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Abstract

Compact convolutional neural networks gain efficiency mainly through depthwise
convolutions, expanded channels and complex topologies, which contrarily aggra-
vate the training process. Besides, 3×3 kernels dominate the spatial representation
in these models, whereas even-sized kernels (2×2, 4×4) are rarely adopted. In
this work, we quantify the shift problem occurs in even-sized kernel convolutions
by an information erosion hypothesis, and eliminate it by proposing symmetric
padding on four sides of the feature maps (C2sp, C4sp). Symmetric padding
releases the generalization capabilities of even-sized kernels at little computational
cost, making them outperform 3×3 kernels in image classification and generation
tasks. Moreover, C2sp obtains comparable accuracy to emerging compact models
with much less memory and time consumption during training. Symmetric padding
coupled with even-sized convolutions can be neatly implemented into existing
frameworks, providing effective elements for architecture designs, especially on
online and continual learning occasions where training efforts are emphasized.

1 Introduction

Deep convolutional neural networks (CNNs) have achieved significant successes in numerous com-
puter vision tasks such as image classification [37], semantic segmentation [43], image generation
[8], and game playing [28]. Other than domain-specific applications, various architectures have been
designed to improve the performance of CNNs [11, 14, 3], wherein the feature extraction and represen-
tation capabilities are mostly enhanced by deeper and wider models containing ever-growing numbers
of parameters and operations. Thus, the memory overhead and computational complexity greatly
impede their deployment in embedded AI systems. This motivates the deep learning community to
design compact CNNs with reduced resources, while still retaining satisfactory performance.

Compact CNNs mostly derive generalization capabilities from architecture engineering. Shortcut
connection [11] and dense concatenation [14] alleviate the degradation problem as the network
deepens. Feature maps (FMs) are expanded by pointwise convolution (C1) and bottleneck architec-
ture [35, 40]. Multi-branch topology [38], group convolution [42], and channel shuffle operation
[47] recover accuracy at the cost of network fragmentation [25]. More recently, there is a trend
towards mobile models with <10M parameters and <1G FLOPs [13, 25, 23], wherein the depthwise
convolution (DWConv) [5] plays a crucial role as it decouples cross-channel correlations and spatial
correlations. Aside from human priors and handcrafted designs, emerging neural architecture search
(NAS) methods optimize structures by reinforcement learning [48], evolution algorithm [32], etc.

Despite the progress, the fundamental spatial representation is dominated by 3×3 kernel convolutions
(C3) and the exploration of other kernel sizes is stagnating. Even-sized kernels are deemed inferior and
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rarely adopted as basic building blocks for deep CNN models [37, 38]. Besides, most of the compact
models concentrate on the inference efforts (parameters and FLOPs), whereas the training efforts
(memory and speed) are neglected or even becoming more intractable due to complex topologies
[23], expanded channels [35], and additional transformations [15, 47, 40]. With the growing demands
for online and continual learning applications, the training efforts should be jointly addressed and
further emphasized. Furthermore, recent advances in data augmentation [46, 7] have shown much
more powerful and universal benefits. A simpler structure combined with enhanced augmentations
easily eclipses the progress made by intricate architecture engineering, inspiring us to rethink basic
convolution kernels and the mathematical principles behind them.

In this work, we explore the generalization capabilities of even-sized kernels (2×2, 4×4). Direct
implementation of these kernels encounters performance degradation in both classification and
generation tasks, especially in deep networks. We quantify this phenomenon by an information
erosion hypothesis: even-sized kernels have asymmetric receptive fields (RFs) that produce pixel
shifts in the resulting FMs. The location offset accumulates when stacking multiple convolutions,
thus severely eroding the spatial information. To address the issue, we propose convolution with
even-sized kernels and symmetric padding on each side of the feature maps (C2sp, C4sp).

Symmetric padding not merely eliminates the shift problem, but also extends RFs of even-sized
kernels. Various classification results demonstrate that C2sp is an effective decomposition of C3 in
terms of 30%-50% saving of parameters and FLOPs. Moreover, compared with compact CNN blocks
such as DWConv, inverted-bottleneck [35], and ShiftNet [40], C2sp achieves competitive accuracy
with >20% speedup and >35% memory saving during training. In generative adversarial networks
(GANs) [8], C2sp and C4sp both obtain stabilized convergence and improved image qualities. Our
work stimulates a new perspective full of optional units for architecture engineering, as well as
provides basic but effective alternatives that balance both the training and inference efforts.

