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Abstract

Human activity recognition is an important and difficult topic to study because of the impor-

tant variability between tasks repeated several times by a subject and between subjects.

This work is motivated by providing time-series signal classification and a robust validation

and test approaches. This study proposes to classify 60 signs from the American Sign Lan-

guage based on data provided by the LeapMotion sensor by using different conventional

machine learning and deep learning models including a model called DeepConvLSTM that

integrates convolutional and recurrent layers with Long-Short Term Memory cells. A kine-

matic model of the right and left forearm/hand/fingers/thumb is proposed as well as the use

of a simple data augmentation technique to improve the generalization of neural networks.

DeepConvLSTM and convolutional neural network demonstrated the highest accuracy

compared to other models with 91.1 (3.8) and 89.3 (4.0) % respectively compared to the

recurrent neural network or multi-layer perceptron. Integrating convolutional layers in a

deep learning model seems to be an appropriate solution for sign language recognition with

depth sensors data.

Introduction

Sign language is a language that mainly uses hand kinematics and facial expressions. It is

widely used by hearing-impaired people to communicate with each other, but rarely with peo-

ple who do not have hearing impairment. Therefore, they are only in direct contact with hear-

ing-impaired persons, which greatly limits social interactions. An alternative would be to have

a real-time translation with interpreters, but they are not permanently available and can be

rather expensive. Therefore, a system that could enable automatic translation would be of

great interest.

Human Activity Recognition (HAR) in general is an important and challenging topic o

address because of the large variability that exists for a given task. Indeed, whether the variabil-

ity comes from a subject repeating an action several times or more importantly between sub-

jects, the kinematics behavior over time presents a certain challenge to generalize. HAR

considers that these behaviors are represented by specific patterns that could be classified

using machine learning algorithms.
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Nowadays, human movement data can be easily extracted from low-cost systems that inte-

grate depth mapping sensors such as Kinect and LeapMotion. These systems are ready to use,

require a relatively short set-up time and the data can be easily extracted. Therefore, they can

be easily used to quickly acquire a large amount of data, which is a requirement when consid-

ering machine learning. Other approaches were considered with sEMG [1], CyberGloves [2]

or motion capture system but these techniques are difficult to use outside of laboratories.

Considering systems such as the Kinect1 or a combined Kinect/LeapMotion1 approach,

several studies have been conducted using video or depth-mapping sensor and machine learn-

ing approaches such as Hidden-Markov-Model (HMM) [3], coupled HMM [4], random-forest

per-pixel [5], multi-class Support Vector Machine (SVM) [6], linear binary SVM [7], convolu-

tional neural network (ConvNet) [8,9] and DeepConvLSTM video-based approaches [10] to

name a few. Such approaches are interesting, but the Kinect remains difficult to use in public

space since it requires a large space and a power supply.

The LeapMotion easily detects forearm and palm movements as well as the position of the

fingers and thumb with a measurement accuracy of 200 μm [11] to estimate the joint position.

Such accuracy can be useful for creating accurate models of the kinematics of the hand-arm

system. In addition, it can be used with a single USB port, consumes very little power, and

does not require a large space to be used, making it convenient for applications in off-lab envi-

ronments. Moreover, it is an affordable system that does not require a professional to set up

and no calibration is required, which makes the system practical to use. In addition, the devel-

opment of depth-sensing cameras on smartphones would be an interesting choice as a basis

for sign language recognition and for the development of portable systems that are easy to use.

Naidu and Ghotkar [12] used the LeapMotion to classify a subset of the Indian Sign Lan-

guage (10 Arabic numbers, 26 letters, and 9 words). They propose four different approaches

(Euclidian distance measure, similarity, Jaccard and dice similarity) with 8 distances computed

from 6 measured points (center of the palm and all fingertips). Cosine similarity showed an

accuracy of 90.00% for the complete dataset but their approach is limited to static posture.

Marin et al. [6] studied a combined LeapMotion/Kinect approach with multi-class SVM to

classify 10 static American Sign Language (ASL) words with manual extraction of key

moments. They presented an average accuracy of 80.86%, 89.71% and 91.28% with the Leap-

Motion, the Kinect and combined Kinect/LeapMotion approaches respectively with a user-

independent k-fold cross-validation (M-1 subject for each K) for parameters tuning. Then, the

classifier was trained again with all subjects (M) and computed the accuracy on it which does

not provide a reliable model that can be used with new subjects. Kumar et al. [4] also consid-

ered a combined Kinect/LeapMotion approach on 25 dynamics words of the Indian Sign Lan-

guage. They considered a coupled-HMM approach and gained 90.8% accuracy on 25% out of

the complete dataset (50% used for training and 25% for parameter tuning and parameter vali-

dation), however, they do not provide information whether or not a user-independent test was

considered. Chuan et al. [13] classified the 26 letters of the English alphabet using k-NN and

SVM classifiers. Results showed an average classification rate of 72.78% and 79.83% respec-

tively using k-fold cross-validation (K = 4) on the complete dataset composed of 2 subjects.

Fok et al. [14] proposed an HMM-based approach to recognize the 10 ASL Arabic numbers

with an overall average recognition of 93.14% half of the sample of each subject for training

and the remaining data to test the model.

