near the

evaluation point. Two obvious ways to define a unit volume are: a

unit sphere centred at the query point and a unit cube. For efficiency

purposes, we used a unit cube in our experiments. Therefore, all

the samples are distributed inside a unit cube and defined by their

c© 2015 The Authors
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position and weight. It is clear that the more samples we have, the

closer the approximation to the integral is, but at the same time

the less efficient the method is, so a balance has to be found. To

distribute the samples inside the unit cube, different approaches can

be used. The most naive solution, which is largely used in discrete

filters, is a regular pattern of a 33 grid where each sample point

has a weight given by the function w. However, our experiments

show that the resulting field still has creases even if we increase the

number of samples in the regular grid. Instead we experimentally

found out that it is more efficient to draw samples following the

function w. In this case, more samples are drawn where the weights

are larger.

For this purpose, the approximation in (10) is used, where si are

sampled directly from the distribution w. When a Gaussian is se-

lected, the Box–Muller transform is used to sample from it. For the

bump function, we use rejection sampling (a uniform distribution

over [−b, b]3 can be used as a proposal distribution). Alternative

approaches such as adaptive rejection sampling or importance sam-

pling could be used as well. But it would not result in a significant

difference, since the samples are only computed once during initial-

ization.

Results obtained with these different approaches are illustrated in

Figure 10. The regular uniform filter has visible C1 discontinuities

just like the signed distance field. The Gaussian distributed samples

provide visually smoother fields. In Figure 11, we show how the

number of samples affects the quality of the result. In practice,

numerical filters provide good results while preserving the efficiency

of the method.

5.2. Adaptive quality

As mentioned above, the number of samples influence the quality

of the result as well as the efficiency. To achieve good quality with-

out sacrificing computational efficiency, the number of samples is

adaptively changed across space. From our experiments, a low num-

ber of samples is able to approximate the convolution reasonably

well far from the surface or the medial axis. Therefore, we suggest

the number of samples to be adaptively increased only around the

surface and the medial axis.

Computing the medial axis and the distance to the media axis

is a difficult task. However, it can be approximated by analysing

the difference between the value at a central point in space and

the values at points in its neighbourhood as observed in [GS99].

The farther the query point from the medial axis, the closer the

neighbourhood average to the central point value will be. Figure 12

shows the number of samples (green for low, red for high) when

using the medial axis detection field introduced in [GS99]. If the

first samples are on a uniform 3 × 3 × 3 grid, then we can use them

as a reliable neighbourhood average. Finally, we use a smooth step

as a transfer function to control the number of samples. We use a

similar process using the distance and a transfer function to control

the number of samples based on the distance to the surface. Both

of those functions are mixed together and interpolate between the

minimum and maximum number of samples:

na(p) = Nmin +
nmedial + ndistance

2
(Nmax − Nmin).

Figure 9: By using a large width for the Gaussian and a small value

for fc, it is possible to obtain unwanted extra zero level set.

Figure 10: Filtering the distance field: (a) shows the signed dis-

tance field, (b) uses a regular grid of samples used with (9), (c) uses

(10) with a Gaussian distribution for w and the samples drawn from

this distribution.

Figure 11: Filtering of distance fields with (a) 32 samples, (b) 64

samples and (c) 92 samples.

c© 2015 The Authors
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Figure 12: Medial axis detection using the initial samples. Green

indicates low sampling rate while red means high sampling rate.

Figure 13: The pictures (a) and (c) show the iso-values of a scalar

field, (a) for the signed distance, (c) our method. The pictures (b)

and (d) show the derivative discontinuities using edge detection.

The function na provides a real value to control the number of

samples. Using just the integer part of this value is not effective

because the change in the number of samples introduces noise in

the resulting field due to the discrete jumps. Instead, we use the

fractional part to weight the last sample.

