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Abstract

Link prediction for knowledge graphs is the task of predict-
ing missing relationships between entities. Previous work on
link prediction has focused on shallow, fast models which
can scale to large knowledge graphs. However, these models
learn less expressive features than deep, multi-layer models –
which potentially limits performance. In this work we intro-
duce ConvE, a multi-layer convolutional network model for
link prediction, and report state-of-the-art results for several
established datasets. We also show that the model is highly pa-
rameter efficient, yielding the same performance as DistMult
and R-GCN with 8x and 17x fewer parameters. Analysis of
our model suggests that it is particularly effective at modelling
nodes with high indegree – which are common in highly-
connected, complex knowledge graphs such as Freebase and
YAGO3. In addition, it has been noted that the WN18 and
FB15k datasets suffer from test set leakage, due to inverse
relations from the training set being present in the test set –
however, the extent of this issue has so far not been quantified.
We find this problem to be severe: a simple rule-based model
can achieve state-of-the-art results on both WN18 and FB15k.
To ensure that models are evaluated on datasets where simply
exploiting inverse relations cannot yield competitive results,
we investigate and validate several commonly used datasets
– deriving robust variants where necessary. We then perform
experiments on these robust datasets for our own and several
previously proposed models, and find that ConvE achieves
state-of-the-art Mean Reciprocal Rank across all datasets.

Introduction

Knowledge graphs are graph-structured knowledge bases,
where facts are represented in the form of relationships
(edges) between entities (nodes). They have important ap-
plications in search, analytics, recommendation, and data
integration – however, they tend to suffer from incom-
pleteness, that is, missing links in the graph. For exam-
ple, in Freebase and DBpedia more than 66% of the per-
son entries are missing a birthplace (Dong et al. 2014;
Krompaß, Baier, and Tresp 2015). Identifying such miss-
ing links is referred to as link prediction. Knowledge graphs
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can contain millions of facts; as a consequence, link pre-
dictors should scale in a manageable way with respect to
both the number of parameters and computational costs to be
applicable in real-world scenarios.

For solving such scaling problems, link prediction models
are often composed of simple operations, like inner products
and matrix multiplications over an embedding space, and
use a limited number of parameters (Nickel et al. 2016).
DistMult (Yang et al. 2015) is such a model, characterised
by three-way interactions between embedding parameters,
which produce one feature per parameter. Using such simple,
fast, shallow models allows one to scale to large knowledge
graphs, at the cost of learning less expressive features.

The only way to increase the number of features in shallow
models – and thus their expressiveness – is to increase the
embedding size. However, doing so does not scale to larger
knowledge graphs, since the total number of embedding pa-
rameters is proportional to the the number of entities and
relations in the graph. For example, a shallow model like
DistMult with an embedding size of 200, applied to Free-
base, will need 33 GB of memory for its parameters. To
increase the number of features independently of the em-
bedding size requires the use of multiple layers of features.
However, previous multi-layer knowledge graph embedding
architectures, that feature fully connected layers, are prone
to overfit (Nickel et al. 2016). One way to solve the scaling
problem of shallow architectures, and the overfitting problem
of fully connected deep architectures, is to use parameter
efficient, fast operators which can be composed into deep
networks.

The convolution operator, commonly used in computer
vision, has exactly these properties: it is parameter efficient
and fast to compute, due to highly optimised GPU imple-
mentations. Furthermore, due to its ubiquitous use, robust
methodologies have been established to control overfitting
when training multi-layer convolutional networks (Szegedy
et al. 2015; Ioffe and Szegedy 2015; Srivastava et al. 2014;
Szegedy et al. 2016).

In this paper we introduce ConvE, a model that uses 2D
convolutions over embeddings to predict missing links in
knowledge graphs. ConvE is the simplest multi-layer con-
volutional architecture for link prediction: it is defined by a
single convolution layer, a projection layer to the embedding
dimension, and an inner product layer.
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Specifically, our contributions are as follows:

• Introducing a simple, competitive 2D convolutional link
prediction model, ConvE.

• Developing a 1-N scoring procedure that speeds up training
three-fold and evaluation by 300x.

