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Convolution operators in A− ∞ for convex
domains

Alexander V. Abanin, Ryuichi Ishimura and Le Hai Khoi

Abstract. We consider the convolution operators in spaces of functions which are holo-

morphic in a bounded convex domain in Cn and have a polynomial growth near its boundary.

A characterization of the surjectivity of such operators on the class of all domains is given in

terms of low bounds of the Laplace transformation of analytic functionals defining the operators.

1. Introduction
By O(Ω) denote the space of functions holomorphic in a domain Ω⊂C

n. If z, ζ ∈
C

n, then |z|=(z1z̄1+...+znz̄n)1/2 and 〈z, ζ〉=z1ζ1+...+znζn. By B(z; R) denote
the open ball in C

n centered at z ∈C
n of radius R. The supporting function of a

convex set M in C
n is HM (ξ):=supz∈M Re〈z, ξ〉. Also put RM :=supz∈M |z|.

Let Ω be a convex bounded domain in C
n and dΩ(z):=infζ∈∂Ω |z −ζ|, z ∈Ω.

The space A− ∞(Ω) of holomorphic functions in Ω with polynomial growth near the
boundary ∂Ω is defined as

A− ∞(Ω) :=
{

f ∈ O(Ω) : ‖f ‖p,Ω := sup
z∈Ω

|f(z)|dΩ(z)p < ∞ for some p> 0
}

and equipped with its natural inductive limit topology.
The main goal of this note is to establish surjectivity criteria for convolution

operator μ∗ : A− ∞(Ω+K)→A− ∞(Ω), where K is a convex compact set in C
n. It

should be noted that the surjectivity of convolution operators for the spaces O(Ω)
of holomorphic functions in convex domains of C

n have been understood quite well
(see, e.g., [17], [19] and [23] and references therein), whereas it is known less for
the spaces of holomorphic functions with prescribed growth near the boundary of
Ω (see [21]). Moreover, for the spaces of type A− ∞(Ω), as far as we know, this
problem is not yet treated, although the spaces of such a type have been studied in
various directions by many authors (we refer the reader to [7], [8] and [24], as well
as [4]–[6] and [9]).
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The structure of this paper is as follows. Section 2 is concerned with the acting
of convolution operators in spaces of type A− ∞(Ω) and their conjugates which are
actually multiplication operators. The main result in Section 2 is a surjectivity
functional criterion for convolution operators (see Theorem 2.9). In Section 3 we
study a surjectivity problem for the class of all convex domains. We introduce a
condition (Sa) for the Laplace transformation of analytic functionals in C

n and in
terms of this condition prove a criterion for surjectivity for convolution operators
(see Theorem 3.10). In the last Section 4 we give some examples, discuss the
problem of existence of functions satisfying the condition (Sa), and get an explicit
representation of solutions for convolution equations in a form of Dirichlet series.

We note that some of our results were announced in [3].

2. Convolution operators
2.1. Analytic functionals carried by a compact convex set

Let μ be an analytic functional on C
n, carried by a compact convex set K, and

Ω be a bounded convex domain in C
n. Consider the convolution operator

μ∗f(z) := 〈μw, f(z+w)〉,

which maps O(Ω+K) into O(Ω) continuously (see, e.g., [18, Chapter 9] and [23]).
Notice that the Laplace (or Fourier–Borel) transformation

μ̂(ζ) := 〈μz, e
〈z,ζ〉 〉, ζ ∈ C

n,

of the functional μ is an entire function in C
n of exponential type that belongs to

the space

PK :=
{

f ∈ O(Cn) : sup
ζ∈Cn

|f(ζ)|
eHK(ζ)+ε|ζ| < ∞ for all ε> 0

}
.

Conversely, each f ∈PK defines an analytic functional μ, carried by K, with μ̂=f .
Our nearest aim is to find out conditions on μ (or on μ̂) under which μ acts

from A− ∞(Ω+K) into A− ∞(Ω). Recall that A− ∞(Ω) is a dual Fréchet–Schwartz
space for any Ω. Furthermore, as was announced in [4, Theorem 2.1], if either n=1,
or n>1 and Ω has C2 boundary, the strong dual (A− ∞(Ω))′

b of A− ∞(Ω) can be
identified, via the Laplace transformation of functionals, with the Fréchet–Schwartz
space of entire functions

A− ∞
Ω =

{
f ∈ O(Cn) : |f |p,Ω = sup

ζ∈Cn

|f(ζ)|(1+|ζ|)p

eHΩ(ζ)
< ∞ for all p ∈ N

}
.

Denote by D − ∞,n the family of all bounded convex domains Ω in C
n for which

the same isomorphism (A− ∞(Ω))′
b 	A− ∞

Ω is valid. In what follows we will identify
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(A− ∞(Ω))′
b with A− ∞

Ω for Ω∈ D − ∞,n. We strongly believe that D − ∞,n coincides
with the family of all bounded convex domains in C

n, n>1, and, if it is so, we can
omit our further condition that Ω and Ω+K belong to D − ∞,n.

Put

A∞
K :=

{
ϕ ∈ O(Cn) : sup

ζ∈Cn

|ϕ(ζ)|
(1+|ζ|)peHK(ζ)

< ∞ for some p ∈ N

}
.

Proposition 2.1. Let Ω and Ω+K be in D − ∞,n. Then μ∗A− ∞(Ω+K)⊆
A− ∞(Ω) if and only if μ̂∈A∞

K . In addition, for each nontrivial μ with μ̂∈A∞
K the

following statements hold :
(i) The convolution operator μ∗ : A− ∞(Ω+K)→A− ∞(Ω) is continuous and

has a dense range;
(ii) The conjugate operator to μ∗ is the multiplication operator

Λμ̂ : A− ∞
Ω −→ A− ∞

Ω+K ,

f �−→ μ̂f.

Proof. Let μ∗A− ∞(Ω+K)⊆A− ∞(Ω) and suppose that a net (fβ , μ∗fβ)β∈B

converges in A− ∞(Ω+K)×A− ∞(Ω) to (f, g). Obviously, A− ∞(Ω+K)↪→O(Ω+K)
and A− ∞(Ω)↪→O(Ω). Here ↪→ is the symbol of continuous embedding. From this
and continuity of μ∗ : O(Ω+K)→O(Ω) it follows that (fβ , μ∗fβ)β∈B converges
in O(Ω+K)× O(Ω) to (f, μ∗f). Thus, g=μ∗f and consequently the operator
μ∗ : A− ∞(Ω+K)→A− ∞(Ω) has a closed graph. By the Grothendieck closed graph
theorem [13] this operator is continuous. By virtue of the fact that A− ∞(Ω+K)
and A− ∞(Ω) are dual Fréchet–Schwartz spaces, we then get that there exist m∈N

and C>0 such that

‖μ∗f ‖m,Ω ≤ C‖f ‖1,Ω+K for all f ∈ A− ∞(Ω+K).