2 Related work

Our method belongs to compact CNNs that design new architectures and then train them from scratch.
Whereas most network compressing methods in the literature attempt to prune weights [9] or quantize
operands and operations [41] in terms of implementation on neural accelerators [4, 31]. These
methods are orthogonal to our work and can be jointly adopted.

Even-sized kernel Even-sized kernels are mostly applied together with stride 2 to resize images. For
example, GAN models in [27] apply 4×4 kernels and stride 2 in the discriminators and generators to
avoid the checkerboard artifact [29]. However, 3×3 kernels are preferred when it comes to deep and
large-scale GANs [18, 21, 3]. Except for scaling, few works have implemented even-sized kernels as
basic building blocks for their CNN models. In [10], 2×2 kernels are tested with relatively shallow
(about 10 layers) models, where the FM sizes between two convolution layers are not preserved
strictly. In relational reinforcement learning [45], two C2 layers are adopted to achieve reasoning and
planning of objects represented by 4 pixels.

Atrous convolution Dilated convolution [43] supports exponential expansions of RFs without loss
of resolution or coverage, which is specifically suitable for dense prediction tasks such as semantic
segmentation. Deformable convolution [6] augments the spatial sampling locations of kernels by
additional 2D offsets and learning the offsets directly from target datasets. Therefore, deformable
kernels shift at pixel-level and focus on geometric transformations. ShiftNet [40] sidesteps spatial
convolutions entirely by shift kernels that contain no parameter or FLOP. However, it requires large
channel expansions to reach satisfactory performance. Active shift [16] formulates the amount of FM
shift as a learnable function and optimized two parameters through end-to-end backpropagation.

3 Symmetric padding

3.1 The shift problem

We start with the spatial correlation in basic convolution kernels. Intuitively, replacing a C3 with
two C2s should provide performance gains aside from an 11% reduction of overheads, which is
inspired by the factorization of C5 into two C3s [37]. However, experiments in Figure 3 indicate that
the classification accuracy of C2 is inferior to C3 and saturate much faster as the network deepens.
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Figure 1: Normalized FMs derived from well-trained ResNet-56 models. Three spatial sizes 32×32,
16×16, and 8×8 before down-sampling stages are presented. First row: Conv2×2 with asymmetric
padding (C2). Second row: Conv2×2 with symmetric padding (C2sp). Left: a sample in the CIFAR10
test dataset. Right: average results from all the samples in the test dataset.

Besides, replacing each C3 with C4 also hurts accuracy even though a 3×3 kernel can be regarded
as a subset of 4×4 kernel, which contains 77% more parameters and FLOPs. To address this issue,
the FMs of well-trained ResNet-56 [11] models with C2 and C2sp are visualized in Figure 1. Since
every single FM (channel) is very stochastic and hard to interpret, we report the average values of
all channels in that convolution layer. FMs of C4 and C3 have similar manners as C2 and C2sp,
respectively and are omitted for clarity. It is clearly seen that the post-activation (ReLU) values in C2
are gradually shifting to the left-top corner of the spatial location. These compressed and distorted
features are not suitable for the following classification, let alone pixel-level tasks based on it such as
detection and semantic segmentation, where all the annotations will have offsets starting from the
left-top corner of the image.

We identify this as the shift problem observed in even-sized kernels. For a conventional convolution
between ci input and co output FMs F and square kernels w of size k × k, it can be given as

Fo(p) =

ci
∑

i=1

∑

δ∈R

wi(δ) · F
i(p+ δ), (1)

where δ and p enumerate locations in RFR and in FMs of size h× w, respectively. When k is an
odd number, e.g., 3, we define the central point ofR as origin:

R = {(−κ,−κ), (−κ, 1− κ), . . . , (κ, κ)}, κ = ⌈
k − 1

2
⌉, (2)

where κ denotes the maximum pixel number from four sides to the origin. ⌈·⌉ is the ceil rounding
function. SinceR is symmetrical, we have

∑

δ∈R δ = (0, 0).

