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Inherent spectral characteristics of hyperspectral image (HSI) data are determined and need to be deeply mined. A convolution
neural network (CNN) model of two-dimensional spectrum (2D spectrum) is proposed based on the advantages of deep
learning to extract feature and classify HSI. First of all, the traditional data processing methods which use small area pixel block
or one-dimensional spectral vector as input unit bring many heterogeneous noises. The 2D-spectrum image method is proposed
to solve the problem and make full use of spectral value and spatial information. Furthermore, a batch normalization algorithm
(BN) is introduced to address internal covariate shifts caused by changes in the distribution of input data and expedite the
training of the network. Finally, Softmax loss models are proposed to induce competition among the outputs and improve the
performance of the CNN model. The HSI datasets of experiments include Indian Pines, Salinas, Kennedy Space Center (KSC),
and Botswana. Experimental results show that the overall accuracies of the 2D-spectrum CNN model can reach 98.26%, 97.28%,
96.22%, and 93.64%. These results are higher than the accuracies of other traditional methods described in this paper. The
proposed model can achieve high target classification accuracy and efficiency.

1. Introduction

Hyperspectral images (HSIs) are typically composed of
hundreds of spectral data channels in the same scene.
HSIs can provide continuous data in space and spectrum
through combined imaging and spectrum technology.
Hyperspectral data are important in monitoring information
of the Earth’s surface because the spectral information pro-
vided by the hyperspectral sensor increases the accuracy of
the resolution of target materials and thus improves classifi-
cation accuracy [1].

At first, scholars mainly use artificial extraction of image
features for object identification classification of remote sens-
ing images using a local binary pattern, histogram of oriented
gradient [2], and Gabor filter [3]. However, this method is
ineffective in processing hyperspectral data with the increase
in dimension. Thus, feature extraction and classifier are
combined, thereby yielding a satisfactory classification effect.

Methods for feature extraction include principal compo-
nent analysis (PCA) [4], independent component analysis
(ICA) [5], and linear discriminant analysis (LDA) [6] and
robust PCA. The classifier went through a process from fuzzy
K-nearest neighbor algorithm [7], naive Bayes with deep
feature weighting [8], and logistic regression [9] to support
vector machine (SVM) [10]. SVM improves classification
performance by extending classification kernel [11]. How-
ever, these combinatorial methods demonstrate the following
significant limitations. (1) Feature extraction uses linear
transformations to extract potentially useful features from
the input data. Hyperspectral data are essentially nonlinear
considering a complex light-scattering mechanism [12].
(2) Most traditional classification methods only consider
single-layer processing, which reduces the capability of fea-
ture learning, and are unsuitable for high-dimensional data.

Neural networks (NNs) with multiple layers and hidden
nodes are more suitable than shallow classifiers, such as
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SVM, in building an HSI data model [13]. The NNs,
including multilayer perceptron [14] and radial basis func-
tion [15], have been studied for classifying remote sensing
data. Researchers have proposed a semisupervised NN
framework for large-scale HSI classification [16]. Various
deep NNs (DNN) have been developed according to sys-
tem architecture and activation functions; these networks
include deep belief network (DBN) [17], deep Boltzmann
machine [18], and AutoEncoder (AE) [19]. In 2014, a
stacked AE (SAE) was used for HSI classification [20].
An improved AE based on sparse constraints was then
proposed [21]. The DBN is another DNN model that
was proposed in 2015 [22]. The depth model can extract
robust features and is superior to other methods in terms
of classification accuracy.

Convolution NN (CNN) [23] uses local receptive fields in
efficiently extracting spatial information and sharing weights
to significantly reduce the number of parameters. CNNs are
used to extract the spatial spectral features of hyperspectral
images for classification [24], and their performance was bet-
ter than that of traditional classifiers such as SVM. In addi-
tion, a method using a virtual sample enhanced to limited
labeled samples was proposed in [25]. A previous study pro-
posed the use of a greedy layer unsupervised pretraining to
form a CNN model [26]. However, the application technol-
ogy of CNN in hyperspectral classification remains imper-
fect, and several shortcomings, such as easy saturation of
the training gradient, low classification accuracy, and poor
model generalization, should be addressed.