In particular, for fζ( · ):=e〈ζ, · 〉, ζ ∈C, using the relation μ∗e〈ζ,z+ · 〉 =μ̂(ζ)e〈ζ,z〉 for
all z ∈Ω and ζ ∈C

n and applying the fact [6, Lemma 2.2] that there exist constants
A1>0 and am>0 such that for all ζ ∈C

n,

∥∥e〈ζ, · 〉∥∥
1,Ω+K

≤ A1
eHΩ(ζ)+HK(ζ)

1+|ζ|
and ∥∥e〈ζ, · 〉∥∥

m,Ω
≥ am

eHΩ(ζ)

(1+|ζ|)m
,

we then have
|μ̂(ζ)| ≤ CA1

am
(1+|ζ|)m−1eHK(ζ) for all ζ ∈ C

n.
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Hence, μ̂∈A∞
K .

Conversely, let μ̂∈A∞
K . It is easy to see that Λμ̂ maps A− ∞

Ω into A− ∞
Ω+K contin-

uously. Then the conjugate operator Λτ
μ̂ :A− ∞(Ω+K)→A− ∞(Ω) is continuous and

Λτ
μ̂(e〈ζ,z+w〉)=μ̂(ζ)e〈ζ,z〉 for all z ∈Ω and ζ ∈C

n.
Since μ̂∈A∞

K ⊂PK , the convolution operator μ∗ maps O(Ω+K) into O(Ω)
continuously and

(1) μ∗e〈ζ,z+ · 〉 = μ̂(ζ)e〈ζ,z〉 for all z ∈ Ω and ζ ∈ C
n.

Thus,

(2) μ∗e〈ζ, · 〉 =Λτ
μ̂(e〈ζ, · 〉) for all ζ ∈ C

n.

Take any f ∈A− ∞(Ω+K). From [4, Theorem 2.1] it follows that the system of
exponential functions E :={e〈ζ, · 〉 :ζ ∈Cn} is complete in A− ∞(Ω+K). Then there
exists a sequence {ek } ∞

k=1 from Span(E) which converges to f in A− ∞(Ω+K).
Moreover, {ek } ∞

k=1 converges to f in O(Ω+K). Using this, (2) and the continu-
ity of the operators μ∗ : O(Ω+K)→O(Ω) and Λτ

μ̂ :A− ∞(Ω+K)→A− ∞(Ω), we find
that μ∗f=Λτ

μ̂(f) for all f ∈A− ∞(Ω+K). Consequently, μ∗ maps A− ∞(Ω+K) into
A− ∞(Ω) and is continuous.

Since the statement (ii) follows immediately from the equality (1) and the
notion of conjugate operator, it remains to check that if μ is nontrivial, then
μ∗A− ∞(Ω+K) is dense in A− ∞(Ω). Taking into account (1) again, to do this it is
enough to get that the system {e〈ζ, · 〉 :μ̂(ζ) �=0} is complete in A− ∞(Ω).
By [4, Theorem 2.1], the system {e〈ζ, · 〉 :ζ ∈C

n} is complete in A− ∞(Ω). Next, by
the uniqueness theorem for holomorphic functions, for each ζ with μ̂(ζ)=0 there
exists a sequence {ζ(k)} ∞

k=1 with μ̂(ζ(k)) �=0 such that ζ(k)→ζ as k→∞. Thus, the
only the thing we have to prove is that e〈ζ, · 〉 converges in A− ∞(Ω) to e〈ζ0, · 〉 as
ζ→ζ0, where ζ0 ∈C

n is arbitrary.
Recall that RΩ=supz∈Ω |z|. For all z ∈Ω and |ζ −ζ0| ≤1/RΩ,

|e〈ζ,z〉 −e〈ζ0,z〉 | = |e〈ζ0,z〉 | |e〈ζ−ζ0,z〉 −1|

≤ e|e〈ζ0,z〉 | | 〈ζ −ζ0, z〉 | ≤ eRΩ|e〈ζ0,z〉 | |ζ −ζ0|.

Consequently, for each n∈N,

‖e〈ζ,z〉 −e〈ζ0,z〉 ‖n,Ω ≤ eRΩ‖e〈ζ0,z〉 ‖n|ζ −ζ0| → 0 as ζ → ζ0.

This completes the proof. �

By standard arguments from the theory of duality, Proposition 2.1 implies the
following functional criterion of surjectivity for convolution operators.
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Proposition 2.2. Let Ω and Ω+K be in D − ∞,n and μ be a nontrivial analytic
functional with μ̂∈A∞

K . The convolution operator μ∗ : A− ∞(Ω+K)→A− ∞(Ω) is
surjective if and only if Λμ̂(A− ∞

Ω ) is closed in A− ∞
Ω+K .

Proof. Applying [10, Corollary 8.6.4 and Theorem 8.6.8], we have that if the
operator μ∗ : A− ∞(Ω+K)→A− ∞(Ω) is surjective, then the set (μ∗)′(A− ∞(Ω)′) is
closed in the strong dual (A− ∞(Ω+K))′

b of A− ∞(Ω+K).
Let now (μ∗)′(A− ∞(Ω)′) be closed in the strong dual (A− ∞(Ω+K))′

b. Since
A− ∞(Ω) and A− ∞(Ω+K) are dual Fréchet–Schwartz spaces, their duals are Fréchet
spaces (and moreover, Fréchet–Schwartz spaces). Hence, by [10, Theorem 8.6.13],
the set (μ∗)′ ′(A− ∞(Ω+K)′ ′) is closed in the strong dual (A− ∞(Ω))′ ′

b of (A− ∞(Ω))′
b.

Using that A− ∞(Ω) and A− ∞(Ω+K) are reflexive (as dual Fréchet–Schwartz
spaces), we get that μ∗(A− ∞(Ω+K)) is closed in A− ∞(Ω). Applying the state-
ment (i) of Proposition 2.1, we obtain that μ∗ : A− ∞(Ω+K)→A− ∞(Ω) is surjec-
tive.