When k is an even number, e.g., 2 or 4, implementing convolution between F i and kernels wi

becomes inevitably asymmetric since there is no central point to align. In most deep learning
frameworks, it draws little attention and is obscured by pre-defined offsets. For example, TensorFlow
[1] picks the nearest pixel in the left-top direction as the origin, which gives an asymmetricR:

R = {(1− κ, 1− κ), (1− κ, 2− κ), . . . , (κ, κ)},
∑

δ∈R

δ = (κ, κ). (3)

The shift occurs at all the spatial locations p and is equivalent to pad one more zero on the bottom
and right sides of FMs before convolutions. On the contrary, Caffe [17] pads one more zero on the
left and top sides. PyTorch [30] only supports symmetric padding by default, users need to manually
define the padding policy if desired.

3.2 The information erosion hypothesis

According to the above, even-sized kernels make zero-padding asymmetric with 1 pixel, and averagely
(between two opposite directions) lead to 0.5-pixel shifts in the resulting FMs. The position offset

3



accumulates when stacking multiple layers of even-sized convolutions, and eventually squeezes and
distorts features to a certain corner of the spatial location. Ideally, in case that such asymmetric
padding is performed for n times in the TensorFlow style with convolutions in between, the resulting
pixel-to-pixel correspondence of FMs will be

Fn

[

p− (
n

2
,
n

2
)
]

← F0(p). (4)

Since FMs have finite size h × w and are usually down-sampled to force high-level feature repre-
sentations, then the edge effect [26, 2] cannot be ignored because zero-padding at edges will distort
the effective values of FM, especially in deep networks and small FMs. We hypothesize that the
quantity of information Q is equal to the mean L1-norm of the FM, then successive convolutions
with zero-padding to preserve FM size will gradually erode the information:

Qn =
1

hw

∑

p∈h×w

|Fn(p)|, Qn < Qn−1. (5)

The information erosion happens recursively and is very complex to be formulated, we directly derive
FMs from deep networks that contain various kernel sizes. In Figure 2, 10k images of size 32×32
are fed into untrained ResNet-56 models where identity connections and batch normalizations are
removed. Q decreases progressively and faster in larger kernel sizes and smaller FMs. Besides,
asymmetric padding in even-sized kernels (C2, C4) speeds up the erosion dramatically, which is
consistent with well-trained networks in Figure 1. An analogy is that FM can be seen as a rectangular
ice chip melting in water except that it can only exchange heat on its four edges. The smaller the ice,
the faster the melting process happens. Symmetric padding equally distributes thermal gradients so
as to slow down the exchange. Whereas asymmetric padding produces larger thermal gradients on a
certain corner, thus accelerating it.

The hypothesis also provides explanations for some experimental observations in the literature. (1)
The degradation problem in very deep networks [11]: although the vanishing/exploding forward
activations and backward gradients have been addressed by intermediate normalization [15], the
spatial information is eroded and blurred by the edge effect after multiple convolutions. (2) It is
reported [3] that in GANs, doubling the depth of networks hampers training, and increasing the kernel
size to 5 or 7 leads to minor improvement or even degradation. These indicate that GANs require
augmented spatial information and are more sensitive to progressive erosion.
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Figure 2: Left: layerwise quantity of informationQ and colormaps derived from the last convolution
layers. FMs are down-sampled after 18th and 36th layers. Right: implementation of convolution with
2×2 kernels and symmetric padding (C2sp).

3.3 Method

SinceR is inevitably asymmetric for even kernels in Equation 3, it is difficult to introduce symmetry
within a single FM. Instead, we aim at the final output Fo summed by multiple input F i and kernels.
For clarity, letR0 be the shifted RF in Equation 3 that picks the nearest pixel in the left-top direction
as origin, then we explicitly introduce a shifted collectionR+

R+ = {R0,R1,R2,R3} (6)
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that includes all four directions: left-top, right-top, left-bottom, right-bottom.

