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Convolution Using Discrete Sine and Cosine
Transforms

V. G. Reju∗, Soo Ngee Koh, Senior Member, IEEE, and Ing Yann Soon, Member, IEEE,

Abstract— In this paper we derive a relation for the circular
convolution operation in the discrete sine and cosine transform
domains. The transform coefficients are either symmetric or
asymmetric and hence we need to calculate only half of the total
coefficients. Since fast algorithms are available for the computa-
tion of discrete sine and cosine transforms, the proposed method
is an alternative to the DFT method for filtering applications.

Index Terms— Filtering, Discrete transforms, Fourier trans-
forms.

I. INTRODUCTION

THE convolution multiplication property of discrete
Fourier transform (DFT) is well known. For discrete

cosine and sine transforms (DCTs & DSTs), called dis-
crete trigonometric transform (DTT), such a nice property
does not exist. S.A.Martucci [1], [2] derived the convolu-
tion multiplication properties of all the families of discrete
sine and cosine transforms, in which the convolution is a
special type called symmetric convolution. For symmetric
convolution the sequences to be convolved must be either
symmetric or asymmetric. The general form of the equation
for symmetric convolution in DTT domain is s(n) ∗ h(n) =
T−1

c {Ta {s(n)} × Tb {h(n)}} , where s(n) and h(n) are the
input sequences, × represents the element-wise multiplication
operation and ∗ represents the convolution operation. The type
of the transforms Ta, Tb and Tc to be used depends on the type
of the symmetry of the sequences to be convolved (see [1], [2]
for more details). In [1], [2] and [3] it is also showed that by
proper zero-padding of the sequences symmetric convolution
can be used to perform linear convolution.

In this letter we derive a relation for circular convolution in
the DTT domain. The advantage of this new relation is that
the input sequences to be convolved need not be symmetrical
or asymmetrical and the computational time is less than that
of the symmetric convolution method.

II. CONVOLUTION IN DTT DOMAIN

The discrete sine and cosine transforms used in this paper
are the same as were used in [1] and [2], which are given
below.

SC1(k) = 2
N∑

n=0

ζns(n) cos
(

πkn
N

)
k = 0, 1, · · · , N (1)
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SC2(k) = 2
N−1∑
n=0

s(n) cos
(

πk(2n+1)
2N

)
k = 0, 1, · · · , N − 1 (2)

SS1(k) = 2
N−1∑
n=1

s(n) sin
(

πkn
N

)
k = 1, 2, · · · , N − 1 (3)

SS2(k) = 2
N−1∑
n=0

s(n) sin
(

πk(2n+1)
2N

)
k = 1, 2, · · · , N (4)

ζn =

{
1
2 n = 0 or N

1 n = 1, 2, · · · , N − 1

where SC1(k), SC2(k), SS1(k), SS2(k) denotes the type I
even DCT (DCTIe) coefficients, type II even DCT (DCTIIe)
coefficients, type I even DST (DSTIe) coefficients and type II
even DST (DSTIIe) coefficients, respectively of the sequence
s(n).

Let the sequences to be convolved are s(n) and h(n) of
length N so that the convolved signal is s(n) � h(n), where
� represents the circular convolution operation. The DFT of
s(n) is given by [4]

S(k) =
N−1∑
n=0

s(n)e
−j2πkn

N k = 0, 1, · · · , N − 1 (5)

Multiplying (5) by 2e
−jπk

N we will get

2e
−jπk

N S(k) = 2
N−1∑
n=0

s(n)
(
cos
(

πk(2n+1)
N

)
−j sin

(
πk(2n+1)

N

))
(6)

Comparing (2) and first term of (6), it can be observed that

2
N−1∑
n=0

s(n) cos
(

πk(2n+1)
N

)
is the decimated and asymmetri-

cally extended version of (2) with index k = 0 : N − 1.
Similarly comparing (4) and second term of (6), it can be

observed that 2
N−1∑
n=0

s(n) sin
(

πk(2n+1)
N

)
is the decimated and

symmetrically extended version of (4) with index k = 1 :
N . For convenient element-wise operation in the following
equations, append 0 at k = N for the resulting sequence of
the first term, and at k = 0 for the resulting sequence of the

second term so as to obtain the sequences
�

SC2(k) and
�

SS2(k)
respectively of length N + 1. Hence (6) becomes

2e
−jπk

N S(k) =
�

SC2(k) − j
�

SS2(k) (7)
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A similar equation can be written for h(n) as

2e
−jπk

N H(k) =
�

HC2(k) − j
�

HS2(k) (8)

Element-wise multiplication of (7) and (8) gives

S(k)H(k) = 1
4e

j2πk
N

{(
�

SC2(k)
�

HC2(k) −
�

SS2(k)
�

HS2(k)
)

−j
(

�

SS2(k)
�

HC2(k) +
�

SC2(k)
�

HS2(k)
)}

(9)

Taking the real part of the inverse discrete Fourier transform
of (9), we will get

real

(
1
N

N−1∑
k=0

S(k)H(k)e
j2πkn

N

)

= 1
4N

N∑
k=0

(
�

SC2(k)
�

HC2(k) −
�

SS2(k)
�

HS2(k)
)

︸ ︷︷ ︸
T1(k)

cos
(

2πk(n+1)
N

)
+ 1

4N

N−1∑
k=1

(
�

SS2(k)
�

HC2(k) +
�

SC2(k)
�

HS2(k)
)

︸ ︷︷ ︸
T2(k)

sin
(

2πk(n+1)
N

)

(10)

Since
�

SC2(N) =
�

HC2(N) =
�

SS2(N) =
�

HS2(N) =
�

SS2(0) =
�

HS2(0) = 0 , the summation range of the first
term in (10) is changed from k = 0 : N − 1 to k = 0 : N and
that of the second term to k = 1 : N − 1.