• Establishing that our model is highly parameter efficient,
achieving better scores than DistMult and R-GCNs on
FB15k-237 with 8x and 17x fewer parameters.

• Showing that for increasingly complex knowledge graphs,
as measured by indegree and PageRank, the difference
in performance between our model and a shallow model
increases proportionally to the complexity of the graph.

• Systematically investigating reported inverse relations test
set leakage across commonly used link prediction datasets,
introducing robust versions of datasets where necessary, so
that they cannot be solved using simple rule-based models.

• Evaluating ConvE and several previously proposed models
on these robust datasets: our model achieves state-of-the-
art Mean Reciprocal Rank across all of them.

Related Work

Several neural link prediction models have been proposed
in the literature, such as the Translating Embeddings model
(TransE) (Bordes et al. 2013a), the Bilinear Diagonal model
(DistMult) (Yang et al. 2015) and its extension in the complex
space (ComplEx) (Trouillon et al. 2016); we refer to Nickel
et al. (2016) for a recent survey. The model that is most
closely related to this work is most likely the Holographic
Embeddings model (HolE) (Nickel, Rosasco, and Poggio
2016), which uses cross-correlation – the inverse of circular
convolution – for matching entity embeddings; it is inspired
by holographic models of associative memory. However,
HolE does not learn multiple layers of non-linear features,
and it is thus theoretically less expressive than our model.

To the best of our knowledge, our model is the first
neural link prediction model to use 2D convolutional lay-
ers. Graph Convolutional Networks (GCNs) (Duvenaud
et al. 2015; Defferrard, Bresson, and Vandergheynst 2016;
Kipf and Welling 2016) are a related line of research, where
the convolution operator is generalised to use locality infor-
mation in graphs. However, the GCN framework is limited
to undirected graphs, while knowledge graphs are naturally
directed, and suffers from potentially prohibitive memory
requirements (Kipf and Welling 2016). Relational GCNs
(R-GCNs) (Schlichtkrull et al. 2017) are a generalisation
of GCNs developed for dealing with highly multi-relational
data such as knowledge graphs – we include them in our
experimental evaluations.

Several convolutional models have been proposed in natu-
ral language processing (NLP) for solving a variety of tasks,
including semantic parsing (Yih et al. 2011), sentence classi-
fication (Kim 2014), search query retrieval (Shen et al. 2014),
sentence modelling (Kalchbrenner, Grefenstette, and Blun-
som 2014), as well as other NLP tasks (Collobert et al. 2011).
However, most work in NLP uses 1D-convolutions, that is
convolutions which operate over a temporal sequence of em-
beddings, for example a sequence of words in embedding

space. In this work, we use 2D-convolutions which operate
spatially over embeddings.

Number of Interactions for 1D vs 2D Convolutions

Using 2D rather than 1D convolutions increases the expres-
siveness of our model through additional points of interaction
between embeddings. For example, consider the case where
we concatenate two rows of 1D embeddings, a and b with
dimension n = 3:

([a a a] ; [b b b]) = [a a a b b b] .

A padded 1D convolution with filter size k = 3 will be
able to model the interactions between these two embeddings
around the concatenation point (with a number of interactions
proportional to k).

If we concatenate (i.e. stack) two rows of 2D embeddings
with dimension m× n, where m = 2 and n = 3, we obtain
the following:

([

a a a
a a a

]

;

[

b b b
b b b

])

=

⎡

⎢

⎣

a a a
a a a
b b b
b b b

⎤

⎥

⎦
.

A padded 2D convolution with filter size 3× 3 will be able
to model the interactions around the entire concatenation line
(with a number of interactions proportional to n and k).

We can extend this principle to an alternating pattern, such
as the following:

⎡

⎢

⎣

a a a
b b b
a a a
b b b

⎤

⎥

⎦
.

In this case, a 2D convolution operation is able to model even
more interactions between a and b (with a number of inter-
actions proportional to m, n, and k). Thus, 2D convolution
is able to extract more feature interactions between two em-
beddings compared to 1D convolution. The same principle
can be extending to higher dimensional convolutions, but we
leave this as future work.