Let π : I → R+ be the surjective-only mapping from input channel indexes i ∈ I = {1, 2, ..., ci} to
certain shifted RFs. By adjusting the proportion of four shifted RFs, we can ensure that

ci
∑

i=1

∑

δ∈π(i)

δ = (0, 0). (7)

When mixing four shifted RFs within a single convolution, the RFs of even-sized kernels are partially
extended, e.g., 2×2→ 3×3, 4×4→ 5×5. If ci is an integer multiple of 4 (usually satisfied), the
symmetry is strictly obeyed within a single convolution layer by distributing RFs in sequence

π(i) = R⌊4i/ci⌋. (8)

As mention above, the shifted RF is equivalent to pad one more zero at a certain corner of FMs. Thus,
the symmetry can be neatly realized by a grouped padding strategy, an example of C2sp is illustrated
in Figure 2. In summary, the 2D convolution with even-sized kernels and symmetric padding consists
of three steps: (1) Dividing the input FMs equally into four groups. (2) Padding FMs according to the
direction defined in that group. (3) Calculating the convolution without any padding. We have also
done ablation studies on other methods dealing with the shift problem, please see Section 5.

4 Experiments

In this section, the efficacy of symmetric padding is validated in CIFAR10/100 [20] and ImageNet
[33] classification tasks, as well as CIFAR10, LSUN bedroom [44], and CelebA-HQ [18] generation
tasks. First of all, we intuitively demonstrate that the shift problem has been eliminated by symmetric
padding. In the symmetric case of Figure 1, FMs return to the central position, exhibiting healthy
magnitudes and reasonable geometries. In Figure 2, C2sp and C4sp have much lower attenuation rates
than C2 and C4 regarding information quantity Q. Besides, C2sp has larger Q than C3, expecting
performance improvement in the following evaluations.
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Figure 3: Left and middle: parameter-accuracy curves of ResNets and DenseNets that contain
multiple depths and various convolution kernels. Right: training and testing curves on DenseNet-112
with C3 and C2sp.

4.1 Exploration of various kernel sizes

To explore the generalization capabilities of various convolution kernels, ResNet series without
bottleneck architectures [11] are chosen as the backbones. We maintain all the other components and
training hyperparameters as the same, and only replace each C3 by a C4, C2 or C2sp. The networks
are trained on CIFAR10 with depths in 6n+ 2, n ∈ {3, 6, . . . , 24}. The parameter-accuracy curves
are shown in Figure 3. The original even-sized kernels 4×4, 2×2 perform poorly and encounter
faster saturation as the network deepens. Compared with C3, C2sp reaches similar accuracy with
only 60%-70% of the parameters, as well as FLOPs that are linearly correlated. We also find that
symmetric padding only slightly improves the accuracy of C4sp. Considering the worse performance
of C5 and the attenuation curves in Figure 2, the edge effect might dominate the information erosion
of 4×4 kernels rather than the shift problem in such network depth.
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Since the network architectures or datasets may affect the conclusion, we further evaluate these
kernels on CIFAR100 with DenseNet [14] backbone to cross-validate the generality and consistency.
The results of depths 6n + 4, n ∈ {3, 6, . . . , 18} are shown in Figure 3. At the same depth, C2sp
achieves comparable accuracy to C3 as the network gets deeper. The training losses indicate that
C2sp have better generalization and less overfitting than C3. Under the criterion of similar accuracy,
a C2sp model will save 30%-50% parameters and FLOPs in the CIFAR evaluations. Therefore, we
recommend using C2sp as a better alternative to C3 in classification tasks.

4.2 Compare with compact CNN blocks

To facilitate fair comparisons for C2sp with compact CNN blocks that contain C1, DWConvs, or shift
kernels, we use ResNets as backbones and adjust the width and depth to maintain the same number
of parameters and FLOPs (overheads). In case there are n input channels for a basic residual block,
then two C2sp layers will consume about 8n2 overheads, the expansion is marked as 1-1-1 since
no channel expands. For ShiftNet blocks [40], we choose expansion rate 3 and 3×3 shift kernels as
suggested, the overheads are about 6n2. Therefore, the value of n is slightly increased. While for the
inverted-bottleneck [35], the suggested expansion rate 6 results in 12n2 +O(6n) overheads, thus the
number of blocks is reduced by 1/3. For depthwise-separable convolutions [5], the overheads are
about 2n2 +O(n), so the channels are doubled and formed as 2-2-2 expansions.