Comparing (1), (3) and (10) it can be observed that without
the scaling factor 1

4N , the first term in (10) is the decimated
and symmetrically extended version of DCTIe coefficients,
C1{T1}, and the second term is the decimated and asymmet-
rically extended version of the DSTIe coefficients, S1{T2},
except for the shift in the resultant sequences by one sample
and the absences of the constants ζn and 2. Considering these
constants and using the fact that inverse of DCTIe is same as
DCTIe and inverse of DSTIe is same as DSTIe, except for a
scaling factor 2N [1], [2], the above equation can be rewritten
as

s(n) � h(n) = 1
4

(
�

C
−1

1

{
ξk

(
�

C2 {s} ×
�

C2 {h}

−
�

S2 {s} ×
�

S2 {h}
)}

+
�

S
−1

1

{
�

S2 {s} ×
�

C2 {h} +
�

C2 {s} ×
�

S2 {h}
}) (11)

where

ξk =

{
2 k = 0 or N

1 k = 1, 2, · · · , N − 1

The steps for computing (11) can be explained as follows.

• Compute
�

C2 {s} and
�

S2 {s} as[
�

C2

]
k,n

= 2 cos
(

πk(2n+1)
N

)
k, n = 0, 1, · · · , N − 1

[
�

S2

]
k,n

= 2 sin
(

πk(2n+1)
N

)
k = 1, 2, · · · , N
n = 0, 1, · · · , N − 1

�

C2 {s} =

[
�

SC2

]
(N+1)×1

=


 �

C2

0 0 · · · 0 0




(N+1)×N

[
s

]
N×1

�

S2 {s} =
[

�

SS2

]
(N+1)×1

=




0 0 · · · 0 0
�

S2




(N+1)×N

[
s

]
N×1

Alternatively
�

C2 {s} and
�

S2 {s} can be found from the
sequences C2 {s} and S2 {s} respectively after decima-
tion and extending them asymmetrically and symmetri-
cally as shown in Fig.1. The square markings in the figure
show the appended zeros.

• Similarly compute
�

C2 {h} and
�

S2 {h}
• Compute T1(k) and T2(k) as

[T1](N+1)×1 =
[

�

SC2

]
×
[

�

HC2

]
−
[

�

SS2

]
×
[

�

HS2

]
[T2](N+1)×1 =

[
�

SS2

]
×
[

�

HC2

]
+
[

�

SC2

]
×
[

�

HS2

]
• Multiply T1(0) and T1(N) by ξk = 2 and keep all other

elements the same to obtain the new sequence T
′
1(k) of

length N + 1
• Discard T2(0) and T2(N) to obtain the new sequence

T
′
2(k) of length N − 1

• Compute
�

C
−1

1

{
T

′
1

}
and

�

S
−1

1

{
T

′
2

}
as[

�

C1

]
k,n

= 2ζn cos
(

2πkn
N

)
k, n = 0, 1, · · · , N[

�

S1

]
k,n

= 2 sin
(

2πkn
N

)
k, n = 1, 2, · · · , N − 1

�

C
−1

1

{
T

′
1

}
=
[�

T

′

1C−1
1

]
(N+1)×1

= 1
2N

[�

C1

]
(N+1)×(N+1)

[
T

′
1

]
(N+1)×1

�

S
−1

1

{
T

′
2

}
=
[�

T
′

2S−1
1

]
(N−1)×1

= 1
2N

[�

S1

]
(N−1)×(N−1)

[
T

′
2

]
(N−1)×1

Alternatively
�

C
−1

1

{
T

′
1

}
and

�

S
−1

1

{
T

′
2

}
can be found

from the sequences C1

{
T

′
1

}
and S1

{
T

′
2

}
after scal-

ing, decimation and extending them symmetrically and
asymmetrically as shown in Fig.1

• Discard the first element of
�

T
′

1C−1
1

, append one zero at

the end of
�

T

′

2S−1
1

, add the resultant sequences together
and scale them with the scaling factor 1

4 to obtain the
convolved signal as

s(n) � h(n) = 1
4

(
�

T
′

1C−1
1

(1 : N) +
[

�

T
′

2S−1
1

; 0
])
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0 1 2 3 4

N

C1(k)k=0:N

1 2 3 4

N − 1

S1(k)k=1:N−1

0 1 2 3 4

N − 1

C2(k)k=0:N−1

1 2 3 4

N

S2(k)k=1:N

0 2

N − 2
N

N − 2

2 0

�

C1(k)