The spectral values of the HSIs in the third dimension
are approximately continuous, and the curves of each fea-
ture possess a unique spectral plot that is different from
those of other classes. In the traditional classification
methods, one-dimensional spectral vectors are used as
the final form of input data [27, 28] or neighboring pixels
are used to form small regional pixel blocks as input data
[29, 30]. Although the former simplifies the complexity of
deep learning network training, it omits spatial dimension
information of spectral values at the same time. The latter
combines multiple pixels into one sample, which introduces
heterogeneous noises and aggravates the problem of missing
hyperspectral data.

Compared with the traditional CNN methods, this study
designs a 2D-spectrum CNN model as follows:

(i) Hyperspectral pixels have rich spectral information.
The traditional data processing methods which use
small area pixel block or one-dimensional spectral
vector as input unit bring many heterogeneous
noises. In this paper, we convert the spectral value
vector to 2D-spectrum image, so that the optimiza-
tion of all CNN model parameters (including the
BN parameters) is based on the spectral values of
the pixel points and spectral space information.
The target of fully extracting spectral spatial infor-
mation can be achieved while heterogeneous noises
are also avoided. In addition, a multilevel BN algo-
rithm is achieved for the first time, and the effect of
network acceleration is obvious.

(ii) A BN algorithm is introduced to reduce the vanish-
ing gradient problem and dynamically accelerate the
training speed of the DNN by reducing the scaling
and initialization of the dependent parameters. A
small area pixel block was selected as the input unit.
Liu et al. [30] used the BN algorithm to the CNN for
the HIS. However, the introducing heterogeneous
noises and wasting scarce samples will weaken the
BN algorithm’s role in network regularization and
accelerated training.

(iii) Softmax loss models are used instead of combin-
ing Softmax regression and multinomial logistic
loss models; thus, the output of the last layer
competes with one another to improve the classi-
fication accuracy. The experimental results show
that the proposed CNN-based HSI classification
model exhibits high accuracy and efficiency in
the HSI dataset.

2. CNN-Based Classification Model

The researchers found that the human visual system can
effectively solve the problem of classification, detection, and
identification, with the rapid development of modern ner-
vous systems. This development motivates researchers on
biological visual systems to establish advanced data pro-
cessing methods [31]. Cells in the cortex of a human
visual system are only susceptible to small areas, and
accepting cells in the field can exploit the local spatial
correlation in the image.

The CNN architecture uses two special methods,
namely, local receptive field and shared weights. The acti-
vation value of each convolution neuron is calculated by
multiplying the local input with weight W, which is
shared in the entire input space (Figure 1). Neurons that
belong to the same layer share the same weight. The use
of specific architectures, such as local receptive field and
shared weights, reduces the total number of training
parameters and facilitates the development of an efficient
training model.

The complete CNN architecture consists of convolution
and pooling layers. The convolution layer alternates with
the pooling layer, thereby mimicking the properties of
complex and simple cells in the mammalian visual cortex
[32]. In the CNN, the input data are a matrix or tensor

with a 3D spatial structure, where (H, W), (H′, W′),

and (H″, W″) represent the size of the spatial dimension
of input data, convolution kernel, and output data, respec-
tively. The number of convolution kernel feature channels

is represented by D, and D″ represents the 3D data.

x ∈ℝH×W×D,

f ∈ℝH′×W′×D×D″,

y ∈ℝH″×W″×D″,

1
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where x is the input data, f is the convolution filter, and y
is the output data. The 1D signal x is convoluted by filter
f to calculate signal y as follows:

yi″j″d″ = bd″ + 〠
H′

i′=1

〠
W′

j′=1

〠
D

d′=1

f i′j′d × xi″+i′−1,j″+j′−1,d′,d″, 2

where bd″ is the neuron offset and f i′j′d is the convolution

kernel matrix of the dth i′ × j′.
The pooling layer is typically obtained after the convolu-

tion layer. The most common pooling function is max
pooling. This function calculates the maximum response of

each feature channel in the H′ ×W′ region. The feature
map becomes robust to the distortion of the data and
achieves a high invariance through the pooling. The pooling
layer can also decrease the size of the feature map, thereby
reducing computational burden.

