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Convolution Filters for Triangles

Grégoire Nicollier

Abstract. The construction of a new triangle by erecting similar ears on the

sides of a given triangle (as in Napoleon’s theorem) can be considered as the con-

volution of the initial triangle with another triangle. We use the discrete Fourier

transformation and a shape function to give a complete and explicit description

of such convolution filters and their iterates. Our method leads to many old and

new results in a very direct way.

1. Introduction

Johnson [17, pp. 284, 294], citing Emmerich [5, p. 129], formulates and proves

the following property: “If points divide the sides of a given triangle in equal ratios,

they are vertices of a triangle having the same Brocard angle as the given triangle.

[ . . . ] The triangles whose vertices divide in equal ratios the sides of a given triangle

constitute all the different forms of triangle having the same Brocard angle.” (See

also [29, 11] and our Theorem 2.) We analyze this kind of transformations of an

initial triangle into a new triangle by considering convolutions of two triangles:

with one exception, such a convolution simply erects three similar triangular ears

on the sides of the initial triangle before transforming the triangle of the ears’ apices

by a direct similarity. A circulant linear transformation of a triangle in the complex

plane, given by the coefficients c0, c1, c2 of the circulant linear combination of

the vertices, is simply the convolution of the initial triangle and the triangle with

vertices c0, c2, c1.

Here is a sketch of our method. We use the spectral decomposition in the Fourier

base of C3 to represent any triangle of the complex plane as the sum of its centroid

and of two positively and negatively oriented equilateral triangles: the convolution

with this triangle is then a diagonal linear map, and we call shape of the triangle

the quotient of the eigenvalues belonging to the negatively and positively oriented

equilateral base vectors; this shape is also the quotient of the corresponding spec-

tral values of the convolving triangle, i.e., the ratio of the negatively and positively

oriented equilateral quantities in this triangle. It is then immediate that the shape

of a convolution product of two triangles is equal to the product of the triangles’

shapes. Two directly similar triangles (with vertices in order) have the same shape;

moreover, when restricted to normalized triangles with vertices 0, 1, and z, the
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shape function is a Möbius transformation as function of z: the equivalence classes

of directly similar triangles (with respect to the given order of their vertices) are

thus parametrized by their shape. Every triangle transformation given by a con-

volution can be described by analyzing this Möbius transformation. Emmerich’s

introducing result, for example, becomes almost immediate (see also [11]): the

transformation is a convolution with a degenerate triangle; since degenerate trian-

gles are characterized by shapes of modulus 1, the convolution acts on the shape

of the initial triangle as a rotation and does not change the shape’s modulus; since

triangles are equibrocardal and equally oriented exactly when their shapes have the

same modulus, the Brocard angle is invariant under a convolution with a degener-

ate triangle; the converse follows from the fact that the shapes of the degenerate

triangles needed for the Emmerich transformations cover the whole unit circle (−1
being half an exception). By iterating the convolution with a degenerate triangle,

one simply rotates the shape by a constant angle at each step: the successive trian-

gles are directly similar to triangles with a common base whose apices turn on the

same Neuberg circle, and these apices are periodic or dense on the Neuberg circle

according as the rotation angle for the shape is a rational or irrational multiple of

π.

Many triangle transformations in the literature are in fact convolutions with a

fixed triangle and could thus have been analyzed by the present method in a very

efficient and standardized way. Moreover, if the convolving triangle is degenerate,

i.e., if the shape of the convolving triangle lies on the unit circle, the transforma-

tion behaves as the Emmerich transformation with the same shape (as far as only

the triangle’s form is concerned), and the work is done as soon as the rotation

angle, i.e., the argument of the shape of the convolving degenerate triangle, is de-

termined! The s-Rooth triangles of [11] for example, which already appear in [22],

are in fact given by the convolution with a degenerate triangle, like any circulant

transformation of a triangle where the new vertices are a real linear combination

of the old ones, and such convolutions are included once for all in the Emmerich

transformations (as far as only the triangle’s form is concerned).

The Fourier decomposition of a triangle or polygon and circulant matrices have

been used for a long time for studying triangle and polygon transformations with a

circulant structure, beginning with Darboux in 1878 [3], [1, 4, 6, 7, 8, 14, 25, 27,

28, 30, 31, 32, 33, 36]; they are in general more efficient than purely geometric

and trigonometric approaches [16, 34, 35]. Our presentation is free from matrix

algebra since we only need convolutions. The shape function we use seems to

appear for the first time in 2003 in a paper by Nakamura and Oguiso [22] (from a

sixteen years older preprint), and later independently in [10]: we found only in [10]

an indirect relation between the shape function and some eigenfunction as tentative

explanation of the nature of this shape function. As far as we know, the fact that the

shape of a convolution product is the product of the shapes is noticed and exploited

here for the first time, and this is the key point for the success of our method. Note

that Hajja et al. [10, 11, 12, 13], and Nakamura and Oguiso [22] establish ad hoc

for each analyzed transformation that the shape of the transformed triangle is the

shape of the initial triangle multiplied by some function independent of the initial
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triangle, without noticing that this function is in fact the shape of a triangle and that

the transformation is a convolution. We extended this shape function to polygons

in [24].

2. Fourier transform of a triangle

Consider a triangle ∆ of the complex plane as a point ∆ = (z0, z1, z2) ∈ C
3

representing the closed polygonal line z0 → z1 → z2 → z0 starting at z0: there are

up to six triangles with the same vertices. A triangle is called degenerate when its

vertices are collinear, trivial when it is reduced to a triple point, and proper when it

is nondegenerate; a degenerate triangle is both positively and negatively oriented.

Endow C
3 with the inner product 〈(z0, z1, z2), (w0, w1, w2)〉 = 1

3

∑2
k=0 zkwk

and set ζ = ei2π/3. The vectors

e0 = (1, 1, 1), e1 = (1, ζ, ζ2), e2 = (1, ζ2, ζ4) = (1, ζ2, ζ) = e1

form the orthonormal Fourier base of C3: e0 is a trivial triangle; e1 and e2 are

a positively and a negatively oriented equilateral triangle centered at the origin,

respectively. The discrete Fourier transform or spectrum of ∆ is the triangle ∆̂ =
(ẑ0, ẑ1, ẑ2) given by the spectral representation of ∆ in the Fourier base:

∆ =

2∑

k=0

ẑkek with ẑk = 〈∆, ek〉 , k = 0, 1, 2.

ẑ0 =
1
3(z0 + z1 + z2) is the centroid of ∆, and

ẑ1 =
1
3(z0 + ζ2z1 + ζz2), ẑ2 =

1
3(z0 + ζz1 + ζ2z2).

A triangle is trivial if ẑ1 = ẑ2 = 0; it is pequilateral if it is equilateral and

positively oriented, i.e., if ẑ1 6= 0, ẑ2 = 0; it is nequilateral if it is equilateral and

negatively oriented, i.e., if ẑ1 = 0, ẑ2 6= 0; it is mixed if ẑ1 6= 0, ẑ2 6= 0, i.e., if it

is neither trivial nor equilateral. A spectrum is full if all Fourier coefficients ẑk are

different from 0.

3. Shape of a triangle

We define the shape of a nontrivial triangle ∆ by

σ∆ = σ(z0, z1, z2) =
ẑ2
ẑ1

=
z0 + ζz1 + ζ2z2
z0 + ζ2z1 + ζz2

∈ C ∪ {∞},

the ratio of the contributions to ∆ of the nequilateral e2 and of the pequilateral e1
[22, 10]. Note that [22, 10] define this shape function without any reference to

Fourier transforms or circulant matrices. The first properties of the shape function

presented below can already be found in [10]: some errors are corrected in [13].

Since (w0, w1, w2) = a(z0, z1, z2) + be0 for some b is equivalent to (ŵ1, ŵ2) =
a(ẑ1, ẑ2), ∆1 has the shape of ∆ if and only if ∆1 = a∆ + be0 with a, b ∈ C,

a 6= 0: ∆ = (z0, z1, z2) has thus the shape of a unique (directly similar) normalized

triangle ∆′ = ∆′(z) = (0, 1, z), namely ∆′( z2−z0
z1−z0

)
, where ∆′(∞) = (0, 1,∞)
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means ∆′ = (0, 0, 1) for z0 = z1. The shape f(z) of the normalized triangle ∆′(z)
is the Möbius transformation

s = σ∆′(z) = f(z) =
ζz + 1

z + ζ
= ζ

z − eiπ/3

z − e−iπ/3
=

1

f(z)

of the extended complex plane with inverse

z = f−1(s) =
ζs− 1

ζ − s
= −ζ

s− ζ2

s− ζ
= −f(−s) =

1

f−1(s)
.