Thus, μ∗ : A− ∞(Ω+K)→A− ∞(Ω) is surjective if and only if (μ∗)′(A− ∞(Ω)′) is
closed in (A− ∞(Ω+K))′

b. It remains to use [4, Theorem 2.1] and Proposition 2.1(ii),
to finish the proof. �

2.2. Multiplicators from A−∞
Ω into A−∞

Ω+K

In view of Proposition 2.2, recall that an entire function ϕ in C
n is a multipli-

cator from A− ∞
Ω into A− ∞

Ω+K if ϕg ∈A− ∞
Ω+K , whenever g ∈A− ∞

Ω . As we will see later,
a description of all multiplicators from A− ∞

Ω into A− ∞
Ω+K plays an important role

in the study of surjectivity of convolution operators. For doing this we recall some
definitions and results from [2] in a particular case sufficient for our purposes.

Denote by V n the family of all functions v :Cn→R which are bounded above
on each compact set in C

n. We associate with v ∈V n the Banach space

E(v) :=
{

f ∈ O(Cn) : |f |v := sup
ζ∈Cn

|f(ζ)|
ev(ζ)

< ∞
}

.

Let Φ={ϕk } ∞
k=1 be a sequence of functions from V n such that there exists

some constant Ak for which ϕk+1(ζ)≤ϕk(ζ)+Ak for all ζ ∈C
n, k=1, 2, ... . Define

the Fréchet space

P (Φ) :=
∞⋂

k=1

E(ϕk).

Let P (Ψ) be another space of the same type. We then say that an entire function
g is a multiplicator from P (Φ) into P (Ψ) if gP (Φ)⊆P (Ψ).

Denote by M(Φ, Ψ) the set of all multiplicators from P (Φ) into P (Ψ). Each g ∈
M(Φ, Ψ) generates a linear operator Λg : f ∈P (Φ) �→gf ∈P (Ψ). It is easy to see that
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this operator is continuous. Indeed, since the topologies in P (Φ) and P (Ψ) are finer
than the topology of pointwise convergence in C

n, the graph of Λg : P (Φ)→P (Ψ)
is closed. Then, by the Banach closed graph theorem, this operator is continuous.

It is clear that the set
⋂∞

m=1

⋃∞
k=1 E(ψm −ϕk) is always contained in M(Φ, Ψ).

The following result is an immediate consequence of [2, Propositions 1 and 5].

Proposition 2.3. Let Φ satisfy the following conditions :
(a) Φ consists of plurisubharmonic (psh) functions in Cn;
(b) For each k ∈N there exists m∈N such that P (Φ) is dense in E(ϕm) with

respect to the norm | · |ϕk
;

(c) For each k ∈N there exist m∈N and M>0 such that

sup
|w|≤1

ϕm(ζ+w)+log(1+|ζ|) ≤ ϕk(ζ)+M for all ζ ∈ C
n.

Then

M(Φ, Ψ) =
∞⋂

m=1

∞⋃
k=1

E(ψm −ϕk).

Remark 2.4. In [2, Proposition 1]
⋂∞

m=1

⋃∞
k=1 E(ψm −ϕk) was misprinted as⋂∞

m=1

⋂∞
k=1 E(ψm −ϕk).

In the sequel we write M − ∞
Ω,Ω+K instead of M(A− ∞

Ω , A− ∞
Ω+K). Applying Propo-

sition 2.3 to the spaces A− ∞
Ω and A− ∞

Ω+K , we have the following result.

Proposition 2.5. For any bounded convex domain Ω and convex compact
set K,

M − ∞
Ω,Ω+K =A∞

K .

Proof. Without loss of generality we can assume that 0∈Ω. For each k ∈N

define
HΩ,k(ζ) := sup

z∈Ω
(Re〈z, ζ〉+k log dΩ(z)), ζ ∈ C

n,

where, as above, dΩ(z) is the distance between z ∈Ω and ∂Ω. Clearly, HΩ,k is psh
in C

n and
|HΩ,k(w)−HΩ,k(ζ)| ≤ RΩ|w −ζ| for all w, ζ ∈ C

n.

Thus, HΩ,k are psh functions in C
n satisfying Lipschitz conditions. Next, by the

proof of [6, Lemma 2.2],

(3) ck ≤ HΩ,k(ζ)−HΩ(ζ)+k log(1+|ζ|) ≤ Ck for all ζ ∈ C
n and k ∈ N,
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where ck :=k log min{rΩ/e, krΩ/eRΩ}, and rΩ :=infz∈∂Ω |z|. From this it follows
that, for every k ∈N,

A−k
Ω :=

{
f ∈ O(Cn) : |f |k,Ω = sup

ζ∈Cn

|f(ζ)|(1+|ζ|)k

eHΩ(ζ)
< ∞

}
=E(HΩ,k)

and, consequently, A− ∞
Ω =P (Φ), where Φ={HΩ,k } ∞

k=1. To finish the proof it is
sufficient only to check that Φ satisfies conditions (b) and (c) of Proposition 2.3.

(b) Let

PΩ :=
{

f ∈ H(Cn) : sup
ζ∈Cn

|f(ζ)|
eHΩ(ζ)−ε|z| < ∞ for some ε> 0

}
.

Fix any k ∈N and function f ∈A−k−1
Ω . Evidently, fγ( · ):=f(γ · ) belongs to PΩ for

every γ ∈(0, 1). By the proof of [5, Lemma 2.11] |fγ −f |k,Ω→0 as γ→1−. Therefore,
PΩ is dense in A−k−1

Ω with respect to the norm | · |HΩ,k
. By [5, Lemma 2.10]

PΩ ⊂A− ∞
Ω . Thus, A− ∞

Ω is dense in A−k−1
Ω with respect to the norm | · |HΩ,k

, and
(b) holds with m=k+1.

(c) From (3) and the Lipschitz condition for HΩ,k it follows that

sup
|w|≤1

HΩ,k+1(ζ+w)+log(1+|ζ|) ≤ HΩ(ζ)+RΩ −k log(1+|ζ|)+k log 2+Ck+1

≤ HΩ,k(ζ)+RΩ+k log 2+Ck+1 −ck.