6. Results and Applications

The quality of filtering can be evaluated visually by applying opera-

tions on these fields. In Figure 13, we show how filtering affects the

gradient field. Figures 13(b) and (d) illustrate the results obtained

with the exact signed distance function and our method when an

edge detection filter is applied to the gradient field. The edge de-

tection filter uses 33 samples with the weights all set to −1 except

for the central sample which is set to n − 1, where n is the number

of samples. We remark that the distance field contains several clear

discontinuity of the gradient, while our method removes most of

them.

Figure 14: Localized smoothing: (a) the original model and the

smoothing volume (light blue); (b) the resulting shape, using

smoothing through convolution filtering.

Convolution filters have several applications in shape modelling.

In Figure 1, our method is applied to compute a smooth offset

from the Stanford bunny. An alternative approach for computing

an offset could be to adapt the recent method for computing point-

set morphology [CB14]. In the following, we describe additional

applications of convolution filtering.

6.1. Localized smoothing

Filters can be used to smooth the shape selectively. To achieve

localized smoothing, two C1-continuous functions are needed. The

function fo represents the original object, while the function fs

represents the smoothing volume. The function h in (9) is replaced

by a function which converts the values from fs into a filter size

value. Here, we use a smooth step function to remap the values

from fs to a kernel size value. For any point outside the smoothing

volume, we do not need any filtering and therefore keep the value

fo(p). If the point is within the volume fs , then, convolution filtering

can be applied by replacing h(p) in (9) by:

hm(p) = smoothstep(
|fo(p)|

sd

) sr ,

where sd is the distance from the boundary of the smoothing object

at which the kernel size will reach its maximum value and sr is the

smoothing radius (i.e. the maximum kernel size).

Figure 14 shows how a knife model can be made by defining

first a shape with sharp edges all around. The smoothing volume

is then defined around the handle and the top of the blade. This

smoothing volume controls the size of the filter kernel allowing a

smooth handle and a blade sharp only on one side. Figure 15 shows

c© 2015 The Authors
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Figure 15: Modelling a smooth handle with localized smoothing:

(a) the original model and the smoothing volume (light blue) (b)

the resulting shape using convolution filtering inside the smoothing

volume.

that a smooth handle can be made from a basic shape following the

same procedure.

6.2. Blending

Simple blending with addition or subtraction of material for

smooth transition between two objects was introduced in [PASS95].

The main idea is to apply an R-function defining a set-theoretic

operation between two objects and apply some displacement to the

resulting value. The result of the blending operation is the smooth

transition between the initial surfaces. C1 continuity is crucial for

blending operations. When applied to exact distance functions, the

additive blending shows a sharp edge crossing the otherwise smooth

additional material. Figure 16 shows the effect of C1 discontinuity

on blending union (c), and the result obtained using our method (e).

In Figure 17, a gear model is subtracted from a sphere using a

blending difference. The C1 discontinuities of the signed distance

fields create visible edges in the model as seen in Figure 17(b).

Using convolution filters on signed distance fields, the sharp edges

are smoothed out.

6.3. Smooth metamorphosis

Metamorphosis also benefits from C1-continuous fields. C1 discon-

tinuities introduce unwanted creases during the transformation. The

metamorphosis is a weighted sum of the two fields in its simplest

case, but other methods also rely on some summation of the two

fields. During intermediate frames, the surface will pass through

the C1 discontinuities present in each field. This causes creases on

Figure 16: Blending union operation: (a) and (b) show two initial

objects; (c) the blending union with signed distances; (d) zoom to

the discontinuity area; (e) and (f) show the same operation with

filtered signed distances.

the surface. Using filtered distance fields, the intermediate shapes

look smoother and only have creases as they get closer to one of

the interpolated shapes. Figure 18 shows intermediate shapes of the

metamorphosis between a fan disk and a mechanical part with sharp

features (a and b), using signed distances (c and d) and our method

based on filters (e and f). The metamorphosis here is achieved using

a simple linear interpolation between the values of each field.