Triangles corresponding to different normalized triangles have different shapes:

the equivalence classes of triangles are parametrized by their shape. σ∆ = 0 or

∞ if and only if ∆ is pequilateral or nequilateral, respectively. A cyclic left shift

(z0, z1, z2) 7→ (z1, z2, z0), i.e., a start from the next vertex of the triangle, causes

a change (ẑ0, ẑ1, ẑ2) 7→ (ẑ0, ζẑ1, ζ
2ẑ2) in the spectrum; an orientation reversing,

i.e., a permutation of the last two vertices ∆ = (z0, z1, z2) 7→ (z0, z2, z1) = 3
̂̂
∆,

causes the same permutation of the Fourier coefficients:

σ(z1, z2, z0) = ζσ(z0, z1, z2), σ(z0, z2, z1) =
1

σ(z0, z1, z2)
, σ∆ =

1

σ∆
.

A triangle ∆1 is thus directly similar to the proper ∆ of shape σ∆ = s with the

same orientation if and only if σ∆1 = ζks, k ∈ {0, 1, 2}; ∆1 is directly similar to

the proper ∆ with the inverse orientation if and only if σ∆1 = ζk 1
s ; ∆1 is inversely

similar to the proper ∆ with the same orientation if and only if σ∆1 = ζks; and

∆1 is inversely similar to the proper ∆ with the inverse orientation if and only if

σ∆1 = ζk 1
s .

Since f(0) = ζ2, f(1) = 1, f(∞) = ζ, and f(eiπ/3) = 0, f maps the extended

real axis (corresponding to the normalized degenerate triangles) to the unit circle

and the extended upper half-plane to the unit disc: the modulus |σ∆| is thus < 1,

> 1, or = 1 according as ∆ is positively oriented and proper, negatively oriented

and proper, or degenerate, respectively. Two nontrivial degenerate triangles ∆ and

∆1 are similar if and only if σ∆1 = ζkσ∆ or σ∆1 = ζkσ∆, k ∈ {0, 1, 2}. The

degenerate normalized triangle ∆′(x), x ∈ R ∪ {∞}, and its shape eiϕ are linked

by

ϕ = arg σ∆′(x) =
2π

3
+ 2 arg

(
x− eiπ/3

)
=

2π

3
+ 2 arctan

√
3

1− 2x
(1)

and x =
sin
(

π
3
+ϕ

2

)

sin
(

π
3
−ϕ

2

) : when x runs rightwards over the whole extended real axis,

f(x) = σ∆′(x) turns counterclockwise on the unit circle starting and ending at ζ,

which is the shape of ∆′(∞) = (0, 0, 1).
For the normalized right-angled triangles (Figure 1), f maps the extended imag-

inary axis to the circle C of radius
√
3 centered at −2, the circle of radius 1

2 centered

at 1
2 to the circle ζC of radius

√
3 centered at 1−i

√
3, and the extended vertical line

through 1 to the circle ζ2C of radius
√
3 centered at 1 + i

√
3: the shape function σ

maps thus the right-angled triangles to the three circles C, ζC, and ζ2C.
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Figure 1. Normalized right-angled triangles (0, 1, z): loci of their vertex z (dot-

ted curves) and of their shape (plain circles)
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Figure 2. Normalized isosceles (on the left) and automedian triangles (0, 1, z):
loci of their vertex z (dotted curves) and of their shape (plain straight lines)

For the normalized isosceles triangles (Figure 2), f maps the unit circle to the

extended real axis, the extended vertical line through 1
2 to the extended line through

0 and ζ, and the circle of radius 1 centered at 1 to the extended line through 0 and

ζ2: σ maps thus the nonequilateral isosceles triangles to the punctured lines λζk,

λ ∈ R \ {0}, k = 0, 1, 2. s is the shape of an isosceles triangle if and only if

s ∈ {s, ζs, ζ2s}. The normalized isosceles ∆′(z) with apex z = 1+i tan θ
2 , |θ| < π

2 ,

and base angles θ (< 0 when Im z < 0) has the shape f(z) = tan θ−
√
3

tan θ+
√
3
ζ; the shape
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Figure 3. Neuberg circles CR : |σ∆′ | =
∣

∣

∣

z−eiπ/3

z−e−iπ/3

∣

∣

∣
= R for the normalized

triangles ∆′ = (0, 1, z), R = 0, 1
10
, 1
3
, 1
2
, 1, 2, 3, 10,∞

of the isosceles ∆′( 1√
3
eiπ/6

)
with base angles π

6 is − ζ
2 . We set ξ = 1√

3
eiπ/6 =

1
2 + i

2
√
3
= 1

1−ζ = −1√
3
iζ.

A nontrivial triangle is automedian when it is (inversely) similar to its median

triangle: by the median theorem, this is the case if and only if the vertex opposite

to the middle side u lies on the circle of radius
√
3
2 u centered at the midpoint of u

(as does the apex of the equilateral triangle erected on u), and also if and only if

2u2 is the sum of the other squared sides. The sides of a right-angled automedian

triangle are proportional to 1 :
√
2 :

√
3, and an isosceles triangle is automedian

exactly when it is equilateral. For the normalized automedian triangles (Figure 2),

f maps the circle of radius
√
3
2 centered at 1

2 to the extended line through 0 and

iζ = −eiπ/6, the circle of radius
√
3 centered at −1 to the extended line through

0 and iζ2, and the circle −C of radius
√
3 centered at 2 to the extended imaginary

axis: σ maps thus the nonequilateral automedian triangles to the punctured lines

λiζk, λ ∈ R \ {0}, k = 0, 1, 2. s is the shape of an automedian triangle if

and only if −s ∈ {s, ζs, ζ2s}. The normalized automedian triangle with vertex

z = 1
2 +

√
3
2 eiϕ has the shape f(z) = tan(π4 − ϕ

2 )e
iπ/6.

For R ∈ [0,∞], f maps the circle |z| = R to the Apollonius circle

∣∣∣ s−ζ2

s−ζ

∣∣∣ = R,

i.e., to the circle

∣∣∣s+ 1
2 − i

√
3
2

R2+1
R2−1

∣∣∣ =
√
3R

|R2−1| if R 6= 1 and to the extended real

axis if R = 1. Conversely, f−1 maps the circle |s| = R to the Apollonius circle

CR :

∣∣∣∣
z + ζ2

z + ζ

∣∣∣∣ =
∣∣∣∣∣
z − eiπ/3

z − e−iπ/3

∣∣∣∣∣ = R, (2)

i.e., to the circle

∣∣∣z − 1
2 + i

√
3
2

R2+1
R2−1

∣∣∣ =
√
3R

|R2−1| if R 6= 1 and to the extended real

axis if R = 1 (Figure 3). If R 6= 1, CR is a Neuberg circle [17, p. 287], [29],
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i.e., the locus of the vertex z of the triangles ∆′(z) with an appropriate constant

Brocard angle ω in the upper or lower half-plane according as R < 1 or R > 1:

since the base side 1 of ∆′(z) subtends the angle 2ω from the center of CR, one has

(see also [10])

cotω =
√
3

∣∣∣∣
R2 + 1

R2 − 1

∣∣∣∣ for R =
∣∣σ∆′(z)

∣∣. (3)

If
∣∣σ∆′(z0)

∣∣ = R 6= 0, 1,∞, the sides of ∆′(z0) issued from z0 ∈ CR cut CR in

one or two other points: these are vertices of normalized triangles inversely similar

to ∆′(z0); the reflections of z0 and of these vertices in the line Re z = 1
2 give the

other normalized triangles similar to ∆′(z0) with the same orientation [17, p. 289].

Figures 1, 2, and 3 show how many right-angled, isosceles, and automedian

normalized triangles are equibrocardal with a shape of given modulus R 6= 0, 1,∞.

There are two inversely similar automedian triangles with opposite shapes (and

their companions with cyclically shifted vertices); there are two isosceles triangles

with opposite shapes (and their companions), whose base angles are

θ1 = arctan

√
3(1−R)

1 +R
, θ2 = arctan

√
3(1 +R)

1−R
. (4)

Note that tan θ1 · tan θ2 = 3 and that θ1, θ2 are < 0 when the orientation is

negative. For R = 2 ±
√
3 or R ∈

]
2 −

√
3, 2 +

√
3
[

there are one (isosceles)

right-angled triangle or two inversely similar right-angled triangles with conjugate

shapes (and their companions), respectively. Note that some of the above triangles

may be simultaneously right-angled and isosceles or automedian.