Table 1: Comparison of various compact CNN blocks on CIFAR100. Shift, Invert, and Sep denotes
ShiftNet block, inverted-bottleneck, and depthwise-separable convolution, respectively. mixup
denotes training with mixup augmentation. Exp denotes the expansion rates of channels in that block.
SPS refers to the speed during training: samples per second.

Model Block
Error (%) Params FLOPs

Exp
Memory Speed

standard with mixup (M) (M) (MB) (SPS)

20

Shift 26.87 ± 0.19 24.74 ± 0.04 0.49 70.0 1-3-1 853 1906

Invert 26.86 ± 0.11 25.32 ± 0.12 0.42 76.7 1-6-1 1219 2057

Sep 26.70 ± 0.20 23.81 ± 0.15 0.51 73.6 2-2-2 732 2709

C2sp 26.77 ± 0.19 24.90 ± 0.17 0.50 73.2 1-1-1 487 3328

56

Shift 24.07 ± 0.24 21.31 ± 0.21 1.48 213.4 1-3-1 2195 683

Invert 22.36 ± 0.25 21.48 ± 0.25 1.52 240.1 1-6-1 2561 803

Sep 23.31 ± 0.09 20.69 ± 0.11 1.47 218.0 2-2-2 1707 1034

C2sp 23.19 ± 0.29 20.91 ± 0.22 1.54 224.2 1-1-1 1219 1230

110

Shift 22.94 ± 0.26 20.47 ± 0.18 2.97 428.3 1-3-1 4146 348

Invert 21.76 ± 0.17 20.43 ± 0.20 3.17 485.1 1-6-1 4756 426

Sep 22.31 ± 0.22 19.42 ± 0.05 2.91 434.4 2-2-2 3170 540

C2sp 21.93 ± 0.04 19.52 ± 0.10 3.10 450.7 1-1-1 1951 636

The results are summarized in Table 1. Since most models easily overfit CIFAR100 training set
with standard augmentation, we also train the models with mixup [46] augmentation to make the
differences more significant. In addition to error rates, the memory consumption and speed during
training are reported. C2sp performs better accuracy than ShiftNets, which indicates that sidestepping
spatial convolutions entirely by shift operations may not be an efficient solution. Compared with
blocks that contain DWConv, C2sp achieves competitive results in 56 and 110 nets with fewer
channels and simpler architectures, which reduce memory consumption (>35%) and speed up
(>20%) the training process.

In Table 2, we compare C2sp with NAS models: NASNet [48], PNASNet [23], and AmoebaNet [32].
We apply Wide-DenseNet [14] and adjust the width and depth (K = 48,L = 50) to have approxi-
mately 3.3M parameters. C2sp suffers less than 0.2% accuracy loss compared with state-of-the-art
auto-generated models, and achieves better accuracy (+0.21%) when the augmentation is enhanced.
Although NAS models leverage fragmented operators [25], e.g., pooling, group convolution, DWConv
to improve accuracy with similar numbers of parameters, the regular-structured Wide-DenseNet has
better memory and computational efficiency in runtime. In our reproduction, the training speeds on
TitanXP for NASNet-A and Wide-DesNet are about 200 and 400 SPS, respectively.
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Table 2: Test error rates (%) on CIFAR10 dataset. c/o and mixup denotes cutout [7] and mixup [46]
data augmentation.

Model Error (%) Params (M)

NASNet-A [48] 3.41 3.3

PNASNet-5 [23] 3.41 3.2

AmoebaNet-A [32] 3.34 3.2

Wide-DenseNet C3 3.81 3.4

Wide-DenseNet C2sp 3.54 3.2

NASNet-A + c/o [48] 2.65 3.3

Wide-DenseNet C2sp + c/o + mixup 2.44 3.2

4.3 ImageNet classification

We start with the widely-used ResNet-50 and DenseNet-121 architectures. Since both of them contain
bottlenecks and C1s to scale down the number of channels, C3 only consumes about 53% and 32%
of the total overheads. Changing C3s to C2sp results in about 25% and 17% reduction of parameters
and FLOPs, respectively. The top-1 classification error rates are shown in Table 3, C2sp have minor
loss (0.2%) in ResNet, and slightly larger degradation (0.5%) in DenseNet. After all, there are only
0.9M parameters for spatial convolution in DenseNet-121 C2sp.