yi″j″d″ = max
1≤i′≤H′,1≤j′≤W′

xi″+i′−1,j″+j′−1,d 3

The traditional CNN processing flow is designed in
accordance with the data structure characteristics of the
HSI classification task (Figure 2). The training data are
obtained through forward propagation to determine the
actual output and then compared with the real data tag
competition. Stochastic gradient descent (SGD) is used to
modify the synapses and parameters of the network struc-
ture, and several iterative trainings are conducted to form a
network model. Test data are inputted into the network
model. The output data obtained by feature extraction are
matched with the actual data, and the result is classified by
the competitive output model.

The 3D data of the HSIs reach hundreds, and a numerical
approximation is considered continuous. The curve of each
pixel possesses a unique spectral plot that differs from those
of other categories, and this plot is difficult to distinguish
by the human eye. However, the CNN exhibits a better
performance than several human visual aspects. Therefore,
this study uses spectral labels to improve the classification
performance of the CNN models on the HSIs.

3. Proposed CNN-Based HSI
Classification Model

3.1. BN. The SGD is used to train NN in CNN training.
This method is simple and effective, but the model param-
eters should be carefully adjusted. In particular, the learning
rate and initialization parameters of the model are added in
the optimization. This step significantly reduces the speed
of the CNN training. The entire network should conform
to the new data distribution when the distribution of the
input data at the network layer changes, thereby resulting
in the decreased training speed of the network and satu-
rated gradient. If the nonlinear input data distribution is
ensured to be stable, then the probability of nonlinear satu-
ration problem will be minimal and can accelerate the
training of the network. Therefore, the BN algorithm is
proposed to eliminate this phenomenon and expedite the
training of the network.

In the BN algorithm, for each hidden layer of neurons,
the input distribution, the value interval of which is closer
to the limit saturation region through nonlinear function
mapping, is forced back to the normal distribution of the
comparison standard, with a mean of 0 and a variance of 1.
Thus, the input value of the nonlinear transformation func-
tion falls into the region, which is sensitive to the input data,
to avoid a gradient disappearance problem. The most mature
technique in the early DNN normalization operation is
whitening; however, whitening the input of each layer
would result in excessive computational costs and compu-
tational time and not all differential. Thus, BN is used in
two simplified ways.

The first step indicates that zero mean and variance
normalization for scalar features are used instead of whit-
ening. Simultaneously, the input and output of the layer
are normalized. The following formula is used for NNs

with d-dimensional input x = x 1 ,… , x d to normalize
each dimension, where the predicted value and variance
can be calculated from the corresponding batches.

x
k
=
x k − E x k

var x k
4

The primitive activation value x that corresponds to
the neuron is converted by subtracting the corresponding

X1 X2 X3 X4 X5 X6

Filter size

h1 h2 h3 h4

Input data
X

Shared weights
W

Convolution layer

Figure 1: Local receptive field and shared weights.
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batch mean E x and dividing it by the variance Var x . If
the normalization for input of NN layer is rather simple,
then the characterization capability of the layer is reduced.

Thus, the BN introduces a pair of parameters γ k and β k

for each activation value x k , which can scale and translate
the normalized input as

y k = γ k x
k
+ β k 5

The two parameters are similar to the network
parameters and are trained and modified in the same
way. The characterization capability of the model is

then restored. When γ k = var x k , β k = E x k , it

can obtain the original activation value based on the
output and restore representation ability. That is, the
network can restore the feature distribution to be learned
by the original network.

The second step denotes that NN training is based on the
entire training dataset. Theoretically, the entire training data-
set can be used to normalize the activation value. However, it
cannot be applied to the SGD because of a large amount of
calculation of the dataset. The BN introduces min-batch in
the SGD and calculates the corresponding mean and variance
by using the minimum batch data. If a minimum batch data
B exists, then the corresponding size is m. Only one of the

activation values x k is considered because each dimension
of the activation value is normalized, while the variable k is
then ignored. Each B has m activation values. The BN
algorithm can be obtained by Formula (5).