We will prove later that two nontrivial triangles have opposite shapes (possibly

after multiplying one of the shapes by ζ±1) if and only if they are directly similar

to the median triangle of each other.

f maps the circle C′ through eiπ/3, e−iπ/3, and z0 ∈ C \
{
eiπ/3, e−iπ/3

}
to the

line λf(z0), λ ∈ R ∪ {∞}, and Z0 = z0−2
2z0−1 lies on this circle since f

(
z−2
2z−1

)
=

−f(z). When z0 is not real, ∆′(z0) is automedian if and only if the line through z0
and Z0 is horizontal or contains 0 or 1, because two equibrocardal triangles with

a common angle are similar and because ∆′(Z0) is directly similar to the median

triangle of ∆′(z0). For each L ≥ 0, f admits the values ±Lf(z0) at the points z±
given by the intersections of C′ with the Apollonius circle CL|f(z0)| (Figure 4).

σ̃(z0, z1, z2) = z2−z0
z1−z0

[36], which is invariant under triangle translation and

under homothety and rotation, is a shape function that is more intuitive than σ.

One has σ̃(0, 1, z) = z, σ(0, 1, z) = ζσ̃(z, e−iπ/3, eiπ/3), and σ(z0, z1, z2) =
σ(0, 1, σ̃(z0, z1, z2)).

4. Convolution filters

We consider a filter TΓ : C
3 → C

3 given by the cyclic convolution ∗ with a

fixed triangle Γ = (c0, c1, c2), i.e., by a circulant matrix:

TΓ : ∆ 7→ ∆ ∗ Γ = (z0, z1, z2) ∗ (c0, c1, c2) = (z0, z1, z2)



c0 c1 c2
c2 c0 c1
c1 c2 c0


 .
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Figure 4. ∆′(z0) and ∆′(Z0) have opposite shapes; ∆′(z±) have opposite

shapes ±Lσ∆′(z0) for L = 1
2

.

The kth entry of ∆ ∗ Γ = Γ ∗∆ is
∑2

ℓ=0 zℓck−ℓ(mod 3), k = 0, 1, 2.

Since the operator ∗ is bilinear and since ek ∗eℓ =
{
3ek (k = ℓ)

(0, 0, 0) (k 6= ℓ)
, one has

TΓ(∆) = ∆ ∗ Γ =

(
2∑

k=0

ẑkek

)
∗
(

2∑

ℓ=0

ĉℓeℓ

)
=

2∑

k=0

3ĉkẑkek,

i.e., ∆̂ ∗ Γ = 3∆̂ · Γ̂, where · is the entrywise product: the Fourier base is a base of

eigenvectors of the convolution TΓ with eigenvalues 3ĉk (and the ratio 3ĉ2
3ĉ1

of the

two “equilateral” eigenvalues is the shape of Γ). TΓ maps thus trivial, pequilateral

and nequilateral triangles to triangles of the same category or to trivial triangles.

TΓ(∆) and ∆ always have the same centroid if and only if c0+ c1+ c2 = 1, which

means ĉ0 = 1
3 ; the centroid is always translated to the origin if and only if ĉ0 = 0.

The image by TΓ of the Dirac triangle (1, 0, 0) = 1
3(e0 + e1 + e2) of shape 1 is

Γ, the impulse response of the filter TΓ, and the filter output is the convolution of

the input with the impulse response, as for every linear time-invariant filter; the

convolution with the Dirac triangle is the identity. It is immediate that

σ∆∗Γ = σ∆σΓ

when Γ and ∆ are not trivial, except that ∆ ∗ Γ is trivial when Γ and ∆ are equi-

lateral with opposite orientations (i.e., 0 · ∞ = trivial). When Γ and ∆ are mixed,

∆ ∗ Γ is degenerate if and only if |σ∆σΓ| = 1. When ∆ is mixed, TΓ(∆) can have

any prescribed shape σ∆1 , and this is the case if and only if σΓ =
σ∆1
σ∆

.

One has TΓ1 ◦TΓ2 = TΓ2 ◦TΓ1 = TΓ1∗Γ2 . The iterates of TΓ are the convolution

filters Tn
Γ : (z0, z1, z2) 7→

∑2
k=0(3ĉk)

nẑkek, n ∈ N, with centroid (3ĉ0)
nẑ0. The

sum of the squared distances between the centroid and the vertices of Tn
Γ (∆) is
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3
∑2

k=1(3|ĉk|)2n|ẑk|2: the diameter of Tn
Γ (∆) tends to 0 for all ∆ when n → ∞

if and only if |ĉ1| < 1
3 and |ĉ2| < 1

3 ; this diameter remains bounded for every ∆

exactly when |ĉ1| ≤ 1
3 and |ĉ2| ≤ 1

3 , and it tends to ∞ for all nontrivial ∆ if and

only if |ĉ1| > 1
3 and |ĉ2| > 1

3 . When Γ and ∆ are neither trivial nor both equilateral

with opposite orientations, Tn
Γ (∆) has the shape σ∆σ

n
Γ for n ≥ 1. The behavior

of the shape of a mixed triangle under iterated convolution with Γ is thus a matter

of domination between the eigenvalues 3ĉ1 and 3ĉ2, i.e., this behavior depends on

|σΓ| (Theorem 2). We call the filter trivial, equilateral, degenerate, and so on when

Γ is trivial, equilateral, degenerate, and so on. A trivial filter maps any triangle to

a trivial one.

We now show that a nontrivial convolution filter (with half an exception) simply

adds three similar ears of fixed shape to every triangle ∆ = (z0, z1, z2) before

submitting the triangle ∆1 of the ears’ apices to a direct similarity a∆1 + bẑ0e0
with fixed a 6= 0 and fixed b. A (generalized) Kiepert triangle consists of the

apices of ears that are erected on the sides of the initial triangle (opposite to the

vertices in order) and that all have the shape of the normalized ∆′(z) = (0, 1, z)
with apex z ∈ C: the ear’s apex for the side z1 → z2 is defined as z2+ z(z1− z2);
it is a right-hand ear if Im z > 0. The corresponding Kiepert triangle is thus given

by the centroid-preserving convolution with K(z) = (0, 1 − z, z) of spectrum
1
3(1, ζ

2 +
√
3iz, ζ −

√
3iz) and of shape ξ−z

z−ξ
= −σ̃(z, ξ, ξ), where ξ = 1√

3
eiπ/6.

One has σK(1−z) = 1/σK(z), since K(1− z) = (0, z, 1− z), and K(z) = K(z).
Thus σK(1−x) = σK(x) if x ∈ R.

K(z) is orthogonal to e2, hence pequilateral since nontrivial, exactly for z =
ξ = 1

1−ζ ; K(z) is orthogonal to e1 = e2, hence nequilateral, exactly for z = ξ =
1

1−ζ2
. The filters TK(ξ) and TK(ξ) add right-hand and left-hand isosceles ears with

base angles π
6 and shape − ζ

2 and −2ζ, respectively. Napoleon’s theorem [9, 26] is

now obvious: the convolution of the initial triangle with the pequilateral triangle

K(ξ) = (0, ξ, ξ) = 1
3(e0 − e1) and with the nequilateral triangle K

(
ξ
)
= K(ξ) =

1
3(e0 − e2), respectively, are equilateral (or trivial).

Since (0, 1, z) = (z + 1)
(
0, 1 − z

z+1 ,
z

z+1

)
for z ∈ C \ {−1}, every normal-

ized triangle ∆′(z) different from (0, 1,−1) and from (0, 0, 1) has the shape of

K
(

z
z+1

)
. One has further (0, 0, 1) = K(1) = limz→∞K

(
z

z+1

)
, and (0, 1,−1) =

i√
3
(e2 − e1) of shape −1 is equal to limz→−1(z + 1)K

(
z

z+1

)
.

Theorem 1. A nontrivial filter TΓ of shape σΓ 6= −1 is the convolution with Γ =

aK

(
ξσΓ + ξ

σΓ + 1

)
+ be0 for some fixed complex a 6= 0 and b, where ξ = 1√

3
eiπ/6.