Background

A knowledge graph G = {(s, r, o)} ⊆ E × R × E can
be formalised as a set of triples (facts), each consisting of
a relationship r ∈ R and two entities s, o ∈ E , referred to
as the subject and object of the triple. Each triple (s, r, o)
denotes a relationship of type r between the entities s and o.

The link prediction problem can be formalised as a point-
wise learning to rank problem, where the objective is learning
a scoring function ψ : E ×R×E �→ R. Given an input triple
x = (s, r, o), its score ψ(x) ∈ R is proportional to the likeli-
hood that the fact encoded by x is true.
Neural Link Predictors

Neural link prediction models (Nickel et al. 2016) can be
seen as multi-layer neural networks consisting of an encoding
component and a scoring component. Given an input triple
(s, r, o), the encoding component maps entities s, o ∈ E to
their distributed embedding representations es, eo ∈ R

k. In
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Table 1: Scoring functions ψr(es, eo) from neural link predictors in the literature, their relation-dependent parameters and space
complexity; ne and nr respectively denote the number of entities and relation types, i.e. ne = |E| and nr = |R|.

Model Scoring Function ψr(es, eo) Relation Parameters Space Complexity

SE (Bordes et al. 2014)
∥

∥W
L
r es −W

R
r eo

∥

∥

p
W

L
r ,W

R
r ∈ R

k×k O(nek + nrk
2)

TransE (Bordes et al. 2013a) ‖es + rr − eo‖p rr ∈ R
k O(nek + nrk)

DistMult (Yang et al. 2015) 〈es, rr, eo〉 rr ∈ R
k O(nek + nrk)

ComplEx (Trouillon et al. 2016) 〈es, rr, eo〉 rr ∈ C
k O(nek + nrk)

ConvE f(vec(f([es; rr] ∗ ω))W)eo rr ∈ R
k′

O(nek + nrk
′)

the scoring component, the two entity embeddings es and eo

are scored by a function ψr. The score of a triple (s, r, o) is
defined as ψ(s, r, o) = ψr(es, eo) ∈ R.

In Table 1 we summarise the scoring function of several
link prediction models from the literature. The vectors es and
eo denote the subject and object embedding, where es, eo ∈
C

k in ComplEx and es, eo ∈ R
k in all other models, and

〈x, y, z〉 =
∑

i xiyizi denotes the tri-linear dot product; ∗
denotes the convolution operator; f denotes a non-linear
function.

Convolutional 2D Knowledge Graphs

Embeddings

In this work we propose a neural link prediction model where
the interactions between input entities and relationships are
modelled by convolutional and fully-connected layers. The
main characteristic of our model is that the score is defined by
a convolution over 2D shaped embeddings. The architecture
is summarised in Figure 1; formally, the scoring function is
defined as follows:

ψr(es, eo) = f(vec(f([es; rr] ∗ ω))W)eo, (1)

where rr ∈ R
k is a relation parameter depending on r, es

and rr denote a 2D reshaping of es and rr, respectively: if
es, rr ∈ R

k, then es, rr ∈ R
kw×kh , where k = kwkh.

In the feed-forward pass, the model performs a row-vector
look-up operation on two embedding matrices, one for enti-
ties, denoted E

|E|×k and one for relations, denoted R
|R|×k′

,
where k and k′ are the entity and relation embedding dimen-
sions, and |E| and |R| denote the number of entities and
relations. The model then concatenates es and rr, and uses it
as an input for a 2D convolutional layer with filters ω. Such
a layer returns a feature map tensor T ∈ R

c×m×n, where c
is the number of 2D feature maps with dimensions m and n.
The tensor T is then reshaped into a vector vec(T ) ∈ R

cmn,
which is then projected into a k-dimensional space using a lin-
ear transformation parametrised by the matrix W ∈ R

cmn×k

and matched with the object embedding eo via an inner prod-
uct. The parameters of the convolutional filters and the matrix
W are independent of the parameters for the entities s and o
and the relationship r.