This means that (c) holds with m=k+1 and M=RΩ+k log 2+Ck+1 −ck. �

Corollary 2.6. Let Ω be a bounded convex domain in C
n. Then the set M − ∞

Ω,Ω

of all multiplicators from A− ∞
Ω into A− ∞

Ω coincides with the family of all polynomi-
als.

Proof. This is a direct consequence of Proposition 2.5. �

2.3. Functional criterion for surjectivity

Definition 2.7. A nontrivial function ϕ∈A∞
K is a divisor from A− ∞

Ω+K into A− ∞
Ω

if the theorem of division is valid for ϕ, i.e. the following implication is fulfilled:

f ∈ A− ∞
Ω+K and

f

ϕ
∈ O(CN ) =⇒ f

ϕ
∈ A− ∞

Ω .

Denote by D − ∞
Ω+K,Ω the set of all divisors from A− ∞

Ω+K into A− ∞
Ω .
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Proposition 2.8. Let ϕ∈A∞
K . Consider the following assertions:

(i) Λϕ(A− ∞
Ω ) is closed in A− ∞

Ω+K ;
(ii) For each p∈N there exist m∈N and C>0 such that

sup
ζ∈Cn

|f(ζ)|(1+|ζ|)p

eHΩ(ζ)
≤ C sup

ζ∈Cn

|ϕ(ζ)| |f(ζ)|(1+|ζ|)m

eHΩ(ζ)+HK(ζ)
for all f ∈ A− ∞

Ω ;

(iii) ϕ∈ D − ∞
Ω+K,Ω.

Then (iii)⇒(ii)⇔(i).

Proof. (i)⇔(ii) As was noted above, the operator Λϕ : A− ∞
Ω →A− ∞

Ω+K is con-
tinuous. Additionally, by the uniqueness theorem for holomorphic functions it is
injective. Then (ii) means that Λϕ is a topological isomorphism from A− ∞

Ω onto
Λμ(A− ∞

Ω ) endowed with the topology induced from A− ∞
Ω+K . Since A− ∞

Ω and A− ∞
Ω+K

are Fréchet spaces, this is equivalent to (i).
(iii)⇒(i) This follows, by standard arguments, from the fact that the original

topology in A− ∞
Ω+K is finer than the topology of uniform convergence on compact

sets in C
n. �

We have the following functional criterion for surjectivity.

Theorem 2.9. Let Ω and Ω+K be in D − ∞,n and μ be an analytic functional
with μ̂∈A∞

K . Consider the following assertions:
(i) μ∗ : A− ∞(Ω+K)→A− ∞(Ω) is surjective;
(ii) For each p∈N there exist m∈N and C>0 such that

sup
ζ∈Cn

|f(ζ)|(1+|ζ|)p

eHΩ(ζ)
≤ C sup

ζ∈Cn

|μ̂(ζ)| |f(ζ)|(1+|ζ|)m

eHΩ(ζ)+HK(ζ)
for all f ∈ A− ∞

Ω ;

(iii) μ̂∈ D − ∞
Ω+K,Ω.

Then (iii)⇒(ii)⇔(i).

Proof. This is a direct consequence of Propositions 2.2 and 2.8. �

Remark 2.10. Note that for various function spaces (see, e.g., Ehrenpreis [11],
Epifanov [12], Krivosheev [17], Momm [21], Sigurdsson [23] and Tkachenko [25])
(ii)⇔(iii), and that the proof of the implication (ii)⇒(iii) is based on the descrip-
tion of all divisors. In the next section we give a description of all ϕ∈A∞

K that
belong to D − ∞

Ω+K,Ω for any Ω. As a consequence, those ϕ and only they satisfy
the condition (ii) of Proposition 2.8 for any Ω. Thus the conditions (i)–(iii) of
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Proposition 2.8 are equivalent when applied to all bounded convex domains Ω si-
multaneously. Moreover we prove that if one of the conditions (i)–(iii) is valid for
every open bounded convex polyhedron Ω in C

n, then all three conditions are valid
for any bounded convex domain Ω in C

n. The equivalence of three conditions (i)–
(iii) for an individual domain Ω is still open. We strongly believe that the answer
depends on the smoothness of the boundary of Ω.

3. Surjectivity on the class of all domains

3.1. Condition (Sa)

Let ϕ(ζ) be an entire function of exponential type. Its regularized radial indi-
cator h∗

ϕ(ζ) is defined as follows:

h∗
ϕ(ζ) := lim sup

ζ′→ζ
lim sup

r→∞

log |ϕ(rζ ′)|
r

, ζ ∈ C
n.

We recall the condition (S), originally due to T. Kawai [16], that was introduced
in [15].

Definition 3.1. An entire function ϕ∈ O(Cn) of exponential type is said to
satisfy the condition (S) at direction ζ0 ∈C

n\ {0}, if for each ε>0 there exists N>0
such that for all r>N and ζ ∈C

n with |ζ −ζ0|<εr we have

log |ϕ(rζ)|
r

≥ h∗
ϕ(ζ0)−ε.

Remark 3.2. It was showed in [15] that condition (S) is nothing but the con-
dition of regular growth, the classical notion in the theory of entire functions.

As above, let μ be an analytic functional with μ̂∈A∞
K . Then h∗

μ̂(ζ)≤HK(ζ)
in C

n. Throughout this section we assume that the assumption h∗
μ̂(ζ)=HK(ζ) is

always satisfied. Note that for spaces of holomorphic functions in convex domains,
this last condition with the condition (S) is, in a sense, necessary and sufficient for
the solvability of the nonhomogeneous convolution equation μ∗f=g. We refer the
reader to [17] for the more precise statement (see also Theorem 9.35 in [18]).

We now define another condition, similar to the complete regular growth con-
dition (S), but stronger than (S) and more appropriate for spaces with polynomial
growth near the boundary.
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Definition 3.3. An entire function ϕ∈ O(Cn) of exponential type is said to
satisfy the condition (Sa), if there exist s, N>0 such that for each ζ ∈C

n with
|ζ|>N there is ζ ′ ∈C

n with |ζ ′ −ζ|<log(1+|ζ|) satisfying

log |ϕ(ζ ′)| ≥ h∗
ϕ(ζ)−s log |ζ|.

3.2. Sufficient conditions

The following result shows that the condition (Sa) is sufficient for the division
theorem in the classes A− ∞

Ω .

Proposition 3.4. Let ϕ∈A∞
K be such that h∗

ϕ=HK . If ϕ satisfies (Sa), then
ϕ∈ D − ∞

Ω+K,Ω.