We further scale the channels of ResNet-50 down to 0.5× as a mobile setting. At this stage, a C2
model (asymmetric), as well as reproductions of MobileNet-v2 [35] and ShuffleNet-v2 [25] are
evaluated. Symmetric padding greatly reduces the error rate of ResNet-50 0.5× C2 for 2.5%. On
this basis, we propose an optimized ResNet-50 0.5× C2sp model that achieves comparable accuracy
to compact CNNs, but has fewer parameters and FLOPs. Although MobileNet-v2 presents the best
accuracy, it uses inverted-bottlenecks (the same structure in Table 1) to expand too many FMs, which
significantly increase the memory consumption and slow down the training process (about 400 SPS),
while other models can easily reach 900 SPS.

Table 3: Top-1 error rates on ImageNet. Results are obtained by our rseproductions using the same
training hyperparameters.

Model Error (%) Params (M) FLOPs (M)

ResNet-50 C3 [11] 23.8 25.5 4089

ResNet-50 C2sp 24.0 19.3 3062

DenseNet-121 C3 [14] 24.6 8.0 2834

DenseNet-121 C2sp 25.1 6.7 2143

ResNet-50 0.5× C3 26.8 6.9 1127

ResNet-50 0.5× C2 29.8 5.3 870

ResNet-50 0.5× C2sp 27.3 5.3 870

ResNet-50 0.5× C2sp optim 26.8 5.8 573

ShuffleNet v2 2.0× [25] 26.6 7.4 591

MobileNet v2 1.4× [35] 25.8 6.1 582

4.4 Image generation

The efficacy of symmetric padding is further validated in image generation tasks with GANs. In
CIFAR10 32×32 image generation, we follow the same architecture described in [27], which has
about 6M parameters in the generator and 1.5M parameters in the discriminator. In LSUN bedroom
and CelebA-HQ 128×128 image generation, ResNet-19 [21] is adopted with five residual blocks in
the generator and six residual blocks in the discriminator, containing about 14M parameters for each
of them. Since the training of GAN is a zero-sum game between two neural networks, we remain all
discriminators as the same (C3) to mitigate their influences, and replace each C3 in generators with
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Table 4: Scores for different kernels. Higher inception score and lower FID is better.

Model C10 (IS) C10 (FID) LSUN (FID) CelebA (FID)

C5 7.64±0.06 26.54±1.38 30.84±1.13 33.90±3.77

C3 7.79±0.06 24.12±0.47 36.04±7.10 43.39±5.78

C4 7.76±0.11 26.45±1.50 39.17±5.52 37.93±7.54

C4sp 7.74±0.08 24.86±0.41 24.61±2.45 30.22±3.02

C2 non-convergence

C2sp 7.77±0.05 23.35±0.26 27.73±6.76 31.25±4.86

a C4, C2, C4sp, or C2sp. Besides, the number of channels is reduced to 0.75× in C4 and C4sp, or
expanded 1.5× in C2 and C2sp to approximate the same number of parameters.

The inception scores [34] and FIDs [12] are shown in Table 4 for quantitatively evaluating generated
images, and examples from the best FID runs are visualized in Figure 4. Symmetric padding is
crucial for the convergence of C2 generators, and remarkably improves the quality of C4 generators.
In addition, the standard derivations (±) confirm that symmetric padding stabilizes the training of
GANs. On CIFAR10, C2sp performs the best scores while in LSUN bedroom and CelebA-HQ
generation, C4sp is slightly better than C2sp. The diverse results can be explained by the information
erosion hypothesis: In CIFAR10 generation, the network depth is relatively deep in terms of image
size 32× 32, then a smaller kernel will have less attenuation rate and more channels. Whereas the
network depth is relatively shallow in terms of image size 128×128, and the edge effect is negligible.
Then larger RFs are more important than wider channels in high-resolution image generation. In
summary, the symmetric padding eliminates the shifting problem and simultaneously expands the RF.
The former is universal, while the latter is limited by the edge effect on some occasions.

Figure 4: Examples generated by GANs on CIFAR10 (32×32, C2sp, IS=8.27, FID=19.49), LSUN-
bedroom (128×128, C4sp, FID=16.63) and CelebA-HQ (128×128, C4sp, FID=19.83).