For training the model parameters, we apply the lo-
gistic sigmoid function σ(·) to the scores, that is p =
σ(ψr(es, eo)), and minimise the following binary cross-

entropy loss:

L(p, t) = −
1

N

∑

i

(ti · log(pi)+(1− ti) · log(1−pi)), (2)

where t is the label vector with dimension R
1x1 for 1-1 scor-

ing or R1xN for 1-N scoring (see the next section for 1-N
scoring); the elements of vector t are ones for relationships
that exists and zero otherwise.

We use rectified linear units as the non-linearity f for
faster training (Krizhevsky, Sutskever, and Hinton 2012), and
batch normalisation after each layer to stabilise, regularise
and increase rate of convergence (Ioffe and Szegedy 2015).
We regularise our model by using dropout (Srivastava et al.
2014) in several stages. In particular, we use dropout on
the embeddings, on the feature maps after the convolution
operation, and on the hidden units after the fully connected
layer. We use Adam as optimiser (Kingma and Ba 2014),
and label smoothing to lessen overfitting due to saturation of
output non-linearities at the labels (Szegedy et al. 2016).

Fast Evaluation for Link Prediction Tasks

In our architecture convolution consumes about 75-90% of
the total computation time, thus it is important to minimise
the number of convolution operations to speed up compu-
tation as much as possible. For link prediction models, the
batch size is usually increased to speed up evaluation (Bordes
et al. 2013b). However, this is not feasible for convolutional
models since the memory requirements quickly outgrow the
GPU memory capacity when increasing the batch size.

Unlike other link prediction models which take an entity
pair and a relation as a triple (s, r, o), and score it (1-1 scor-
ing), we take one (s, r) pair and score it against all entities
o ∈ E simultaneously (1-N scoring). If we benchmark 1-1
scoring on a high-end GPU with batch size and embedding
size 128, then a training pass and an evaluation with a con-
volution model on FB15k – one of the dataset used in the
experiments – takes 2.4 minutes and 3.34 hours. Using 1-N
scoring, the respective numbers are 45 and 35 seconds – a
considerable improvement of over 300x in terms of evalu-
ation time. Additionally, this approach is scalable to large
knowledge graphs and increases convergence speed. For a
single forward-backward pass with batch size of 128, go-
ing from N = 100, 000 to N = 1, 000, 000 entities only
increases the computational time from 64ms to 80ms – in
other words, a ten-fold increase in the number of entities only
increases the computation time by 25% – which attests the
scalability of the approach.
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Figure 1: In the ConvE model, the entity and relation embeddings are first reshaped and concatenated (steps 1, 2); the resulting
matrix is then used as input to a convolutional layer (step 3); the resulting feature map tensor is vectorised and projected into a
k-dimensional space (step 4) and matched with all candidate object embeddings (step 5).
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If instead of 1-N scoring, we use 1-(0.1N) scoring – that
is, scoring against 10% of the entities – we can compute a
forward-backward pass 25% faster. However, we converge
roughly 230% slower on the training set. Thus 1-N scoring
has an additional effect which is akin to batch normalisa-
tion (Ioffe and Szegedy 2015) – we trade some computa-
tional performance for greatly increased convergence speed
and also achieve better performance as shown in Section 7.
Do note that the technique in general could by applied to
any 1-1 scoring model. This practical trick in speeding up
training and evaluation can be applied to any 1-1 scoring
model, such as the great majority of link prediction models.

Experiments

Knowledge Graph Datasets

For evaluating our proposed model, we use a selection of link
prediction datasets from the literature.

WN18 (Bordes et al. 2013a) is a subset of WordNet which
consists of 18 relations and 40,943 entities. Most of the
151,442 triples consist of hyponym and hypernym relations
and, for such a reason, WN18 tends to follow a strictly hier-
archical structure.

FB15k (Bordes et al. 2013a) is a subset of Freebase which
contains about 14,951 entities with 1,345 different relations.
A large fraction of content in this knowledge graph describes
facts about movies, actors, awards, sports, and sport teams.