We recall a lemma due to Harnack, Malgrange and Hörmander ([14, Lemma 3.1]).

Lemma 3.5. Let Φ, F and G=F/Φ be three holomorphic functions in the
open ball B(0; R). If the inequalities |Φ(w)| ≤A and |F (w)| ≤B hold on B(0; R),
then we have

|G(w)| ≤ BA2|w|/(R− |w|)|Φ(0)| −(R+|w|)/(R− |w|), w ∈ B(0; R).

Proof of Proposition 3.4. Let s, N>0 be as in the condition (Sa) for ϕ. We
can assume without loss of generality that log(1+t)≤ 1

6 (1+t) for all t≥N . In the
sequel, we will write 
(w):=log(1+|w|), w ∈C

n, for simplicity.
Since ϕ∈A∞

K , there exist A>0 and p∈N such that

(4) log |ϕ(w)| ≤ A+HK(w)+p
(w), w ∈ C
n.

Consider any function f ∈A− ∞
Ω+K with f/ϕ∈ O(Cn). Since f ∈A− ∞

Ω+K , for each m∈N

there is B>0 such that

(5) log |f(w)| ≤ B+HΩ+K(w)−m
(w), w ∈ C
n.

Given ζ ∈C
n with |ζ|>N , take ζ ′ as in the condition (Sa). Noting that |ζ ′ ′ −ζ| ≤

3
(ζ) for all ζ ′ ′ ∈B(ζ ′; 2
(ζ)) and using the choice of N , we get


(ζ ′ ′) ≥ log(1+|ζ| −3
(ζ)) = log(1+|ζ|)+log
(

1− 3
(ζ)
1+|ζ|

)
≥ 
(ζ)−1.
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From (5) it then follows that

sup
ζ′ ′ ∈B(ζ′;2	(ζ))

log |f(ζ ′ ′)| ≤ B+ sup
|ζ′ ′ −ζ′ |≤2	(ζ)

(HΩ+K(ζ ′ ′)−m
(ζ ′ ′))

≤ B+m+HΩ+K(ζ)−(m−3RΩ+K)
(ζ).

In the same way, using (4) we have that

sup
ζ′ ′ ∈B(ζ′;2	(ζ))

log |ϕ(ζ ′ ′)| ≤ A+p+HK(ζ)+(p+3RK)
(ζ).

Applying Lemma 3.5 with R:=2
(ζ), Φ(w)=ϕ(ζ ′ +w), F (w)=f(ζ ′ +w) and
w=ζ −ζ ′, and using the condition (Sa) for ϕ, we get that

log
∣∣∣∣
f(ζ)
ϕ(ζ)

∣∣∣∣ ≤ B+m+HΩ+K(ζ)−(m−3RΩ+K)
(ζ)

+
2|ζ −ζ ′ |

2
(ζ)− |ζ −ζ ′ | (A+p+HK(ζ)+(p+3RK)
(ζ))

− 2
(ζ)+|ζ −ζ ′ |
2
(ζ)− |ζ −ζ ′ | (HK(ζ)−s
(ζ))

≤ B+m+2(A+p)+HΩ(ζ)−(m−3RΩ+K −6RK −2p−3s)
(ζ).

Since m is arbitrary, we have that f/ϕ∈A− ∞
Ω . This completes the proof. �

As a consequence of Theorem 2.9 and Proposition 3.4 we have the following
sufficient conditions for the surjectivity of convolution operators.

Proposition 3.6. Let Ω and Ω+K be in D − ∞,n and μ be an analytic func-
tional with μ̂∈A∞

K . If h∗
μ̂=HK and μ̂ satisfies (Sa), then the convolution operator

μ∗ : A− ∞(Ω+K)→A− ∞(Ω) is surjective.

3.3. Necessary conditions

In this section we prove that the condition (Sa) is necessary for the convolution
operator to be surjective from A− ∞(Ω+K) onto A− ∞(Ω) for each convex bounded
domain Ω. Below K is a fixed convex compact set and Sn is the unit sphere in C

n.

Lemma 3.7. A function g ∈A∞
K with radial indicator HK satisfies (Sa) if and

only if there are s, j and N such that

(6) sup
|w−a|≤jρ(t)

|g(tw)| ≥ tHK(a)−s log(1+t), a ∈ Sn and t ≥ N,

where ρ(t):=log(1+t)/t.



12 Alexander V. Abanin, Ryuichi Ishimura and Le Hai Khoi

Proof. It is trivial that (Sa) implies (6). Assume that g satisfies (6). Consider
any z ∈C

n \ {0}, put a:=z/|z| and t:=|z|, and let

Mg(z; r) :=max{ |g(w)| : |w1 −z1| = ... = |wn −zn| = r}, r > 0.

Clearly,
sup

|w−a|≤jρ(t)

|g(tw)| ≤ Mg(z; j log(1+|z|)), if |z| ≥ N.

Applying (6) we then have

(7) log Mg(z; j log(1+|z|)) ≥ HK(z)−s log(1+|z|), if |z| ≥ N.

Since g ∈A∞
K , there exist q, M>0 such that

(8) log |g(ζ)| ≤ HK(ζ)+q log(1+|ζ|) for all |ζ| ≥ M.

Take L so large that L−2j log L≥M+2j, and remember that HK , as a support
function of a compact set, satisfies the Lipschitz condition

|H(ζ1)−H(ζ2)| ≤ A‖ζ1 −ζ2‖ for some A> 0 and all ζ1, ζ2 ∈ C
n,

where ‖ζ‖:=max1≤k≤n |ζk |. It then follows from (8) that

(9) log Mg(z; 2j log(1+|z|)) ≤ HK(z)+2j(A+q) log(1+|z|) for all |z| ≥ L.

As log Mg(z; r) is convex with respect to log r, we get that

log Mg(z; j log(1+|z|)) ≤ j

2j −1/
√

n
log Mg

(
z;

log(1+|z|)√
n

)

+
j −1/

√
n

2j −1/
√

n
log Mg(z; 2j log(1+|z|)).