4.5 Implementation details

Results reported as mean±std in tables or error bars in figures are trained for 5 times with different
random seeds. The default settings for CIFAR classifications are as follows: We train models for
300 epochs with mini-batch size 64 except for the results in Table 2, which run 600 epochs as in
[48]. We use a cosine learning rate decay [24] starting from 0.1 except for DenseNet tests, where the
piece-wise constant decay performs better. The weight decay factor is 1e-4 except for parameters
in depthwise convolutions. The standard augmentation [22] is applied and the α equals 1 in mixup
augmentation.

For ImageNet classifications, all the models are trained for 100 epochs with mini-batch size 256.
The learning rate is set to 0.1 initially and annealed according to the cosine decay schedule. We
follow the data augmentation in [36]. Weight decay is 1e-4 in ResNet-50 and DenseNet-121 models,
and decreases to 4e-5 in the other compact models. Some results are worse than reported in the
original papers. It is likely due to the inconsistency of mini-batch size, learning rate decay, or total
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training epochs, e.g., about 420 epochs in [35]. Our example code and models are available at
https://github.com/boluoweifenda/CNN.

In generation tasks with GANs, we follow models and hypermeters recommended in [21]. The
learning rate is 0.2, β1 is 0.5 and β2 is 0.999 for Adam optimizer [19]. The mini-batch size is 64, the
ratio of discriminator to generator updates is 5:1 (ncritic = 5). The results in Table 4 and Figure 4 are
trained for 200k and 500k discriminator update steps, respectively. We use the non-saturation loss
[8] without gradient norm penalty. The spectral normalization [27] is applied in discriminators, no
normalization is applied in generators.

5 Discussion

Ablation study We have tested other methods dealing with shift problem, and divided them into
two categories: (1) Replacing asymmetric padding with additional non-convolution layer, e.g.,
interpolation, pooling; (2) Achieving symmetry with multiple convolution layers, e.g., padding 1
pixel at each side before/within two non-padding convolutions. Their implementation is restricted to
certain architectures and the accuracy is no better than symmetric padding. Our main consideration is
to propose a basic but elegant building element that achieves symmetry within a single layer, thus
most of the existing compact models can be neatly transferred to even-sized kernels. We have also
tested C3 with asymmetric padding, and observed accuracy degradation as the asymmetry gains.

Network fragmentation From the evaluations above, C2sp achieves comparable accuracy with
less training memory and time. Although fragmented operators distributed in many groups [25]
have fewer parameters and FLOPs, the operational intensity [39] decreases as the group number
increases. This negatively impacts the efficiency of computation, energy, and bandwidth in hardware
that has strong parallel computing capabilities. In the situation where memory access dominates the
computation, the reduction of FLOPs does not guarantee faster execution speed [16]. We conclude
that it is still controversial to (1) increase network fragmentation by grouping strategies and complex
topologies; (2) decompose spatial and channel correlations by DWConvs, shift operations, and C1s.

Naive implementation Meanwhile, most deep learning frameworks and hardware are mainly opti-
mized for C3, which restrains the efficiency of C4sp and C2sp to a large extent. For example, in our
high-level python implementation in TensorFlow for models with C2sp, C2, and C3, despite that
the parameters and FLOPs ratio is 4:4:9, the speed (SPS) and memory consumption ratio during
training is about 1:1.14:1.2 and 1:0.7:0.7, respectively. The speed and memory overheads can be
further optimized in the following computation libraries and software engineering once even-sized
kernels are adopted by the deep learning community.

6 Conclusion

In this work, we explore the generalization capabilities of even-sized kernels (2×2, 4×4) and quantify
the shift problem by an information erosion hypothesis. Then we introduce symmetric padding
to elegantly achieve symmetry within a single convolution layer. In classifications, C2sp achieves
30%-50% saving of parameters and FLOPs compared to C3 on CIFAR10/100, and improves accuracy
for 2.5% from C2 on ImageNet. Compared to existing compact convolution blocks, C2sp achieves
competitive results with fewer channels and simpler architectures, which reduce memory consumption
(>35%) and speed up (>20%) the training process. In generation tasks, C2sp and C4sp both achieve
improved image qualities and stabilized convergence. Even-sized kernels with symmetric padding
provide promising building units for architecture designs that emphasize training efforts on online
and continual learning occasions.
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