YAGO3-10 (Mahdisoltani, Biega, and Suchanek 2015) is
a subset of YAGO3 which consists of entities which have a
minimum of 10 relations each. It has 123,182 entities and 37
relations. Most of the triples deal with descriptive attributes
of people, such as citizenship, gender, and profession.

Countries (Bouchard, Singh, and Trouillon 2015) is a
benchmark dataset that is useful to evaluate a model’s abil-
ity to learn long-range dependencies between entities and
relations. It consists of three sub-tasks which increase in
difficulty in a step-wise fashion, where the minimum path-
length to find a solution increases from 2 to 4.

It was first noted by Toutanova and Chen (2015) that
WN18 and FB15k suffer from test leakage through inverse

relations: a large number of test triples can be obtained sim-
ply by inverting triples in the training set. For example, the
test set frequently contains triples such as (s, hyponym, o)
while the training set contains its inverse (o, hypernym, s).
To create a dataset without this property, Toutanova and
Chen (2015) introduced FB15k-237 – a subset of FB15k
where inverse relations are removed. However, they did
not explicitly investigate the severity of this problem, which
might explain why research continues using these datasets
for evaluation without addressing this issue (e.g. Trouillon et
al. (2016), Nickel, Rosasco, and Poggio (2016), Nguyen et
al. (2016), Liu et al. (2016)).

In the following section, we introduce a simple rule-based
model which demonstrates the severity of this bias by achiev-
ing state-of-the-art results on both WN18 and FB15k. In
order to ensure that we evaluate on datasets that do not have
inverse relation test leakage, we apply our simple rule-based
model to each dataset. Apart from FB15k, which was cor-
rected by FB15k-237, we also find flaws with WN18. We
thus create WN18RR to reclaim WN18 as a dataset, which
cannot easily be completed using a single rule – but requires
modelling of the complete knowledge graph. WN18RR1

contains 93,003 triples with 40,943 entities and 11 relations.
For future research, we recommend against using FB15k and
WN18 and instead recommend FB15k-237, WN18RR, and
YAGO3-10.

Experimental Setup

We selected the hyperparameters of our ConvE model via
grid search according to the mean reciprocal rank (MRR)
on the validation set. Hyperparameter ranges for the grid
search were as follows – embedding dropout {0.0, 0.1, 0.2},
feature map dropout {0.0, 0.1, 0.2, 0.3}, projection layer
dropout {0.0, 0.1, 0.3, 0.5}, embedding size {100, 200},
batch size {64, 128, 256}, learning rate {0.001, 0.003}, and
label smoothing {0.0, 0.1, 0.2, 0.3}.

Besides the grid search, we investigated modifications of
the 2D convolution layer for our models. In particular, we

1https://github.com/TimDettmers/ConvE
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Table 2: Parameter scaling of DistMult vs ConvE.

Param. Emb. Hits
Model count size MRR @10 @3 @1

DistMult 1.89M 128 .23 .41 .25 .15
DistMult 0.95M 64 .22 .39 .25 .14
DistMult 0.23M 16 .16 .31 .17 .09

ConvE 5.05M 200 .32 .49 .35 .23
ConvE 1.89M 96 .32 .49 .35 .23
ConvE 0.95M 54 .30 .46 .33 .22
ConvE 0.46M 28 .28 .43 .30 .20
ConvE 0.23M 14 .26 .40 .28 .19

experimented with replacing it with fully connected layers
and 1D convolution; however, these modifications consis-
tently reduced the predictive accuracy of the model. We also
experimented with different filter sizes, and found that we
only receive good results if the first convolutional layer uses
small (i.e. 3x3) filters.

We found that the following combination of parameters
works well on WN18, YAGO3-10 and FB15k: embed-
ding dropout 0.2, feature map dropout 0.2, projection layer
dropout 0.3, embedding size 200, batch size 128, learning
rate 0.001, and label smoothing 0.1. For the Countries dataset,
we increase embedding dropout to 0.3, hidden dropout to 0.5,
and set label smoothing to 0. We use early stopping according
to the mean reciprocal rank (WN18, FB15k, YAGO3-10) and
AUC-PR (Countries) statistics on the validation set, which
we evaluate every three epochs. Unlike the other datasets,
for Countries the results have a high variance, as such we
average 10 runs and produce 95% confidence intervals. For
our DistMult and ComplEx results with 1-1 training, we use
an embedding size of 100, AdaGrad (Duchi, Hazan, and
Singer 2011) for optimisation, and we regularise our model
by forcing the entity embeddings to have a L2 norm of 1 after
each parameter update. As in Bordes et al. (2013a), we use a
pairwise margin-based ranking loss.