If σΓ = −1, TΓ is the convolution with some Γ = a(0, 1,−1) + be0, a 6= 0.

A triangle Γ = (c0, c1, c2) can be written as Γ = (c1 − c0)(0, 1,−1) + c0e0 if

c1 + c2 = 2c0 and as Γ = (c1 + c2 − 2c0)K
(

c2−c0
c1+c2−2c0

)
+ c0e0 otherwise.

The convolutions with K(1) = (0, 0, 1) of shape ζ and K(0) = (0, 1, 0) of

shape ζ2 are simply a left and a right cyclic shift of the vertices, respectively; the



70 G. Nicollier

only shape-preserving Kiepert filter is the convolution with K(12) = (0, 12 ,
1
2) =

1
6(2e0 − e1 − e2) of shape 1, which maps a triangle ∆ to its medial triangle, i.e., to
1
2 times the half-turned ∆ (shrunk and rotated about the centroid). More generally,

TK(x)(∆), x ∈ R, is the (1− x)-medial triangle of ∆ [11]: this is the introducing

Emmerich transformation! Since K(x) has the shape of ∆′( x
1−x

)
, σK(x) turns

anticlockwise on the unit circle, starting and ending at −1 = σ(0, 1,−1) excluded,

as x grows on the real axis.

Note that σK(z) is real if and only if Re z = 1
2 , i.e., if and only if the added ears

are isosceles with equal angles at 0 and 1 (this corresponds to the classical Kiepert

triangles). To get isosceles ears with base angles |θ| < π
2 , one has to convolve with

the isosceles Kiso(θ) = K
(
1+i tan θ

2

)
with apex angle 2|θ| and shape 1−

√
3 tan θ

1+
√
3 tan θ

:

the ears are right-hand or left-hand according as θ ≥ 0 or θ ≤ 0. Since K̂iso(
π
3 ) =

1
3(1,−2, 1), one can retrieve ∆ from ∆∗Kiso(

π
3 ) by constructing 1

2

(
TKiso(

π
3
)(∆)+

T 2
Kiso(

π
3
)(∆)

)
= ∆: this is Lemoine’s problem [21]. With the same idea, one

finds ∆ = 1
2

(
TKiso(−π

3
)(∆) + T 2

Kiso(−π
3
)(∆)

)
, ∆ = 2T 2

K( 1
2
)
(∆) − TK( 1

2
)(∆), and

∆ = TK(z)(∆) + 1
3(z−ξ)(z−ξ)

(
T 3
K(z)(∆) − TK(z)(∆)

)
for z 6= ξ, ξ. A triangle ∆

and its classical Kiepert triangle ∆∗Kiso(θ) are always perspective [4, 20] and, if ∆
is proper and nonisosceles, the perspectors form the equilateral Kiepert hyperbola

of ∆ (Figure 5) as θ runs from −π
2 to π

2 , i.e., the hyperbola through the vertices of

∆, the centroid G, and the orthocenter H (which is the perspector in the limit case

|θ| = π
2 ). We now look at this limit case more closely.

The vertices of ∆ ∗ Kiso(θ) tend for |θ| → π
2− to the infinite points of the

altitudes of ∆ on the line at infinity (when ∆ has three different vertices). On the

other hand, lim|θ|→π
2
− σKiso(θ) = −1 = σ(0, 1,−1): the limit shape of ∆∗Kiso(θ)

when |θ| → π
2− is thus the shape of ∆ ∗ (0, 1,−1) for any nontrivial triangle ∆.

This is clear geometrically: with ∆ = (z0, z1, z2), the angles of ∆ ∗Kiso(θ) tend

for |θ| → π
2− to the angles of the (quarter-turned) triangle

(z2 − z1, z0 − z2, z1, z1 − z0) = ∆ ∗ (0, 1,−1),

whose vertices are the tips of the vectors z1 → z2, z2 → z0, z0 → z1 starting

from 0 (Figure 6). Convolving ∆ with the normalized (0, 1,−1) gives a scaled

down and quarter-turned “equally shaped” bounded copy of “∆ with infinite sim-

ilar isosceles ears”. Here is another description of the filter T(0,1,−1): it trans-

lates ∆ = (z0, z1, z2) to ∆1 = ∆ − ẑ0e0 =
(
w0, w1, w2

)
with centroid at the

origin and then blows up the 1
3 -medial triangle (with cyclically shifted vertices)

∆2 = ∆1 ∗
(
1
3 ,

2
3 , 0
)

to 3∆2 = (W0,W1,W2) = ∆ ∗ (0, 1,−1) (Figure 6).

T 2
(0,1,−1)(∆) is three times the half-turned ∆1 (enlarged and rotated about the ori-

gin). ∆∗(0, 1,−1) is thus directly similar to ∆∗(0, 13 , 23) = ∆∗K(23), the 1
3 -medial

triangle of ∆, and two triangles have opposite shapes (possibly after multiplying

one of the shapes by ζ±1) if and only if they are directly similar to the 1
3 -medial tri-

angle of each other: since the 1
3 -medial triangle is directly similar to the 2

3 -medial

triangle and to the median triangle (Figure 6), this proves that two triangles have
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Figure 5. Kiepert hyperbola and both degenerate classical Kiepert triangles with

dotted perpendicular bisectors
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opposite shapes (possibly up to a factor ζ±1) if and only if they are directly similar

to the median triangle of each other. The well-known fact that the median triangle

of the median triangle is directly similar to the start triangle is equivalent to the

fact that the shape of (0, 1,−1) ∗ (0, 1,−1) is 1. If ∆′(z) is a normalized trian-

gle, remember that ∆′(z) ∗ (0, 1,−1) and ∆′( z−2
2z−1

)
have the same shape −σ∆′(z)

(Figure 4).

The following theorem is almost immediate.

Theorem 2. (1) The convolution filter TΓ is bijective if and only Γ has a full spec-

trum, i.e., if and only if Γ = a(0, 1,−1) + be0 with a, b 6= 0, or Γ = aK(z) + be0
with z /∈

{
ξ, ξ
}

, a 6= 0, a+3b 6= 0; if Γ = (c0, c1, c2), the inverse filter is then the

convolution with
∑2

k=0
1

9ĉk
ek.
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(2) A pequilateral filter (of shape 0), i.e., a convolution with aK(ξ) + be0, a 6= 0,

maps nequilateral triangles to trivial triangles and all other nontrivial triangles to

pequilateral triangles. A nequilateral filter (of shape ∞), i.e., a convolution with

aK
(
ξ
)
+ be0, a 6= 0, maps pequilateral triangles to trivial triangles and all other

nontrivial triangles to nequilateral triangles.

(3) A proper nonequilateral filter TΓ, i.e., with |σΓ| 6= 0, 1,∞, is smoothing: its ac-

tion on equilateral triangles is shape-preserving; and according as the filter is pos-

itively or negatively oriented, i.e., according as 0 < |σΓ| < 1 or 1 < |σΓ| < ∞, the

iterates Tn
Γ (∆) of every mixed ∆ are eventually positively or negatively oriented

and have a (never reached) pequilateral or nequilateral limit in shape, respectively.

(4) A nontrivial filter TΓ is degenerate (with |σΓ| = 1) if and only if Γ = aK+ be0
for some a 6= 0 and some degenerate K = K(x), x ∈ R, or K = (0, 1,−1).
(5) If Γ = a(0, 1,−1) + be0, a 6= 0, and if ∆ = (z0, z1, z2), one has

Tn
Γ (∆) =

(
−i

√
3 a
)n(

ẑ1e1 + (−1)nẑ2e2
)
+ (3b)nẑ0e0.

If ∆ is mixed, these iterates Tn
Γ (∆) are 2-periodic in shape with shape (−1)nσ∆

(Figures 6 and 4).

(6) If x ∈ R, one has

K̂(x) = (ĉ0, ĉ1, ĉ1) =
1
6

(
2,−1 + i

√
3(2x− 1),−1− i

√
3(2x− 1)

)
and

σK(x) = −ei2 arg(ξ−x) = ei2κ(x) with κ(x) = arctan
(√

3(2x− 1)
)
.