Algorithmγ,β x1…m ⟶ x 1…m ⟶ y1…m 6

The mean μB and variance σ
2
B of the minimum batch data

are defined as follows:

μB ⟵
1

m
〠
m

i=1

xi,

σ2B ⟵
1

m
〠
m

i=1

xi − μB
2,

7

in which x and y can be obtained after the normalization.

x i ⟵
xi − μB

σ2B − ε
,

yi ⟵ γx i + β ≡ BNγ,β xi ,

8

where ε is a constant (tends to be 0) to ensure the stability of
the calculation of variance.

The data computation becomes large and complex in
applying the BN algorithm to the CNN if each neuron is
normalized in every layer. Thus, this algorithm is based on
the idea of weight sharing, and the mean and variance of
the activation value are obtained for the entire map.
Input x, output y, parameter W, and b are defined as

x, y ∈ℝH×W×K×T ,

W ∈ℝK ,

b ∈ℝK ,

9

where H, W, K , and T represent the length and width of
the input and output data, number of characteristic
channels, and min-batch size, respectively. We explicitly
define the input and output arrays as 4D data to process
the feature mappings by batch. The output characteristic
map is expressed by the following formula:

yijkt =Wk

xijkt − μk

σ2k + ε
+ bk,

μk =
1

HWT
〠
H

i=1

〠
W

j=1

〠
T

t=1

xijkt ,

σ2k =
1

HWT
〠
H

i=1

〠
W

j=1

〠
T

t=1

xijkt − μk

10

The BN is performed to the activation value of each
hidden layer of neurons, which can be regarded as an
add-on operation layer. It is located after the activation

Training
data

Test data

Forward propagation
(convolution-pooling-

fully connected)

Forward propagation
(convolution-pooling-

fully connected)

Back propagation adjusts
the structure

Feature matching Result

Network model

Figure 2: Traditional CNN processing flow.
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value x =wu + b obtained and before the nonlinear
activation function, as depicted in Figure 3.

The proposed BN algorithm possesses the following
characteristics after the theoretical analysis and experimental
verification. (1) A large initial learning rate can be selected
so as to improve training speed. (2) Dropout can be
removed and L2 weight attenuation coefficient can be
reduced. (3) Local response normalization (LRN) can be
replaced. (4) The training data can be completely dis-
rupted (i.e., a sample is not frequently selected in each
batch of training).

3.2. Softmax Loss Models. The Softmax regression model is a
spread of logistic regression model in solving multiclass
problems. Following the data structure of Section 4.1, it can
obtain the following output of the regression function.

yijk =
exi jk

∑D
t=1e

xi jt
11

This formula is not limited by the number of feature
channels and is applied to all spatial positions in a convoluted
manner to translate linear predictions into categorical prob-
abilities. The linear prediction results xijk of the kth category

serve as input to the regression model, and D probability
values (likelihood), which represent the possibility of the data
belonging to different categories, are obtained. The Softmax
regression model can be regarded as the combination of the
exponential form of activation function and normalized
operators. The classification loss function ℓ x, c is aimed at
comparing the prediction x with the real class label c. The
classification loss is defined as follows:

ℓ x, c =〠
ijn

ωij1nℓ xij n, cij n , 12

where x ∈ℝH×W×C×N , c ∈ 1,… , C H×W×1×N , and N is the
size of the 3D data. The 1D vector xij n represents class C

fraction, and cij n represents a real class label. Logarithmic

loss function or logarithmic likelihood loss function is
commonly used in logistic regression, which is based on the
maximum likelihood principle. Thus, vector x represents
the posterior probability p k = xk, k = 1,… , C of the differ-
ent classes. The output of the loss function is the negative log-
arithmic probability of the real label.