2 4

N − 2

N − 2

4 2

�

S1(k)

0 2

N − 4
N − 2

N − 2
N − 4

2

�

C2(k)

2 4

N − 2
N

N − 2

4 2

�

S2(k)

0 2

N − 3
N − 1 N − 1

N − 3

2 0

�

C1(k)

2 4

N − 3
N − 1

N − 1
N − 3

4 2

�

S1(k)

0 2

N − 3
N − 1

N − 1
N − 3

2

�

C2(k)

2 4

N − 3
N − 1 N − 1

N − 3

4 2

�

S2(k)

N is even

N is odd

Fig. 1. Generation of
�

C1(k),
�

S1(k),
�

C2(k) and
�

S2(k) from C1(k), S1(k), C2(k) and S2(k) respectively after decimation and symmetric or asymmetric
extension. The black squares represent the appended zeros to make the length of the sequences to N + 1 for element-wise operation, to be discussed later.

The Matlab code for the algorithm is available at
http://www.ntu.edu.sg/eee/home/esnkoh/

III. DISCUSSION

It is interesting to note that in symmetric convolution [1],
[2], the time sequences are symmetric or asymmetric whereas
in (11), the DTT coefficients are symmetric or asymmetric

except for the appended zeros in the sequences
�

C2(k) and
�

S2(k). Utilizing the fact that, any signal can be splitted into
symmetric and asymmetric sequences, in [1], [2], [3] and [5]
it was shown that the symmetric convolution can be used for
linear convolution. For example, if a long sequence x(n) is
to be convolved with filter coefficients h(n) of length Q, then
segment the signal x(n) into blocks of length M with overlap
2Q − 1. Let xb(n) be the bth block and h

′
(n) be the filter

coefficients of length M after appending M − Q zeros, then
calculate wb(n) = C−1

1 {Tc − Ts}; where Tc(0 : M − 1) =
C2 {xb} × C2

{
h

′
}

, Tc(M) = 0, Ts(1 : M) = S2 {xb} ×

S2

{
h

′
}

and Ts(0) = 0. The P = M − 2Q + 1 samples of

wb(n) after removing Q samples from both sides of wb(n) will
be the valid linear convolution coefficients. Hence, symmetric
convolution can be used for linear convolution. However, it
can be seen that, since the block length of the input sequence
is M , the length of the DTTs to be calculated are also of
length M or M + 1 (M for C2 and S2, M + 1 for C−1

1 ) and
the valid outputs will be of length P = M − 2Q + 1.

Since (11) is for circular convolution, similar to DFT, by

proper zero padding, it can be used for linear convolution also.
For example, as in the previous case, to filter a long sequence
x(n) with filter coefficients h(n) of length Q, segment the
signal x(n) into blocks of length P and append each block
with Q − 1 zeros to get blocks of length R = P + Q − 1.
Similarly, append P − 1 zeros to the filter coefficients to
make its length equal to R. Then apply (11), overlap and add
the resultant output blocks to get the filtered signal. While
computing, because of the symmetry of the DTT coefficients in
(11), it is sufficient to calculate only half of the total number of
coefficients. The remaining half is the symmetrically extended
version of the first half. Also, for the second part of (11), the

same DTT coefficients
�

SC2 ,
�

HC2 ,
�

SS2 and
�

HS2 that used
for the first part can be used. Similarly, for the element-
wise multiplication, because of the symmetry of the DTT
coefficients, only half of the coefficients need to be multiplied.
The other half will be the same as the first half with or without
the sign changes. Likewise, for the addition and subtraction
operations also, only half of the elements need to be added
or subtracted. Moreover, unlike the symmetric convolution
method, the length of the DTTs to be calculated here are R+1,

R or R − 1 (R + 1 for
�

C1, R for
�

C2 and
�

S2, R − 1 for
�

S1), which is smaller than that for the symmetric convolution
method. The computational cost per DTT coefficient will
decrease as DTT length decreases. Hence, the computational
time of (11) is less than that of the symmetric convolution
method. Table I summarizes the computational cost for the two
methods in filtering application, neglecting the cost involved
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TABLE I

COMPUTATIONAL COST COMPARISON

Method Number of DDT coefficients to be calculated × +/−
used DCTIe DSTIe DCTIIe DSTIIe

Symmetric
M + 1 0 2M 2M 2M M − 1

convolution

Proposed �R
2
� + 1 �R−1

2
� 2�R

2
� 2�R

2
� 3�R

2
� + �R

2
� − 2 �R−1

2
� + 2�R

2
� − 2

�y� and �y� round y to the nearest integer towards minus infinity and plus infinity respectively.

Filter length = Q, valid output samples per block = P , M = P + 2Q − 1 and R = P + Q − 1.

for sign change, symmetric or asymmetric extension of the
DTT coefficients and multiplication by the scaling factors.

IV. CONCLUSION

We have derived a relation for the circular convolution in
discrete trigonometric transform domain. The computational
time of the method is lower than that of the symmetric
convolution method for filtering applications. Because of the
availability of fast algorithms for DTTs, the new relation is an
alternative to the DFT method for filtering.
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