If Γ = aK(x) + be0 for some a 6= 0, one has

Tn
Γ (∆) =

(
−3|ĉ1|e−iκ(x)a

)n(
ẑ1e1 + ei2nκ(x)ẑ2e2

)
+ (a+ 3b)nẑ0e0 (5)

for every ∆ = (z0, z1, z2), where 3|ĉ1| =
√
3x2 − 3x+ 1. When ∆ is mixed,

these iterates Tn
Γ (∆) are periodic or nonperiodic in shape (with chaotic behavior)

according as κ(x)/π is rational or irrational, respectively (the period in similarity

may be shorter than the period in shape). The period length is m = 1 if and only

if κ(x) = 0, i.e., if and only if K(x) = K(12); m ≥ 2 is the minimal period length

(the same for all mixed ∆) if and only if σΓ = σK(x) = ei2πℓ/m for some integer

ℓ ∈ [1,m− 1] coprime to m, i.e., if and only m ≥ 3 and

x =
1

2
+

1

2
√
3
tan

(
ℓ

m
π

)
(6)

for some integer ℓ ∈ [1,m − 1] coprime to m (note that the period 2 corresponds

to K = (0, 1,−1) and that x ∈ [0, 1] exactly when ℓ
m /∈

]
1
3 ,

2
3

[
); Tm

K(x)(∆) is then

given by the homothety of ratio (−1)m+min(ℓ,m−ℓ)(3|ĉ1|)m about the centroid of

∆.

(7) When ∆ is a mixed triangle and when Γ is degenerate but not trivial, the shapes

(−1)nσ∆ or ei2nκ(x)σ∆ of the iterates Tn
Γ (∆) lie on the circle |s| = |σ∆| = R ∈

]0,∞[ and correspond to (equibrocardal) normalized triangles (0, 1, z) with ver-

tex z on the Neuberg circle CR given by (2) if R 6= 1, and to nontrivial degenerate

triangles if R = 1 (Figures 3 and 4). If m-periodic, m ≥ 1, these shapes are

the vertices (in order) of a regular oriented {m/ℓ}-gon with start at σ∆ for some
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ẽ4

b

◦
◦

◦

◦
◦

◦
1

ẽ5
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Figure 7. The Fourier base vectors ẽk of C8, 0 ≤ k ≤ 7, are the regular {8/k}-

gons
(

(

ei2π/8
)k·0

,
(

ei2π/8
)k·1

, . . . ,
(

ei2π/8
)k·7

)

.

ℓ ∈ [0,m − 1] coprime to m (note that this is the Fourier base polygon ẽℓ of Cm

(Figure 7) multiplied by σ∆ and that the choice of another ℓ coprime to m only

changes the order of the shapes); if nonperiodic, i.e., if κ(x) is an irrational mul-

tiple of π, these shapes Tn
Γ (∆) are dense on the circle |s| = |σ∆| = R, i.e., the

accumulation triangles (in shape) of the sequence
(
Tn
Γ (∆)

)
n≥0

are the (equibro-

cardal) normalized triangles (0, 1, z) with vertex z on the Neuberg circle CR if

R 6= 1 and the nontrivial degenerate triangles if R = 1.

(8) When ∆ is a proper positively oriented mixed triangle with the shape of ∆′(z0)
and when x grows on the whole real axis, the shape of ∆ ∗K(x) travels counter-

clockwise over the whole circle |s| = |σ∆| starting and ending at −σ∆ excluded,

whereas the vertex z of the normalized triangle ∆′(z) with the shape of ∆ ∗K(x)
turns counterclockwise over the whole Neuberg circle C|σ∆′(z0)

| of Figure 4 starting

and ending at Z0 excluded. ∆∗ (0, 1,−1) fills the holes −σ∆ and Z0. The rotation

on the Neuberg circle is clockwise if ∆ is negatively oriented. In the degenerate

case |σ∆| = 1, z runs rightwards over the whole extended real axis starting and

ending at Z0 =
z0−2
2z0−1 excluded.

Note that the result (6) or an equivalent one can be found in [22, 36, 16, 11]

and that the last two parts of Theorem 2 probably furnish the solution that the quite

incomprehensible paper [19] aimed at. Note also that the iterates Tn
Γ (∆) of a mixed

∆ are 3-periodic in shape if and only if Γ = aK(1)+ b or aK(0)+ b, a 6= 0, K(1)
and K(0) causing the left and right shifts of ∆’s vertices.

The proper nonequilateral triangle ∆ is directly similar to its (1 − t)-medial

triangle ∆ ∗ K(t), t ∈ R, if and only if σK(t) = ζk, k ∈ {0, 1,−1}, i.e., if

and only if t = 1
2 , 1, 0: ∆ ∗ K(t) is then the medial triangle or a copy of ∆ with

cyclically shifted vertices. The proper nonequilateral triangle ∆ is inversely similar

to ∆ ∗K(t) if and only if σK(t) = ζke−i2 arg σ∆ , i.e., if and only if

t = 1
2 + 1

2
√
3
tan(k π

3 − arg σ∆), k ∈ {0, 1,−1} : (7)
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the solutions t depend only on arg σ∆ (mod π), i.e., the set of solutions for the

nonequilateral normalized triangle ∆′(z0) = (0, 1, z0) remains the same for all

nonequilateral ∆′(z) with z on the circle C′ through eiπ/3, e−iπ/3, and z0 (Fig-

ure 4). These solutions t are again 0, 12 , 1 if ∆ is isosceles, they are 1
3 ,

2
3 , and the

infinite point of the t-axis if ∆ is automedian (then σK(t) = ζkeiπ/3, k = −1, 0, 1,

and the infinite solution corresponds to ∆ ∗ (0, 1,−1)), and the solutions are three

different real numbers t 6= 0, 13 ,
1
2 ,

2
3 , 1 in the other cases. It is clear that 1

3 and
2
3 appear only for automedian triangles, because the 2

3 - and 1
3 - medial triangles

∆ ∗ K(13) and ∆ ∗ K(23), of shape e∓iπ/3σ∆, are directly similar to the median

triangle (Figure 6). If ∆ is degenerate and nontrivial, ∆ and ∆ ∗ K(t) are simi-

lar if and only if t is 0, 1
2 , 1, or a solution of (7). Figure 8 shows the values of t

for wich ∆′(z0) ∗K(t) is similar to ∆′(z0) as functions of the midpoint M of C′,
whose radius is r =

√
M2 −M + 1: by considering a real point M ± r of C′ and

by plugging arg σ∆′(M±r) given by (1) into (7), one obtains for k = 0, 1, −1 the

solutions

t0 =
M − 1

M − 2
, t1 =

1

M + 1
, t−1 =

M

2M − 1
(8)

given cyclically by tk+1(M) = tk
(
1− 1

M

)
(plain, dashed, and dotted hyperbolas of

Figure 8, respectively); the values of M corresponding to isosceles or automedian

triangles are the midpoints of the dotted circles of Figure 2. If ∆ is neither trivial,

nor isosceles, nor automedian, exactly two of the (1− t)-medial triangles ∆∗K(t)
inversely similar to ∆ are inscribed in ∆, and the sum of these two values of t, on

each side of 1
2 , is never 1. The cosine law in ∆′(z0) with z0 = x0 + iy0 on C′

and sides a = |z0 − 1|, b = |z0|, c = 1, and the equation M2 − M + 1 = r2 =

(x0 −M)2 + (b2 − x20) give M = 1−b2

a2−b2
, and thus by (8)

1−t0 =
a2 − b2

2a2 − b2 − c2
, 1−t1 =

b2 − c2

2b2 − c2 − a2
, 1−t−1 =

c2 − a2

2c2 − a2 − b2
, (9)

which are correct by similarity for any nonequilateral and nontrivial triangle ABC

with sides a, b, c opposite to the vertices (then M = c2−b2

a2−b2
c, t0 = M−c

M−2c , t1 =
c

M+c , t−1 = M
2M−c if A = 0, B = c > 0). Since the set {t0, t1, t−1} is invariant

under a cyclic shift of the vertices, each set of solutions t appears for three different

M in Figure 8: for M = a2−b2

a2−c2
, M = b2−c2

b2−a2
, and M = c2−a2

c2−b2
(whose product is

−1 in the nonisosceles case) given cyclically by M 7→ 1− 1
M (once in

[
1
2 , 2
[
, once

in
[
−1, 12

[
, and once in the rest of the extended real axis). Note that (9) already

appeared in [18] with another proof.