ℓ x, c = −log xc ⋅ x ≥ 0,

〠
k

xk = 1,
13

where x is the output of the Softmax regression model and
is numerically unstable. On the one hand, the score xc
should compete with other scores xk k ≠ c to obtain a
meaningful logarithmic loss. If it is not the case, then
the minimization of Formula (13) can be achieved by
maximizing all xk, but the real prediction effect is that xc
is larger than xk k ≠ c . On the other hand, the Softmax
regression model allows the score x to compete through
the normalization factor. This study proposes the Softmax
loss models, which combines the calculation module of the
regression model and calculation module of logarithmic
loss into a single one.

ℓ x, c = −log
exc

∑C
k=1e

xk
= −xc + log 〠

C

k=1

exk 14

The combined modules result in a stable value of the
output fraction x. By combining the logarithmic loss
with Softmax, the loss model automatically makes the
score compete ℓ bx, c ≈ 0, when xc ≫∑k≠cxk. Although
this model is similar to the final output result of the
logarithmic loss function, the experimental results show
that the Softmax loss model has the following advan-
tages. (1) The calculation steps are minimal, while the
calculated amount is small. (2) Numerical gradients are
relatively stable. (3) Competitive output can improve
the classification accuracy.

Batch normalization

Neurons

L layer

L-1 layer

X = wu + b

Figure 3: Operation layer of BN.
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3.3. Two-Dimensional Spectrum CNN Model. The hyper-
spectral data has a small total number of pixels, while a
single pixel has rich spectral values. According to this,
the 2D-spectrum method is proposed in the paper, which
converts the pixel spectral vectors into two-dimensional
spectral images as the input data of CNN. The convolu-
tion network can fully utilize the spatial position informa-
tion between the different spectral values to improve the
classification accuracy, as shown in Figure 4. The network
adopts multiple convolution and max pooling layers alter-
nately. BN layers, which regulate the data distribution and
accelerate network training, are insert among the one, four,

and seven layers. The Softmax loss model is then used to
control the output. The 2D-spectrum CNN structure is
shown in Figure 5.

4. Experimental Results

In this chapter, we first describe the dataset used in the
experiment. Furthermore, the BN algorithm and Softmax
loss model are used to verify the HSI classification perfor-
mance of the CNN model. Finally, the proposed method is
compared with other similar methods to determine the
advantages and disadvantages of the 2D-spectrum CNN
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Figure 5: 2D-spectrum CNN structure.
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model. The overall accuracy (OA) and Kappa coefficients are
used as the performance measurements for each type of
classification accuracy (percentage). The mathematical
relationship between error and OA is

OA = 1 − error × 100% 15

Each classification result is averaged over 10 runs to
avoid any deviation caused by random sampling. All of
the experiments are tested on a desktop with NVIDIA

GeForce GTX 1070 8G GPU, 16GB memory, and 64-bit
Windows 7 OS using MATLAB 2014b.

4.1. Hyperspectral Datasets. In the experiment, the hyper-
spectral data of the network model include Indian Pines,
Salinas, and Kennedy Space Center (KSC) datasets and are
applied to the new dataset, Botswana. Table 1 summarizes
the detailed information of the four datasets.

Figures 6–8 exhibit the characteristics of the four data-
sets. Tables 2–5 list the number of samples trained and tested

Table 1: Hyperspectral data set features.

Dataset Size Spectral bands (original) Labels Instrument

Indian Pines 145× 145 200 (224) 16 AVIRIS

Salinas 512× 217 204 (224) 16 AVIRIS

KSC 512× 614 176 (224) 13 NASA AVIRIS

Botswana 1476× 256 145 (242) 14 NASA EO-1

(a) (b) (c)

Figure 6: (a) AVIRIS Infrared image, (b) Indian Pines ground-truth map, and (c) classification map.

(a) (b) (c)

Figure 7: (a) RGB color image from random three bands, (b) Salinas ground-truth map, and (c) Salinas classification map.
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Figure 8: (a) KSC third band, (b) KSC ground-truth map, (c) Botswana fourth band, and (d) Botswana ground-truth map.

Table 2: Number of labeled training samples and testing samples of
Indian Pines.