The code for our model and experiments is made publicly
available,2 as well as the code for replicating the DistMult
results.3

Inverse Model

It has been noted by Toutanova and Chen (2015), that the
training datasets of WN18 and FB15k have 94% and 81%
test leakage as inverse relations, that is, 94% and 81% of
the triples in these datasets have inverse relations which are
linked to the test set. For instance, a test triple (feline, hy-
ponym, cat) can easily be mapped to a training triple (cat,
hypernym, feline) if it is known that hyponym is the inverse
of hypernym. This is highly problematic, because link pre-
dictors that do well on these datasets may simply learn which
relations that are the inverse of others, rather than to model
the actual knowledge graph.

2https://github.com/TimDettmers/ConvE
3https://github.com/uclmr/inferbeddings

To gauge the severity of this problem, we construct a sim-
ple, rule-based model that solely models inverse relations.
We call this model the inverse model. The model extracts in-
verse relationships automatically from the training set: given
two relation pairs r1, r2 ∈ R, we check whether (s, r1, o)
implies (o, r2, s), or vice-versa.

We assume that inverse relations are randomly distributed
among the training, validation and test sets and, as such, we
expect the number of inverse relations to be proportional to
the size of the training set compared to the total dataset size.
Thus, we detect inverse relations if the presence of (s, r1, o)
co-occurs with the presence of (o, r2, s) with a frequency of
at least 0.99− (fv + ft), where fv and ft is the fraction of
the validation and test set compared to the total size of the
dataset. Relations matching this criterion are assumed to be
the inverse of each other.

At test time, we check if the test triple has inverse matches
outside the test set: if k matches are found, we sample a
permutation of the top k ranks for these matches; if no match
is found, we select a random rank for the test triple.

Results
Similarly to previous work (Yang et al. 2015; Trouillon et al.
2016; Niepert 2016), we report results using a filtered setting,
i.e. we rank test triples against all other candidate triples
not appearing in the training, validation, or test set (Bordes
et al. 2013a). Candidates are obtained by permuting either
the subject or the object of a test triple with all entities in
the knowledge graph. Our results on the standard bench-
marks FB15k and WN18 are shown in Table 3; results on the
datasets with inverse relations removed are shown in Table 4;
results on YAGO3-10 and Countries are shown in Table 5.

Strikingly, the inverse model achieves state-of-the-art on
many different metrics for both FB15k and WN18. How-
ever, it fails to pick up on inverse relations for YAGO3-
10 and FB15k-237. The procedure used by Toutanova and
Chen (2015) to derive FB15k-237 does not remove certain
symmetric relationships, for example “similar to”. The pres-
ence of these relationships explains the good score of our
inverse model on WN18RR, which was derived using the
same procedure.

Our proposed model, ConvE, achieves state-of-the-art per-
formance for all metrics on YAGO3-10, for some metrics on
FB15k, and it does well on WN18. On Countries, it solves
the S1 and S2 tasks, and does well on S3, scoring better than
other models like DistMult and ComplEx.

For FB15k-237, we could not replicate the basic model
results from Toutanova et al. (2015), where the models in
general have better performance than what we can achieve.
Compared to Schlichtkrull et al. (2017), our results for stan-
dard models are a slightly better then theirs, and on-a-par
with their R-GCN model.

Parameter efficiency of ConvE

From Table 2 we can see that ConvE for FB15k-237 with
0.23M parameters performs better than DistMult with 1.89M
parameters for 3 metrics out of 5.