Start for example from a proper nonequilateral isosceles ∆ with real shape λ (af-

ter a cyclic permutation of its vertices, if necessary); choose x = 1
2+

1
2
√
3
tan( ℓ

mπ)

for some odd m ≥ 3 and some integer ℓ ∈ [1,m−1] coprime to m: the m-periodic

shapes of the equibrocardal Tn
K(x)(∆) are the vertices in order of λẽℓ in C

m; the

cycle contains no automedian triangle; T k
K(x)(∆) and Tm−k

K(x) (∆) form a pair of

inversely similar triangles for each integer k ∈ [1, m−1
2 ] since their shapes are
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Figure 8. The three or six different values t for which the nonequilateral ∆′(z0)
and ∆′(z0)∗K(t) are similar as function of the midpoint M of the circle through

eiπ/3, e−iπ/3, and z0: only t = 0, 1
2

, 1 if ∆′(z0) is isosceles (M = 0, 1, ∞);

t = 1
3

, 2
3

, ∞ (M = −1, 1
2

, 2) besides t = 0, 1
2
, 1 if ∆′(z0) is automedian.

complex conjugate; if m is moreover coprime to 3, the cycle contains no two di-

rectly similar triangles (hence no other isosceles triangle than ∆) and the minimal

period length in similarity is also m; if m is divisible by 3, the first third of the cy-

cle in shape contains no two directly similar triangles, the other thirds are obtained

by multiplying the shapes of the first third by ζ±1, and the minimal period length

in similarity is m
3 . (Since similarity does not depend on the order of the vertices,

the condition that the isosceles ∆ has a real shape can in fact be dropped.)

Start now from a proper nonequilateral automedian ∆ with, say, purely imagi-

nary shape iλ (after a cyclic permutation of its vertices, if necessary); choose x and

ℓ as above, but with an even m ≥ 2: the m-periodic shapes of the equibrocardal

Tn
K(x)(∆) are the vertices in order of iλẽℓ in C

m; each triangle in the second half

of the cycle is directly similar to the 1
3 -medial triangle of the triangle with the same

rank in the first half (and conversely), since they have opposite shapes; T
m/2
K(x)(∆)

is thus inversely similar to the automedian ∆; each pair T k
K(x)(∆), T

m/2−k
K(x) (∆)

of the first half consists of inversely similar triangles (except T
m/4
K(x)(∆) if m is di-

visible by 4), and this property is inherited by the second half. If m is moreover

coprime to 3, the cycle contains no two directly similar triangles and no other au-

tomedian triangles than ∆ and T
m/2
K(x)(∆); if m is divisible by 3 (hence by 6), there

are no two directly similar triangles in the same third of the cycle in shape and

the only automedian triangles are the T
km/6
K(x) (∆), which are directly and inversely

similar to ∆ for k = 0, 2, 4 and k = 1, 3, 5, respectively. We consider for example

the automedian triangle ∆0 with sides 1,
√
2,

√
3 and x = 3+

√
6−

√
3

6 ≈ 0.61957
corresponding to m = 8, ℓ = 1 to construct the iterated (1 − x)-medial triangle
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of ∆0, whose minimal period in shape has length 8: σ∆0 is (
√
3 −

√
2 )i when

∆0 = (0, 1, 1 +
√
2 i), and σ∆k+1

= eiπ/4σ∆k
(Figure 9). ∆k and ∆k+4 are simi-

lar to the 1
3 -medial triangle of each other and are thus nonsimilar if not automedian;

∆0 and ∆4 are right-angled, automedian and inversely similar; ∆1 and ∆3 are in-

versely similar, as are ∆5 and ∆7, and these four triangles are neither isosceles,

nor automedian, nor right-angled (Figures 1 and 2); ∆2 and ∆6 are isosceles; by

(5), ∆8 is obtained from ∆0 by a half-turn about the centroid of ∆0 followed by

a homothety of ratio 17
4 − 3

√
2 ≈ 0.00736 about this centroid. Figure 10 shows

the corresponding normalized triangles with their vertices f−1
(
eikπ/4σ∆0

)
on the

Neuberg circle: note the position of the vertices of the inversely similar and of the

isosceles triangles [17, p. 289].

Remark. In [22], the triangle Sp,q(∆) = (w0, w1, w2) is constructed cyclically

from the proper ∆ = (z0, z1, z2) for real p and q with pq 6= 1: w0 is the intersection

of the cevian issued from z1 dividing the side z2 → z0 in the ratio p : (1− p) and

of the cevian issued from z0 dividing the side z1 → z2 in the ratio (1 − q) : q.

Sp,1−p(∆) is the p-Rooth triangle of [11].

The centroid-preserving transformation Sp,q amounts to the convolution of ∆ with

the degenerate triangle 1
1−pq

(
p(1 − q), (1 − p)(1 − q), q(1 − p)

)
: by Theorem 1,

Sp,q(∆) is thus obtained for p(2q − 3) 6= −1 by submitting ∆ ∗ K
( q−p
p(2q−3)+1

)

to a homothety of ratio
p(2q−3)+1

1−pq with respect to the centroid of ∆. Remember

that ∆ ∗ K(x) = S0,x(∆) is the (1 − x)-medial triangle of ∆ for x ∈ R. If
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p(2q − 3) = −1, Sp,q is the convolution with 1−2q
3 (0, 1,−1) + 1

3e0 and Sp,q(∆)

is the 1
3 -medial triangle of ∆ transformed by a cyclic left shift of its vertices and

by a homothety of ratio 1 − 2q with respect to the centroid of ∆; S 1
2
, 1
2

maps in

particular every triangle to its centroid.

For every fixed real h 6= 0,−1,±2, the different pairs (p1, q1) =
(
h−1
h−2 ,

h+1
h+2

)

and (p2, q2) =
(

1
h+2 ,

1−h
2

)
are such that Sp1,q1(∆) and Sp2,q2(∆) have the same

vertices: Sp1,q1(∆) is the 1
3 -medial triangle transformed by a homothety of ratio

h with respect to its centroid, and Sp2,q2(∆) is the same triangle after a cyclic left

shift of the vertices; h = −3 corresponds in particular to S 4
5
,2 and S−1,2.

For p ∈ R\
{
1
2

}
, the triangle

1−p(1−p)
1−2p Sp,1−p(∆) = ∆∗ 1

1−2p

(
p2, p(1−p), (1−p)2

)

is a p-median triangle of ∆ [11], i.e., a triangle whose sides are parallel to and as

long as the cevians connecting the corresponding vertices of ∆ and ∆ ∗K(1− p).
The 1

2 -median or median triangle is for example ∆ ∗
(
−1

2 , 0,
1
2

)
with centroid 0.

5. Isosceles ears

The added ears are isosceles if and only if the shape of the convolving triangle

is real or ∞ and different from −1. The convolving triangle is then aKiso(θ)+be0,

a 6= 0, for some Kiso(θ) = K
(
1+i tan θ

2

)
, |θ| < π

2 , with shape 1−
√
3 tan θ

1+
√
3 tan θ

=
2

1+
√
3 tan θ

−1. Since a product of real shapes is real, a composition of convolutions

with a1Kiso(θ1) + b1e0 and a2Kiso(θ2) + b2e0 is again a convolution with some

aKiso(θ) + be0, or with a(0, 1,−1) + be0, or with a trivial triangle. Since σKiso(θ)
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is real and nonzero for θ 6= ±π
6 , the triangles ∆ and ∆ ∗Kiso(θ), θ 6= ±π

6 , are by

Figure 2 always simultaneously isosceles or automedian, respectively.

If ∆′(z0) is a normalized triangle with finite z0 6= e±iπ/3, the shapes of the

classical Kiepert triangles ∆′(z0)∗Kiso(θ), |θ| < π
2 , and of ∆′(z0)∗(0, 1,−1) form

the extended line λσ∆′(z0) and are the shapes of the normalized triangles ∆′(z)

with vertex z on the circle C′ through eiπ/3, e−iπ/3, and z0 (Figure 4). As θ grows

on
[
0, π2

[
, the vertex z of the triangle ∆′(z) with the shape of ∆′(z0) ∗ Kiso(θ)

moves from z0 to Z0 (excepted) on the arc of C′ that contains eiπ/3.

Each proper nonequilateral ∆ of shape s has exactly two degenerate classical

Kiepert triangles ∆ ∗Kiso(θ): for θ = arctan |s|−1√
3(1+|s|) and θ = arctan 1+|s|√

3(|s|−1)
;

these are inward Kiepert triangles, i.e., the ears intersect ∆’s interior, their position

does not depend on the vertices’ order in ∆, they correspond to the real points of the

circle C′ and mark the transition between the positively and negatively oriented ∆∗
Kiso(θ). These two perpendicular [20] degenerate triangles intersect at the centroid

of ∆ (which is their common centroid) and they are parallel to the asymptotes

of ∆’s Kiepert hyperbola (Figure 5). The degenerate classical Kiepert triangles

of a nontrivial degenerate ∆ are the medial triangle and the almost Kiepert ∆ ∗
(0, 1,−1).