Class number Class name
Training
samples

Testing
samples

1 Alfalfa 35 11

2 Corn-no till 357 1071

3 Corn-min till 207 623

4 Corn 59 178

5 Grass-pasture 120 363

6 Grass-trees 182 548

7 Grass-pasture-mowed 21 7

8 Hay-windrowed 119 359

9 Oats 15 5

10 Soybean-no till 243 729

11 Soybean-min till 613 1842

12 Soybean-clean 148 445

13 Wheat 51 154

14 Woods 316 949

15 Buildings-grass-trees-drives 96 290

16 Stone-steel-towers 70 23

Total 2652 7597

Table 3: Number of labeled training samples and testing samples
of Salinas.

Class number Class name
Training
samples

Testing
samples

1 Brocoli_green_weeds_1 503 1506

2 Brocoli_green_weeds_2 932 2794

3 Fallow 494 1482

4 Fallow_rough_plow 349 1045

5 Fallow_smooth 670 2008

6 Stubble 990 2969

7 Celery 895 2684

8 Grapes_untrained 2818 8453

9 Soil_vinyard_develop 1550 4653

10 Corn_senesced_green_weeds 820 2458

11 Lettuce_romaine_4wk 267 801

12 Lettuce_romaine_5wk 482 1445

13 Lettuce_romaine_6wk 229 687

14 Lettuce_romaine_7wk 268 802

15 Vinyard_untrained 1817 5451

16 Vinyard_vertical_trellis 452 1355

Total 13536 40593
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for the corresponding dataset and are assigned according to
(train) 1 : (test) 3. According to previous experiments, a
considerably minimal training data will produce an underfit-
ting phenomenon. The labels 1, 7, 9, and 16 of the Indian
Pines datasets are insufficient. The above labels allocate the
total amount of samples according to 3 (train) : 1 (test) to
avoid underfitting and to ensure that the training sample
is sufficient.

The learning rate of the CNN network model is [1e-03
5e-04 1e-05], the corresponding number of training itera-
tions is 50, 30, and 20, and the number of samples per batch
is 100.

4.2. BN Performance Verification. The BN operation layer is
added in the CNN to solve the problem of modified distribu-
tion of the internal nodes caused by the change in the input
data of the traditional CNN. The addition of this layer can
solve the problem of training saturation and gradient disap-
pearance, significantly increase the training speed, and
improve the classification performance. According to Section
4.1, the BN operator layer can replace the traditional dropout
layer and the local response normalization layer (LRN) and
achieve a more satisfactory result, as presented in Figure 9
and Table 6.

Table 4: Number of labeled training samples and testing samples
of KSC.

Class number Class name
Training
samples

Testing
samples

1 Scrub 190 571

2 Willow swamp 60 183

3 CP hammock 64 192

4 Slash pine 63 189

5 Oak/broadleaf 40 121

6 Hardwood 58 171

7 Swamp 27 78

8 Graminoid marsh 108 323

9 Spartina marsh 130 390

10 Cattail marsh 101 303

11 Salt marsh 105 314

12 Mud flats 126 377

13 Water 232 695

Total 1304 3907

Table 5: Number of labeled training samples and testing samples
of Botswana.

Class number Class name
Training
samples

Testing
samples

1 Water 67 203

2 Hippo grass 25 76

3 Floodplain grasses 1 62 189

4 Floodplain grasses 2 53 162

5 Reeds 67 202

6 Riparian 67 202

7 Firescar 64 195

8 Island interior 50 153

9 Acacia woodlands 78 236

10 Acacia shrublands 62 186

11 Acacia grasslands 76 229

12 Short mopane 45 136

13 Mixed mopane 67 201

14 Exposed soils 23 72

Total 806 2442
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Figure 9: BN performance verification curve: y-axis is error.

9Journal of Sensors



Table 6 indicates that dropout and LRN are trained on
the network to accelerate and prevent the overfitting phe-
nomenon. However, the BN operation layer in training accel-
eration and classification accuracy are better than the two
areas by data comparison, and the experimental results
depict obvious differences. Figure 10 denotes the test results
for error in Table 6.