Hence, using (7) and (9), we find that, for |z| ≥M+L,

sup
|w−z|≤log(1+|z|)

log |g(w)| ≥ log Mg

(
z;

log(1+|z|)√
n

)

≥ 2j −1/
√

n

j
log Mg(z; j log(1+|z|))

− j −1/
√

n

j
log Mg(z; 2j log(1+|z|))

≥ 2j −1/
√

n

j
HK(z)−2s log(1+|z|)− j −1/

√
n

j
HK(z)

−2j(A+q) log(1+|z|)
= HK(z)−p log(1+|z|),

where p:=2s+2j(A+q). Thus, g satisfies (Sa). �
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Lemma 3.8. Let g ∈A∞
K satisfy condition (ii) of Proposition 2.8 for every open

bounded convex polyhedron Ω⊂C
n. Then the radial indicator of g coincides with

HK and g satisfies (Sa).

Proof. The condition (ii) of Proposition 2.8 implies that there exist m∈N and
M>0 such that

(10) sup
z∈Cn

|f(z)|
eHΩ(z)

≤ M sup
z∈Cn

|g(z)| |f(z)|(1+|z|)m

eHΩ(z)+HK(z)
for all f ∈ A− ∞

Ω .

Certainly, m and M depend on Ω but not on f ∈A− ∞
Ω .

Suppose that the radial indicator h∗
g of g does not coincide with HK or h∗

g=HK

but g does not satisfy (Sa). Using Lemma 3.7 we have that in both cases the
condition (6) does not hold. Then there exist a∈Sn and tj↑∞ such that

sup
|w−a|≤jρ(tj)

|g(tjw)| ≤ tjHK(a)−j2 log(1+tj) for each j ∈ N.

Without loss of generality we can assume that tj ≥2j log(1+tj)+2 for all j ∈N. Put

ΔK :=max
w∈K

|w|, zj := tja and Rj := j log(1+tj) = j log(1+|zj |).

Notice that for |w −zj | ≤Rj we have

1
2 log(1+|w|) ≤ log

(
1+ 2

3 |w|
)

≤ log(1+tj) ≤ log(1+2|w|) ≤ 2 log(1+|w|).

Then, for such w and j ≥8ΔK ,

log |g(w)| ≤ HK(zj)−j2 log(1+tj)

≤ HK(w)+ΔKRj −j2 log(1+tj)

≤ HK(w)+2ΔKj log(1+|w|)− j2

2
log(1+|w|)

≤ HK(w)− j2

4
log(1+|w|).

Thus,

(11) log |g(w)| ≤ HK(w)− j2

4
log(1+|w|) for all |w −zj | ≤ Rj and j ≥ 8ΔK .

Since g ∈A∞
K , there exists p>0 such that

(12) log |g(w)| ≤ HK(w)+p log(1+|w|)+p for all w ∈ C
n.
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For any bounded convex polyhedron Ω in C
n, any fixed point z ∈C

n, and any
number R>0 consider the function hΩ(z, R)(ζ) which coincides with HΩ(ζ) for
|ζ −z| ≥R and equals

sup
{

u(w) : u is psh in B(z, R), and lim sup
w→ζ

u(w) ≤ HΩ(ζ) for ζ ∈ ∂B(z, R)
}

for ζ ∈B(z, R):={ζ ∈C
n :|ζ −z|<R}. By [20, Lemma 2] hΩ(z, R) is psh and contin-

uous in C
n. Next, put

S∗
Ω := {z ∈ Sn : hΩ(z, R)(z) >HΩ(z) for all R > 0}

and note that S∗
Ω �=∅ for all Ω (see, for example, [21, the remark after Lemma 3.3]).

Let now Ω be an open bounded convex polyhedron in C
n with 0∈Ω and a∈S∗

Ω.
By [21, Lemma 3.1] there exists ε0>0 such that

sup
ζ∈B(ta,R)

(hΩ(ta, R)(ζ)−HΩ(ζ)) ≥ ε0R for all R > 0 and t > 0.

On the other hand,

hΩ(z, R)(w) ≤ sup
|ζ−z|≤R

HΩ(ζ) ≤ HΩ(w)+2ΔΩR for all z, w ∈ C
n with |w −z| ≤ R,

where ΔΩ :=supζ∈Ω |ζ|. Taking t=tj , z=zj , and R=Rj/2, we find ζj with |ζj −zj | ≤
Rj/2 so that, for any j ∈N,

(13) hΩ

(
zj ,

Rj

2

)
(ζj) ≥ HΩ(ζj)+

ε0

2
Rj

and

(14) hΩ

(
zj ,

Rj

2

)
(w) ≤ HΩ(w)+ΔΩRj for all |w −zj | ≤ Rj/2.

Fix a sequence {qj } ∞
j=1 with 1

2 ≤qj↑1. By [1, Lemma 4] (see also [2, Lemma 3])
there exist an absolute constant A=A(n) and a family {fj :j ∈N} of entire functions
in C

n so that, for each j ∈N,

log |fj(ζj)| = qjhΩ(zj , Rj/2)(ζj),(15)

log |fj(z)| ≤ qj sup
|w−z|≤1

hΩ(zj , Rj/2)(w)+2n log(1+|z|)+A for all z ∈ C
n.(16)
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Notice that from the definition of hΩ(zj , Rj/2) and (14) it follows that for |z −zj | ≤
1
2Rj +1,

sup
|w−z|≤1

hΩ(zj , Rj/2)(w) ≤ sup
|w−z|≤1

HΩ(w)+ΔΩRj

≤ HΩ(z)+ΔΩRj +ΔΩ ≤ HΩ(z)+2ΔΩj log(1+|z|)+ΔΩ,

while for |z −zj |> 1
2Rj +1,

sup
|w−z|≤1

hΩ(zj , Rj/2)(w) = sup
|w−z|≤1

HΩ(w) ≤ HΩ(z)+ΔΩ.

Therefore, from (13), (15), and (16) it follows that, for each j ∈N,

log |fj(ζj)| ≥ qjHΩ(ζj)+
ε0

4
j log(1+|zj |) ≥ qjHΩ(ζj)+

ε0

8
j log(1+|ζj |),(17)

log |fj(z)| ≤ qjHΩ(z)+2(ΔΩj+n) log(1+|z|)+A+ΔΩ, |z −zj | ≤ Rj

2
,(18)

and

(19) log |fj(z)| ≤ qjHΩ(z)+2n log(1+|z|)+A+ΔΩ, |z −zj | >
Rj

2
.

Next, estimate

Aj := sup
z∈Cn

|g(z)| |fj(z)|(1+|z|)m

eHΩ(z)+HK(z)
.