We determine now the conditions under which the triangles ∆ and ∆ ∗Kiso(θ)
are similar. We suppose that ∆ is proper, not equilateral, and positively oriented,

and we exclude the evident case Kiso(0) = K(12). We set σ∆ = s with 0 < |s| < 1

and denote the shape 1−
√
3 tan θ

1+
√
3 tan θ

of Kiso(θ) by µ ∈ R \ {−1, 1}. µs is the shape

of a triangle inversely similar to ∆ if and only if µs = 1
s , i.e., if and only if

µ = 1
|s|2 (> 1): this corresponds to inward ears. µs is the shape of a triangle

directly similar to ∆ if and only if µs ∈
{
1
s , ζ

1
s , ζ

2 1
s

}
, and this is possible in two

cases:

(1) s = λζk, λ ∈ ]−1, 1[, k = 0, 1, 2, and µ = 1
|s|2 (> 1): ∆ is then isosceles

and Kiso(θ) is the same as in the inversely similar case.

(2) s = λiζk, λ ∈ ]−1, 1[, k = 0, 1, 2, and µ = −1
|s|2 (< −1): ∆ is then

automedian.

Writing |s| = R and dropping now the condition that ∆ is positively oriented,

one sees that the proper nonequilateral ∆ and ∆ ∗ Kiso(θ), θ 6= 0, are inversely

similar (and inversely oriented) exactly when θ = Θ1 = arctan R2−1√
3(R2+1)

, and

directly similar (and inversely oriented) exactly when ∆ is automedian and θ =

Θ2 = arctan R2+1√
3(R2−1)

. Note that 0 < |Θ1| < π
6 < |Θ2| < π

2 and that these are

inward ears.

By (3), ∆ ∗ Kiso(Θ1) = ∆ ∗ Kiso(∓ω) is the first Brocard triangle (the base

angles of the ears are the Brocard angle of ∆): it is thus immediate that the

first Brocard triangle has the centroid of ∆. Figure 11 shows two equibrocardal

isosceles triangles with the same base (the apex angle of the right triangle is 30◦),

their first Brocard triangles and their Brocard points. Equibrocardal isosceles tri-

angles ∆1,2 with the same orientation have base angles θ1, θ2 given by (4), and



Convolution filters for triangles 79

bb

b b

Figure 11

tanΘ1 =
−2 tan θ1,2
3+tan2 θ1,2

; if one neglects the order of the vertices, the first Brocard

triangle is obtained from ∆1,2 by a homothety of ratio −1
2 +

3
3+tan2 θ1,2

∈
]
−1

2 ,
1
2

[

with respect to the centroid of ∆1,2 (the homothety ratio can be computed directly

by considering the normalized ∆ =
(
0, 1,

1+i tan θ1,2
2

)
); the sign of the homothety

ratio changes at θ = π
3 , and the homothety ratios corresponding to θ1 and to θ2

differ only by their sign (Figure 11).

Suppose now that ∆ is proper and automedian with Brocard angle ω. One has

3 tan|Θ2| = cotω by (3). On the other side, cotω = 3 cot γ when γ is the middle

angle of any nontrivial automedian triangle [5, p. 17]: thus |Θ2| = π
2 − γ, the ears’

apex angle is 2γ, the apex of the ear over the middle side is the circumcenter of ∆
by the inscribed angle theorem, and the sides of ∆ ∗ Kiso(Θ2) are perpendicular

to the sides of ∆ with middle side opposite to the circumcenter. ∆ ∗ Kiso(Θ2)
is thus obtained from ∆ by a quarter-turn about the centroid of ∆ followed by

a homothety of ratio
|cotϕ|

2 about this centroid, where ϕ (positive or negative as

the orientation of ∆) is the angle between the middle side of ∆ and its median

(the homothety ratio can be computed directly by considering the normalized au-

tomedian triangle
(
0, 1, 12 +

√
3
2 eiϕ

)
). Notice that one has also tanΘ2 = −1√

3 sinϕ
,

tanΘ1 = tan(∓ω) = −1√
3
sinϕ, and that the similarity ratio of the first Brocard

triangle to ∆ is 1
4

∣∣1 + ei2ϕ
∣∣ ∈
[
0, 12
[

(0 when ∆ is equilateral).

The following theorem is proven.

Theorem 3. (1) A proper nonequilateral triangle ∆ is similar to exactly three or

two of its classical Kiepert triangles according as it is automedian or not: it is

directly similar to its medial triangle, inversely similar to its first Brocard triangle,

and, if automedian, directly similar to the triangle constructed from inward isosce-

les ears with apex angle twice the middle angle of ∆ (the apex of the ear over the

middle side is then the circumcenter of ∆ and the triangles are perpendicular to
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each other). If ∆ is automedian, the two cases limθ→π
2
−∆ ∗Kiso(±θ) are asymp-

totically inversely similar to ∆.

(2) A proper nonequilateral triangle ∆ is isosceles or automedian if and only if it

is directly similar to one of its classical Kiepert triangles other than the medial tri-

angle: the corresponding sides are then parallel in the isosceles and perpendicular

in the automedian case.

b

b

b

Figure 12. The (up to similarity) only nontrivial triangle with a congruent clas-

sical Kiepert triangle, together with its first Brocard triangle

The automedian triangle with sides 1,

√
1−

√
3
5 and

√
1 +

√
3
5 (Figure 12)

is up to similarity the only nontrivial triangle with a congruent classical Kiepert

triangle: the cotangent of the angle formed by the side 1 and its median is 2. The

base angles of the inward ears are arctan
√

5
3 for the directly congruent classical

Kiepert triangle and ω = arctan 1√
15

for the first Brocard triangle, whose similarity

ratio to the initial triangle is 1√
5
.

6. Sequences of outward and inward Kiepert triangles

If the triangle ∆ = (w0, w1, w2) is positively oriented or degenerate and if

Im z ≥ 0, the outward and inward Kiepert triangles of ∆ corresponding to outward

and inward ears directly similar to the triangle (0, 1, z) are defined by ∆out(z) =
∆∗K(z) and ∆in(z) = ∆∗K(1−z), respectively. If ∆ is negatively oriented and

proper, ∆out(z) = ∆∗K(1−z) and ∆in(z) = ∆∗K(z). The outward ears added to
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∆ do not intersect ∆’s interior. We set further ∆out(∇) = ∆in(∇) = ∆∗(0, 1,−1).
Given a sequence (zn)n∈N with values in {z ∈ C | Im z ≥ 0} ∪ {∇}, and

starting from ∆ = ∆0 = ∆out
0 = ∆in

0 , we define inductively ∆out
n+1 = ∆out

n (zn)
and ∆in

n+1 = ∆in
n(zn). The centroid remains the centroid of ∆0 until the first

convolution with (0, 1,−1), if any, moves it to the origin.

Theorem 4. Let (zn)n≥0 be a sequence of symbols ∇ and of complex numbers

with nonnegative imaginary part; set ξ = 1√
3
eiπ/6 and

∇−ξ

∇−ξ
= −σ(0, 1,−1) = 1.

If zn ∈ C, denote by z̃n = 1+i tan θn
2 , with

θn = arctan
|zn − ξ| − |zn − ξ|√
3
(
|zn − ξ|+ |zn − ξ|

) ∈ [0, π6 ],

the south pole of the Apollonius circle

∣∣∣ z−ξ

z−ξ

∣∣∣ = R containing zn, and set θn = 0 if

zn = ∇. Let ∆0 be a nontrivial and nonequilateral triangle.

The following properties are equivalent.

(1) The sequence (∆out
n )n≥0 constructed from ∆0 and (zn) converges in shape

to an equilateral limit.

(2) limn→∞
∏n

k=0
zk−ξ

zk−ξ
= 0.

(3) The sequence of classical Kiepert triangles (∆̃out
n )n≥0 constructed from ∆0

and (z̃n) converges in shape to an equilateral limit.

(4) limn→∞
∏n

k=0
1−

√
3 tan θk

1+
√
3 tan θk

= 0.

(5) θn = π
6 for some n or

∑∞
n=0 θn = ∞.