6.4. Heterogeneous modelling

C1-continuous fields are crucial for heterogeneous multi-material

modelling to avoid stress concentrations. We apply transfi-

nite interpolation as described in [RSVT00] using our filtered

field to achieve better results than with exact signed distance

functions, and with more control and faster computations than

Lp−dist fields [BFP13]. The transfinite interpolation uses two (or

more) source features defining different materials. The material

properties in-between the features are interpolated across space

blending both properties based on the distances to the surface

boundary of each feature. The formulation relies on distance

c© 2015 The Authors
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Figure 17: Blending difference operation: (a) the blending differ-

ence between a gear and a sphere with signed distances; (b) zoom

to the discontinuity area; (c) and (d) show the same operation with

filtered signed distances.

properties, but the C1 discontinuities cause stress concentrations

and other issues due to the loss of differential properties as discussed

in [BST04].

Figure 19 shows the transfinite interpolation using different

method for computing an approximation of the distance fields. The

white and grey stripes represent the source feature shapes, and the

colours define the distribution of each material. Using exact distance

fields, Figure 19(a), there are visible C1 discontinuities which are

problematic for the solidity of the final object. Using L1−dist field

Figure 18: Metamorphosis between a fan disk (a) and a mechanical

part (b). In (c) and (d): signed distances are used. In (e) and (f):

smoothed distance fields are used.

instead of distances, Figure 19(b), is slower, but also poorly ap-

proximates the distances far away from the boundary. Figure 19(c)

uses convolution filtering applied to both feature shapes with a filter

size b of 3.5 reached at capping distance fc of 5. Figure 19(d) uses

b = 1.5 and fc = 5.0 and (e) uses b = 1.5 and fc = 2.0. These fig-

ures illustrate the effect of b as well of fc on the field. Figure 19(f)

uses b = 0.5 and fc = 2.0. Such parameters violate the inequal-

ity introduced in (7). This results in additional zero level sets and

bad behaviour of the field. Overall, the filters succeeded to create

C1-continuous material blending. The maximum filter region can

be adjusted and the capping distance fc lets the user control how

close to the surface the smoothing should happen.

7. Conclusion and Discussion

One needs to compute a scalar field to a polygonal mesh in order

to apply some specific function-based operations to the scalar field

or to use it within a general function-based modelling environment.

Computing the signed Euclidean distance to the mesh is one of the

c© 2015 The Authors
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Figure 19: Transfinite interpolation of material properties between

two material features: the top left is the distribution of materials

using exact signed distances, top right (b) uses the L1−dist field.

The other examples use filters with various parameters to control

the smoothing.

possible methods, as it can be evaluated very efficiently for

any polygonal mesh. The main concern with the Euclidean

signed distance field is that it is generally non-differentiable (C1-

discontinuous). We proposed to smooth the distance field by taking

its convolution product with a smooth kernel. The integral is nu-

merically evaluated as a finite summation. The introduced filtering

procedure for multiple coherent queries was used for smoothing the

distance field in order to efficiently compute a smooth field. Several

experiments show that the resulting field is smoother and therefore

is more suitable for operations such as blending, metamorphosis

and other general modelling operations in the context of a function

representation modelling system.

The proposed approach relies on the efficient evaluation of

the signed Euclidean distance. In our approach, we used a BVH

(Bounded Volume Hierarchy) structure to achieve maximum per-

formance. In addition, we benefit from packet sampling as most of

the points where the distance should be evaluated lie in the neigh-

bourhood of the query point. However, our approach would benefit

from more efficient evaluations of the signed Euclidean distance,

which is still an open research as several methods have been intro-

duced recently. We reviewed most of them in [SFP13], but a more

detailed survey of the current state of the art has yet to be done. One

of the ways to increase the efficiency is the acceleration by using

graphics hardware (GPU) implementation. However, it relies on the

size of the input mesh and does not handle large input meshes well.

Another direction of future work is related to the convolution

itself. Convolution proved to be useful to smooth the field. Con-

volution with varying kernel size across space have other poten-

tial applications which have yet to be investigated. In this paper,

we used a numerical method based on a Monte-Carlo approach to

approximate the integral. Other numerical techniques can be inves-

tigated to evaluate this integration, such as for example the Fast

Multipole Method. However, its direct application is not straight-

forward and requires additional research.
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