If |z −zj | ≤Rj/2+1, then, applying (11) and (18), we have, for j ≥16(ΔK +ΔΩ+n),

log |g(z)fj(z)| ≤ HK(z)− j2

4
log(1+|z|)+qjHΩ(z)+2(ΔΩj+n) log(1+|z|)+A+ΔΩ

≤ HΩ(z)+HK(z)− j2

8
log(1+|z|)+A+ΔΩ.

Hence,

sup
|z−zj |≤Rj/2+1

|g(z)| |fj(z)|(1+|z|)m

eHΩ(z)+HK(z)
≤ eA+ΔΩ , when j2 ≥ 8m.

Further, from (12) and (19) it follows that

log |g(z)fj(z)| ≤ HK(z)+p log(1+|z|)+p+qjHΩ(z)+2n log(1+|z|)+A+ΔΩ

≤ HΩ(z)+HK(z)+(p+2n) log(1+|z|)−(1−qj)δΩ|z|+A+ΔΩ,
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where δΩ :=inf |ζ|=1 HΩ(ζ). Then, for all j ∈N,

sup
|z−zj |>Rj/2+1

|g(z)| |fj(z)|(1+|z|)m

eHΩ(z)+HK(z)
≤ eA+ΔΩ+δΩ sup

s≥0

sm+p+2n

e(1−qj)δΩs

= eA+ΔΩ+δΩ

(
m+p+2n

(1−qj)δΩe

)m+p+2n

.

Without loss of generality we can assume that m+p+2n≥δΩe. Then we finally
have that

(20) Aj ≤ eA+ΔΩ+δΩ

(
m+p+2n

(1−qj)δΩe

)m+p+2n

.

From (18) and (19) it easily follows that fj ∈A− ∞
Ω for every j ∈N. At the same

time, (17) implies that

Bj := sup
z∈Cn

|fj(z)|
eHΩ(z)

≥ |fj(ζj)|
eHΩ(ζj)

≥ (1+|ζj |)ε0j/8

e(1−qj)ΔΩ(1+|ζj |) .

Taking qj =1−ε0j/8(1+|ζj |)ΔΩ, we find that

(21) Bj ≥
(

ε0j

8(1−qj)ΔΩe

)ε0j/8

.

From (20) and (21) we have that Bj/Aj→∞ as j→∞. This contradicts (10)
and completes the proof. �

Remark 3.9. As follows from the proof, in Lemma 3.8 it is enough to require
that g ∈A∞

K satisfies condition (ii) of Proposition 2.8 for every polyhedron Ω from
some subclass D having the following property: for each a∈Sn there is Ω∈ D such
that a∈S∗

Ω.

3.4. Criterion for surjectivity

Now we can state a criterion for the convolution operator to be surjective on
the class of all convex bounded domains in C

n.

Theorem 3.10. Let μ be an analytic functional on C
n, carried by a compact

convex set K, such that μ∗A− ∞(Ω+K)⊂A− ∞(Ω) for each convex bounded domain
Ω⊂C

n. Then μ∗ : A− ∞(Ω+K)→A− ∞(Ω) is surjective for every Ω if and only if
the radial indicator of μ̂ coincides with HK and μ̂ satisfies (Sa).
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Proof. This result is a direct consequence of Proposition 3.6, Theorem 2.9 and
Lemma 3.8. �

In the next section we give some additional results for surjectivity of convolu-
tion operators. In particular, we prove that each differential operator of finite order
maps A− ∞(Ω) onto A− ∞(Ω).

4. Examples and applications

4.1. Examples

In this section we consider examples of functions satisfying the condition (Sa)
and discuss the question about existence of such functions for a given convex com-
pact set K.

Example 4.1. Let n≥1 and ζ=(ζ1, ..., ζn). Then any P (ζ)∈C[ζ] satisfies (Sa)
and we also have that h∗

μ̂(ζ)=H0(ζ)=0.

More generally, we have the following statement.

Proposition 4.2. Let λ1, ..., λN ∈C
n and Pj(ζ)∈C[ζ], 1≤j ≤N . Consider the

exponential-polynomial

f(ζ) :=
N∑

j=1

Pj(ζ)e〈λj ,ζ〉

corresponding to the differential-difference operator. Set Λ:={λ1, ..., λN } and
K :=conv Λ, the convex hull of Λ. Then f(ζ) satisfies (Sa) and h∗

f (ζ)=HK(ζ).

Proof. The case N=1 is trivial. Let N ≥2. For any ζ0 ∈C
n, we may suppose

that

HK(ζ0)=Re〈λ1, ζ0〉 ≥ Re〈λk, ζ0〉, 2 ≤ k ≤ N.

Let mj :=deg Pj and m:=maxj mj . Set

gN (ζ) :=P1(ζ)e〈λ1−λN ,ζ〉 +...+PN −1(ζ)e〈λN −1−λN ,ζ〉 +PN (ζ).

We then have

f(ζ) = e〈λN ,ζ〉gN (ζ).
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If we take any α(N) with |α(N)|=mN +1, we have D
α(N)
ζ PN (ζ)=0 and then with

another polynomial QN
k (ζ) of degree mk, 1≤k ≤N −1, we have

D
α(N)
ζ gN (ζ) =QN

1 (ζ)e〈λ1−λN ,ζ〉 +...+QN
N −1(ζ)e〈λN −1−λN ,ζ〉.

Next we set

gN −1(ζ) :=QN
1 (ζ)e〈λ1−λN −1,ζ〉 +...+QN

N −2(ζ)e〈λN −2−λN −1,ζ〉 +QN
N −1(ζ)

and then
D

α(N)
ζ gN (ζ) = e〈λN −1−λN ,ζ〉gN −1(ζ).

Taking any α(N −1) with |α(N −1)|=mN −1+1, we have D
α(N −1)
ζ QN −1

N (ζ)=0 and
then with another polynomial QN −1

k (ζ) of degree mk, 1≤k ≤N −2, we have

D
α(N −1)
ζ gN −1(ζ) =QN −1

1 (ζ)e〈λ1−λN −1,ζ〉 +...+QN −1
N −2(ζ)e〈λN −2−λN −1,ζ〉.

Repeating these procedure, we finally have α(2) with |α(2)|=m2+1 and a
polynomial Q2

1(ζ) of degree m1 such that

D
α(2)
ζ g2(ζ) = e〈λ1−λ2,ζ〉Q2

1(ζ).