The existence of the equilateral limit does not depend on the choice of the nonequi-

lateral ∆0.

One can also allow to choose each z̃n freely as the north or south pole of the

Apollonius circle (in order to always leave z̃n = zn when Re zn = 1
2 for example).

One has then to take θn = arctan |zn−ξ|+|zn−ξ|√
3(|zn−ξ|−|zn−ξ|) when θn ∈

[
π
6 ,

π
2

[
, and the

condition
∑∞

n=0 θn = ∞ has to be replaced by
∑∞

n=0min
(
θn,

π
2 − θn

)
= ∞, as

we showed in [23].

Theorem 4 generalizes [34], where the iterated convolution with a constant tri-

angle Kiso(θ) is analyzed, and [23], where only classical iterated Kiepert triangles

are considered.

Proof. If ∆0 is positively oriented or degenerate, so are all ∆out
n , and σ∆out

n
=

σ∆0

∏n−1
k=0

ξ−zk
zk−ξ

. limn→∞ σ∆out
n

= 0 means limn→∞
∏n

k=0

∣∣∣ zk−ξ

zk−ξ

∣∣∣ = 0 since ∆0

is not equilateral, and each factor in this product is constant on the corresponding

Apollonius circle. We proved the equivalence of (4) and (5) in [23].

If ∆0 is negatively oriented and proper, so are all ∆out
n . Since σK(1−z) =

1/σK(z), one has then σ∆out
n

= σ∆0

∏n−1
k=0

zk−ξ
ξ−zk

: every factor of this product has a

modulus ≥ 1, and one has limn→∞ σ∆out
n

= ∞ under the same conditions as in the

first case. �
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A nonequilateral limit shape for (∆out
n ) is only possible when ξ−zn

zn−ξ
converges to

1, i.e., when limn→∞ zn = 1
2 . But this condition is not sufficient: if zn = 1

2 + 1
n ,

n ≥ 1, for example, arg
(
σ∆out

n

)
diverges like the harmonic series.

Suppose that the sequence (∆out
n ) has no equilateral limit shape: the infinite

product
∏∞

n=0

∣∣∣ ξ−zn
zn−ξ

∣∣∣, whose factors lie in ]0, 1], has then a limit L ∈ ]0, 1] (and

any such L can be obtained by an appropriate choice of the zn’s). The accumu-

lation points of
(
σ∆out

n

)
lie on the circle |s| = L|σ∆0 | (≤ |σ∆0 | ≤ 1) if ∆0 is

positively oriented or degenerate, and on the circle |s| = 1
L |σ∆0 | (≥ |σ∆0 | > 1)

if ∆0 is negatively oriented and proper: these accumulation shapes correspond to

equibrocardal normalized triangles (0, 1, z) with vertex z on the Neuberg circle∣∣∣ z−eiπ/3

z−e−iπ/3

∣∣∣ = L±1|σ∆0 |, respectively (Figure 4). The sequence
(
σ∆out

n

)
can tend

to the accumulation circle with any behavior since the argument of each factor
ξ−zn
zn−ξ

can be changed arbitrarily by replacing zn by an appropriate number of the

Apollonius circle

∣∣∣ z−ξ

z−ξ

∣∣∣ = R containing zn.

Suppose that a sequence of classical iterated Kiepert triangles is given by the

successive convolutions with Kiso(θn), 0 ≤ θn < π
2 , n ≥ 0, and that this se-

quence (∆n) starts from a positively oriented nonequilateral ∆0 and has no equi-

lateral limit, i.e.,
∑∞

n=0min
(
θn,

π
2 − θn

)
< ∞: the one or two accumulation

points of the sequence (θn) belong to
{
0, π2

}
, and the corresponding subsequences

converge rapidly to the accumulation points, since the sum of the corresponding

θn or π
2 − θn is finite; the convolution with Kiso(θn) multiplies the shape by

λn = σKiso(θn) = 1−
√
3 tan θn

1+
√
3 tan θn

∈ ]−1, 1], and λn is about 1 or −1 when θn is

near to 0 or to π
2 , respectively. As above,

∏∞
n=0|λn| = L ∈ ]0, 1], but the λn are

now real: (σ∆n) has thus the nonzero limit σ∆0

∏∞
n=0

1−
√
3 tan θn

1+
√
3 tan θn

(= ±Lσ∆0) if

all λn are eventually positive, i.e., if limn→∞ θn = 0. Otherwise, the infinite subse-

quences of the σ∆n with positive and negative
∏n−1

k=0 λk have nonzero limits Lσ∆0

and −Lσ∆0 , respectively, and the sequence (σ∆n) has exactly two accumulation

points given by ±Lσ∆0 with 0 < L < 1. The limit or accumulation shapes and

the σ∆n are shapes of classical Kiepert triangles of ∆0 of the form ∆0 ∗Kiso(θ),
0 ≤ θ < π

2 . If existing, the two accumulation shapes ±Lσ∆0 are also the shapes

of two normalized equibrocardal triangles ∆′(z±) that are directly similar to the

median triangle of each other. If the normalized ∆′(z0) has the shape of ∆0, i.e., if

z0 =
ζσ∆0

−1

ζ−σ∆0
, the vertices z± are given by the intersections of the Neuberg circle∣∣∣ z−eiπ/3

z−e−iπ/3

∣∣∣ = L|σ∆0 | with (the upper half of) the circle C′ through eiπ/3, e−iπ/3,

and z0, on both sides of eiπ/3 (Figure 4): z+ lies on the arc between eiπ/3 and

z0, z− between eiπ/3 and Z0 = z0−2
2z0−1 , which corresponds to the shape −σ∆0 . z0

and Z0 have a strictly positive imaginary part if ∆0 is proper and are real if ∆0 is

degenerate.

Since ∆ and an outward Kiepert triangle of ∆ are always simultaneously in the

category “positively oriented or degenerate” or in the category “negatively oriented



Convolution filters for triangles 83

and proper”, an iterated outward Kiepert triangle remains unchanged if one mod-

ifies the order of the successive convolutions. This is not the case for an iterated

inward triangle, because the orientation may change after a convolution, leading

to the next convolution with K(1 − z) instead of K(z) for example, and these

orientation changes may depend on the order of the convolutions. Note that the

inward Kiepert triangle of an outward Kiepert triangle given by the same ears has

the shape of the initial triangle or is trivial, since the shapes of K(z) ∗K(1 − z),
K(1 − z) ∗ K(z), and (0, 1,−1) ∗ (0, 1,−1) are all 1 for z 6= ξ, ξ. A nontrivial

outward Kiepert triangle of an inward Kiepert triangle of ∆0 given by the same

ears is in general not even similar to ∆0: if ∆0 is proper, nonequilateral, and pos-

itively oriented with shape s0, for example, and if σK(z) = s with 0 < |s| < |s0|,
∆0 ∗K(1−z) is negatively oriented and the end triangle ∆0 ∗K(1−z)∗K(1−z)
is also negatively oriented with shape s0

s2
of modulus > 1

|s0| ; this end triangle is

never similar to ∆0.

Except when the sequence has been stopped before by 0 · ∞ or ∞ · 0, the shape

of ∆in
n+1, n ≥ 0, is given recursively by σ∆in

n+1
= zn−ξ

ξ−zn
· σ∆in

n
if
∣∣σ∆in

n

∣∣ ≤ 1 (then
∣∣σ∆in

n+1

∣∣ ≥
∣∣σ∆in

n

∣∣) and by σ∆in
n+1

= ξ−zn
zn−ξ

· σ∆in
n

if
∣∣σ∆in

n

∣∣ > 1 (then
∣∣σ∆in

n+1

∣∣ ≤
∣∣σ∆in

n

∣∣). The turning points between stretching factors
(
ξ−zn
zn−ξ

)±1
of modulus ≤ 1

or ≥ 1, respectively, depend also on ∆0. By choosing ∆0 and the zn appropriately,

the sequence (∆in
n) can thus have any behavior in shape within these constraints.

The iterated first Brocard triangles of a proper nonequilateral ∆0 are for example

alternately inversely and directly similar to ∆0 when ∆0 is not isosceles, and all

directly similar to ∆0 when ∆0 is isosceles. If ∆0 is automedian and if the ears

are isosceles with constant apex angle twice the middle angle of ∆0, the iterated

inward Kiepert triangles are all directly similar to ∆0: the automedian triangle of

Figure 12 initiates in particular a 4-periodic sequence given by quarter-turns about

the centroid.
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