4.3. Softmax Loss Models. The CNN in this study uses the
Softmax loss models in the output to replace the traditional

Softmax regression and multinomial logistic loss models.
Table 7 compares the classification accuracy among the
three models.

Figure 10 is a more intuitive histogram. The results of
four hyperspectral data experiments show that the Softmax
loss model has the highest classification accuracy, compared
with the multinomial logistic loss model.

4.4. Comparison with Other Approaches. The proposed
method in this study is compared with recent works on

Table 6: Performance comparison of dropout, LRN, and BN.

Dataset Operating layer Unit time of batch/s∗ Error Kappa

Indian pines

Dropout 0.940 0.0860 0.905

LRN 0.898 0.0629 0.930

B N 0.742 0.0174 0.978

Salinas

Dropout 0.671 0.0392 0.945

LRN 0.360 0.0323 0.939

B N 0.342 0.0272 0.972

KSC

Dropout 0.115 0.0893 0.892

LRN 0.114 0.0592 0.922

B N 0.099 0.0378 0.956

Botswana

Dropout 0.362 0.1709 0.829

LRN 0.323 0.0970 0.886

B N 0.283 0.0207 0.963

∗Owing to the number of samples between the datasets and the specific parameters of the training, this entry only applies to the comparison within the
same dataset.
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Figure 10: Classification accuracy of the different output models.

Table 7: Classification accuracy of different outputs model (error).

Output model Performance Indian Pines Salinas KSC Botswana

Multinomial logistic loss
OA 0.0390 0.0352 0.0412 0.0842

Kappa 0.952 0.948 0.952 0.914

Softmax loss
OA 0.0174 0.0272 0.0378 0.0207

Kappa 0.978 0.972 0.956 0.963
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the HSI classification studies. The training accuracy evalu-
ation indicators, namely, OA and Kappa coefficients, are
important criteria for assessing network model classification

performance. In Table 8, the proposed 2D-spectrum CNN
model is compared with other advanced deep learning
methods. The comparative data is derived from the work of

Table 8: Comparison of CNNs with other algorithms in Indian Pines, Salinas, KSC, and Botswana.

Dataset Performance CNN (vector) PPF (vector) BASS (blocks) 2D-spectrum CNN

Indian Pines
OA 86.44 94.34 96.77 98.26

Kappa 0.856 0.922 0.955 0.978

Salinas
OA 89.28 94.80 95.36 97.28

Kappa 0.878 0.931 0.928 0.962

KSC
OA 88.38 93.18 94.53 96.22

Kappa 0.870 0.912 0.939 0.956

Botswana
OA 89.45 91.57 95.42 97.93

Kappa 0.885 0.908 0.939 0.963

Vector: one-dimensional spectral vectors. Blocks: small-area pixel division blocks.
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Figure 11: Indian Pines dataset. (a) The ground truth, (b) training samples, (c) test samples, and (d) classification maps.
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Figure 12: Salinas data set. (a) The ground truth, (b) training samples, (c) test samples, and (d) classification maps.
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Hu et al. [27], and the CNN data based on PPFs is from the
research of Li et al. [28]. The data of Band-Adaptive
Spectral-Spatial (BASS) net architecture is from the paper
of Santara et al. [29].

Figures 11 and 12 display the ground truth, training set,
test set, and classification maps of Indian Pines and Salinas.
It can be seen from the comparison of the performance that
the classification performance of the 2D-spectrum CNN
model is superior to other methods in different hyperspectral
data in terms of overall accuracy and Kappa coefficient.

5. Conclusion

This paper proposes the 2D-spectrum CNN model that adds
multilevel BN operating layers for HSI classification. The
output uses a Softmax loss model for classification. In
addition, many of the relevant factors include the number
of iterations, learning rate, size of the input data, and size of
the filter and feature graph. All of them will affect the final
classification performance. The parameters obtained the
optimal solution and reached the ideal effect in the experi-
ments. The experiment results show that the CNN model
proposed in this paper provides excellent performance. The
training process converges quickly, thereby indicating that
this method can be applied to large datasets. Furthermore,
high classification accuracy can be achieved by applying
sufficient iterations and number of datasets.
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