By the preceding example, we have a constant c1>0 such that there exists ζ(1) ∈
B(ζ0; 1/N
(|ζ0|)) satisfying

|Q2
1(ζ

(1))| >c1.

Then by the Cauchy estimate, there exists ζ(2) ∈B(ζ(1); 1/N
(|ζ0|)) such that

|g2(ζ(2))| ≥ c′
2e

Re〈λ1−λ2,ζ(1)〉

with a constant c′
2>0.

Note that |ζ(1)| ≥ |ζ0| − |ζ(1) −ζ(0)| ≥ |ζ(0)| −1/N
(|ζ0|). Setting

a2 :=
1
N

|λ1 −λ2| ≥ 0,

we have with c2>0,

|g2(ζ(2))| ≥ c2e
Re〈λ1−λ2,ζ0〉(1+|ζ0|)− |λ1−λ2|/N = c2e

Re〈λ1−λ2,ζ0〉(1+|ζ0|)−a2 .

In the same way, we find ζ(3) ∈B(ζ(2); 1/N
(|ζ0|)) and a3 ≥0 such that

|g3(ζ(3))| ≥ c′
3e

Re〈λ2−λ3,ζ(2)〉 |g2(ζ(2))| ≥ c3e
Re〈λ1−λ3,ζ0〉(1+|ζ0|)−a3

with constants c3, c
′
3>0.

Repeating this procedure, we finally have a point ζ(N) ∈B(ζ(N −1); 1/N
(|ζ0|))⊂
B(ζ0; 
(|ζ0|)), and constants aN , a′

N ≥0 and cN , c′
N >0 such that

|gN (ζ(N))| ≥ cNeRe〈λ1−λN ,ζ0〉(1+|ζ0|)−aN
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and so

|f(ζ(N))| = eRe〈λN ,ζ(N)〉 |gN (ζ(N))| ≥ c′
NeRe〈λ1,ζ0〉(1+|ζ0|)−aN

≥ c′
NeHK(ζ0)(1+|ζ0|)−a′

N .

We note that all the constants ck, c′
k, ak, and a′

k are independent of ζ0 and the first
assertion follows.

The property h∗
f (ζ)=HK(ζ) is proved in [22, Theorem 6.1.1]. �

Proposition 4.3. Let Λ, K and f be as in Proposition 4.2 and μf ∗ be the
differential-difference operator generated by f . Then μf ∗ maps A− ∞(Ω+K) onto
A− ∞(Ω) for any Ω, Ω+K ∈ D − ∞,n. In particular, for each polynomial P in C

n the
differential operator μP ∗ maps A− ∞(Ω) onto A− ∞(Ω) for any Ω∈ D − ∞,n.

Proof. This result is an immediate consequence of Theorem 3.10 and
Proposition 4.2. �

Let us discuss the question about existence of functions which belong to A∞
K

and satisfy (Sa). For n=1 the answer is always affirmative and can be obtained
rather simply.

Proposition 4.4. For each convex compact set K in C there exists a function
g in A∞

K which satisfies (Sa).

Proof. If K is a singleton, say {a}, then A∞
K coincides with the family

{p(z)eaz :p is a polynomial}. By Proposition 4.2, each function of the type p(z)eaz

with nontrivial polynomial p satisfies (Sa).
Now consider K with more than one point. Applying [26, Theorem 5] to a

subharmonic function HK in C we can find an entire function g such that

(22)
∣∣log |g(z)| −HK(z)

∣∣ ≤ C log(1+|z|), z /∈ E0,

C being a constant and E0 being an exceptional set in C which can be covered by a
sequence of rings {z :|z −zk | ≤rk } with

∑∞
k=1 rk<∞. Clearly, g belongs to A∞

K and
satisfies (Sa). �

Corollary 4.5. Let K=K1 ×...×Kn, where Kj are convex compact sets in C,
1≤j ≤n. Then there exists a function g ∈A∞

K which satisfies (Sa).

Proof. It is sufficient to take a function g(z):=
∏n

j=1 gj(zj), where gj satis-
fies (22) with K=Kj , 1≤j ≤n. �
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Remark 4.6. In [27, Theorem 4] the following analog of (22) for n>1 was
established ∣∣log |g(z)| −HK(z)

∣∣ ≤ (1+|z|)2/3, z /∈ E0,

where K is a convex compact set in Cn and E0 is some exceptional set. Evidently,
this inequality cannot guarantee the existence of functions belonging to A∞

K and
satisfying (Sa) for arbitrary K and n>1. So we have the following question.

Open problem. Let K be a convex compact set in C
n, n>1. Does there

exist a function g in A∞
K which satisfies (Sa)?

4.2. Explicit form for solutions

In this section we discuss the problem of explicit representation of solutions for
convolution operators in the space A− ∞(Ω). Throughout what follows we assume
that either n=1, or n>1 and Ω and Ω+K have C2 boundaries. We have the
following representation result.

Proposition 4.7. Let μ∗ : A− ∞(Ω+K)→A− ∞(Ω) be a surjective convolution
operator. Then there exists a sequence Λ={λk } ∞

k=1 in C
n with |λk |→∞ such that

each function g ∈A− ∞(Ω) can be represented in the form

(23) g(z) =
∞∑

k=1

cke〈λk,z〉, z ∈ Ω,

and the function

(24) f(w) =
∞∑

k=1

ck

μ̂(λk)
e〈λk,w〉, w ∈ Ω+K,

belongs to A− ∞(Ω+K) and is a solution of the equation μ∗f=g.

Proof. In fact, by [6, Theorem 4.3] there exists a sequence Λ={λk } ∞
k=1 in C

n

with |λk |→∞ so that the system of exponential functions EΛ :={e〈λk,z〉 :k ∈N} is an
absolutely representing system in A− ∞(Ω+K). Then, given g ∈A− ∞(Ω), we find
f ∈A− ∞(Ω+K) with μ∗f=g and expand f into the series

(25) f(z) =
∞∑

k=1

ake〈λk,w〉, w ∈ Ω+K,

which converges to f absolutely in A− ∞(Ω+K). Since μ∗ : A− ∞(Ω+K)→A− ∞(Ω)
is continuous, the series

∑∞
k=1 akμ̂(λk)e〈λk,z〉 converges to g in A− ∞(Ω). It remains

to put ck :=akμ̂(λk), k ∈N. �
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