ConvE with 0.46M parameters still achieves state-of-the-
art results on FB15k-237 with 0.425 Hits@10. Comparing to
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Table 3: Link prediction results for WN18 and FB15k

WN18 FB15k

Hits Hits
MR MRR @10 @3 @1 MR MRR @10 @3 @1

DistMult (Yang et al. 2015) 902 .822 .936 .914 .728 97 .654 .824 .733 .546
ComplEx (Trouillon et al. 2016) – .941 .947 .936 .936 – .692 .840 .759 .599
Gaifman (Niepert 2016) 352 – .939 – .761 75 – .842 – .692
ANALOGY (Liu, Wu, and Yang 2017) – .942 .947 .944 .939 – .725 .854 .785 .646
R-GCN (Schlichtkrull et al. 2017) – .814 .964 .929 .697 – .696 .842 .760 .601

ConvE 504 .942 .955 .947 .935 64 .745 .873 .801 .670
Inverse Model 567 .861 .969 .968 .764 1897 .706 .737 .718 .689

Table 4: Link prediction results for WN18RR and FB15k-237

WN18RR FB15k-237

Hits Hits

MR MRR @10 @3 @1 MR MRR @10 @3 @1

DistMult (Yang et al. 2015) 5110 .43 .49 .44 .39 254 .241 .419 .263 .155
ComplEx (Trouillon et al. 2016) 5261 .44 .51 .46 .41 339 .247 .428 .275 .158
R-GCN (Schlichtkrull et al. 2017) – – – – – – .248 .417 .258 .153

ConvE 5277 .46 .48 .43 .39 246 .316 .491 .350 .239
Inverse Model 13219 .36 .36 .36 .36 7148 .009 .012 .010 .006

the previous best model, R-GCN (Schlichtkrull et al. 2017),
which achieves 0.417 Hits@10 with more than 8M parame-
ters.

Overall, ConvE is more than 17x parameter efficient than
R-GCNs, and 8x more parameter efficient than DistMult. For
the entirety of Freebase, the size of these models would be
more than 82GB for R-GCNs, 21GB for DistMult, compared
to 5.2GB for ConvE.

Analysis

Ablation Study

Table 7 shows the results from our ablation study where
we evaluate different parameter initialisation (n = 2) to
calculate confidence intervals. We see that hidden dropout is
by far the most important component, which is unsurprising
since it is our main regularisation technique. 1-N scoring
improves performance, as does input dropout, feature map
dropout has a minor effect, while label smoothing seems to
be unimportant – as good results can be achieved without it.

Analysis of Indegree and PageRank

Our main hypothesis for the good performance of our model
on datasets like YAGO3-10 and FB15k-237 compared to
WN18RR, is that these datasets contain nodes with very high
relation-specific indegree. For example the node “United
States” with edges “was born in” has an indegree of over
10,000. Many of these 10,000 nodes will be very differ-
ent from each other (actors, writers, academics, politicians,

business people) and successful modelling of such a high
indegree nodes requires capturing all these differences. Our
hypothesis is that deeper models, that is, models that learn
multiple layers of features, like ConvE, have an advantage
over shallow models, like DistMult, to capture all these con-
straints.

However, deeper models are more difficult to optimise, so
we hypothesise that for datasets with low average relation-
specific indegree (like WN18RR and WN18), a shallow
model like DistMult might suffice for accurately representing
the structure of the network.

To test our two hypotheses, we take two datasets with
low (low-WN18) and high (high-FB15k) relation-specific in-
degree and reverse them into high (high-WN18) and low (low-
FB15k) relation-specific indegree datasets by deleting low
and high indegree nodes. We hypothesise that, compared to
DistMult, ConvE will always do better on the dataset with
high relation-specific indegree, and vice-versa.

Indeed, we find that both hypotheses hold: for low-FB15k
we have ConvE 0.586 Hits@10 vs DistMult 0.728 Hits@10;
for high-WN18 we have ConvE 0.952 Hits@10 vs DistMult
0.938 Hits@10. This supports our hypothesis that deeper
models such as ConvE have an advantage to model more
complex graphs (e.g. FB15k and FB15k-237), but that shal-
low models such as DistMult have an advantage to model
less complex graphs (e.g. WN18 WN18RR).

To investigate this further, we look at PageRank, a measure
of centrality of a node. PageRank can also be seen as a
measure of the recursive indegree of a node: the PageRank
value of a node is proportional to the indegree of this node, its
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Table 5: Link prediction results for YAGO3-10 and Countries

YAGO3-10 Countries

Hits AUC-PR

MR MRR @10 @3 @1 S1 S2 S3

DistMult (Yang et al. 2015) 5926 .34 .54 .38 .24 1.00±0.00 0.72±0.12 0.52±0.07
ComplEx (Trouillon et al. 2016) 6351 .36 .55 .40 .26 0.97±0.02 0.57±0.10 0.43±0.07

ConvE 2792 .52 .66 .56 .45 1.00±0.00 0.99±0.01 0.86 ±0.05
Inverse Model 60251 .02 .02 .02 .01 – – –

Table 6: Mean PageRank ×10−3 of nodes in the test set vs
reduction in error in terms of AUC-PR or Hits@10 of ConvE
wrt. DistMult.

Dataset PageRank Error Reduction

WN18RR 0.104 0.91
WN18 0.125 1.28
FB15k 0.599 1.23
FB15-237 0.733 1.17
YAGO3-10 0.988 1.91
Countries S3 1.415 3.36
Countries S1 1.711 0.00
Countries S2 1.796 18.6

Table 7: Ablation study for FB15k-237.

Ablation Hits@10

Full ConvE 0.491

Hidden dropout -0.044 ± 0.003
Input dropout -0.022 ± 0.000
1-N scoring -0.019
Feature map dropout -0.013 ± 0.001
Label smoothing -0.008 ± 0.000

neighbours indegrees, its neighbours-neighbours indegrees
and so forth scaled relative to all other nodes in the network.
By this line of reasoning, we also expect ConvE to be better
than DistMult on datasets with high average PageRank (high
connectivity graphs), and vice-versa.

To test this hypothesis, we calculate the PageRank for each
dataset as a measure of centrality. We find that the most
central nodes in WN18 have a PageRank value more than
one order of magnitude smaller than the most central nodes
in YAGO3-10 and Countries, and about 4 times smaller than
the most central nodes in FB15k. When we look at the mean
PageRank of nodes contained in the test sets, we find that
the difference of performance in terms of Hits@10 between
DistMult and ConvE is roughly proportional to the mean
test set PageRank, that is, the higher the mean PageRank
of the test set nodes the better ConvE does compared to
DistMult, and vice-versa. See Table 6 for these statistics.
The correlation between mean test set PageRank and relative

error reduction of ConvE compared to DistMult is strong
with r = 0.83. This gives additional evidence that models
that are deeper have an advantage when modelling nodes
with high (recursive) indegree.

From this evidence we conclude, that the increased perfor-
mance of our model compared to a standard link predictor,
DistMult, can be partially explained due to our it’s ability
to model nodes with high indegree with greater precision –
which is possibly related to its depth.

Conclusion and Future Work

We introduced ConvE, a link prediction model that uses 2D
convolution over embeddings and multiple layers of non-
linear features to model knowledge graphs. ConvE uses fewer
parameters; it is fast through 1-N scoring; it is expressive
through multiple layers of non-linear features; it is robust
to overfitting due to batch normalisation and dropout; and
achieves state-of-the-art results on several datasets, while still
scaling to large knowledge graphs. In our analysis, we show
that the performance of ConvE compared to a common link
predictor, DistMult, can partially be explained by its ability
to model nodes with high (recursive) indegree.

Test leakage through inverse relations of WN18 and FB15k
was first reported by Toutanova and Chen (2015): we investi-
gate the severity of this problem for commonly used datasets
by introducing a simple rule-based model, and find that it
can achieve state-of-the-art results on WN18 and FB15k. To
ensure robust versions of all investigated datasets exists, we
derive WN18RR.

Our model is still shallow compared to convolutional archi-
tecture found in computer vision, and future work might deal
with convolutional models of increasing depth. Further work
might also look at the interpretation of 2D convolution, or
how to enforce large-scale structure in embedding space so
to increase the number of interactions between embeddings.
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