The recent breakthrough of deep learning has outperformed conventional machine learn-

ing approach in computer vision tasks [15]. Deep learning uses a succession of layers to extract

information, with the output of one layer as the input of the following one. They provide a

robust approach to generalize inter-subject variability and can consider the time-series dynam-

ics behavior of human movements mainly with ConvNet and Recurrent Neural Network

Convolutional and Recurrent Neural Network for Human Activity Recognition
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(RNN). Regarding sign language recognition, Koller et al. [16] use a hybrid ConvNet-HMM

approach based on a sequence of images extracted from video and by tracking the dominant

hand.

Regarding deep learning, the state of the art on HAR is presented by Ordóñez and Roggen

[17] adapted from Sainath et al. [18] for speech recognition. They proposed a model based on

combining convolutional and recurrent layers with Long-Short-Term-Memory (LSTM) called

DeepConvLSTM with data from Inertial Measurement Unit sensors (IMUs). ConvNet and

RNN have supervised learning approaches that can learn the dependencies between given

inputs and outputs. DeepConvLSTM outperformed ConvNet and RNN considered indepen-

dently for speech recognition [18] and is considered as the state-of-the-art for HAR [17,19].

Indeed, both approaches have their advantages with convolutional layers that can extract fea-

tures from a given signal and recurrent layers that can consider the dynamics of a time-series

signal [20–22]. A combined approach seems to be the best approach to perform HAR and is

promising since it allows flexible data fusion and features extraction [17] and this approach

will be exploited in this study.

This research proposes a comparison of deep neural networks to classify 60 ASL signs

based on a complete kinematic model of the right and left forearm/hands/fingers/thumb. The

kinematics of the hand and forearm are derived from the skeletal tracking model provided by

the LeapMotion sensor. The purpose of this research is also to propose a robust user-indepen-

dent k-fold cross-validation and tests in contrast to previous studies that focused primarily on

intra-user testing of their models. Indeed, machine learning models can be representative of

the behavior of participants but not on new ones. It is also demonstrated that intra-user tests

can lead to an overestimation of accuracy that is not representative of the results that can be

obtained on new users.

This document is organized as follows. We present the experiment as well as details on the

extraction and processing of the data prior to their use in our models. Then, we present the

classification methods of the gestures, the learning properties of the models and the hyperpara-

meters used. Finally, the results comparing the different models are presented and discussed.

Material and methods

Experimentation

The experiment was approved by the local ethics committee at the Tokyo University of Agri-

culture and Technology (TUAT) in Koganei, Japan. All Experiments were done in 2018.

Before the experiment, the participants gave informed consent to participate in the study.

A dataset of 25 male subjects, all novices in any sign language, was collected. Before each

measurement, the corresponding sign was taught to them. In this study, the Arabic numbers

from 0 to 10 and 49 words were considered. The total numbers of each sign gathered are pre-

sented in Table 1.

Features extraction

The LeapMotion SDK Unity core assets 4.3.2 was used with the C#/Unity module to collect

data during the experimental protocol. A total number of 26 points on each hand are extracted

in real-time from the LeapMotion. The features computed from these points are based on a

multi-finger modeling approach presented by Carpinella et al. [23] with minor modifications

and the ISB recommendations for the relative orientation of the hand to the forearm [24].

Convolutional and Recurrent Neural Network for Human Activity Recognition
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Kinematics models

The following coordinates systems are considered for the hand (1) and forearm (2) (Fig 1). (1)

Z
!

has the direction of (M2-M5) pointing externally, X
!

is perpendicular to the plan form by (M2-

RS) and (P5-RS) pointing forwardly, and Y
!

is the cross product of Z
!
�X
!

pointing upwardly. (2)

Y
!

has the direction of (EL-US) pointing upwardly, X
!

is the cross product of Y
!

and (RS-US)

pointing forwardly and Z
!

is the cross product of X
!

and Y
!

pointing externally. Then, the Euler

angles that describe the relative orientation of the hand with the forearm (flexion/extension and

radial/ulnar deviation) are computed with a ZXY rotation sequence (Vectors direction are

expressed from the standard anatomical position).

The following kinematics are considered for the thumb and fingers (thumb: i = 1, index: i = 2,

middle: i = 3, ring: i = 4 and pinky: i = 5) with EFi (i = 1–5) that represents the finger and thumb

end-effector, Mi (i = 1–5) the finger and thumb metacarpophalangeal joint, Pi (i = 1–5): the finger

and thumb proximal interphalangeal joints and Di (i = 2–5) the finger distal interphalangeal joints.

Then, the relative orientation of each finger with the hand is represented with a flexion angle αi

(Angle between Y
!

and Mi - Pi projected in the XY plan) and an abduction angle φi (Angle between

Y
!

and Mi - Pi projected in the YZ plane). Moreover, the relative orientation of the thumb with the

hand is represented with a flexion angle α1 (Angle between Y
!

and Mi - Di projected in the YZ

plan) and an abduction angle φ1 (Angle between Y
!

and Mi - Di projected in the XY plane). Fur-

thermore, the angle βi between Pi - Di and Pi - Mi and the angleϴi between EFi - Di and Pi - Di for

the ith finger (i = 2–5) and the angle 1 between EF1 - D1 and M1 - D1 for the thumb are also com-

puted. Finally, dj (j = 1–9) represent respectively the Euclidian distance between each successive EF

(EF1 with EF2, EF2 with EF3 . . .) and between EFi (i = 1–5) and the Palm.

Dataset

Each sign is manually extracted and interpolated to 100 frames with cubic spline interpolation.

The dataset is composed of a total number of d = 16890 labeled signs. f = 60 features are com-

puted to represent the kinematics of the right and left sides (Fig 1). For each sign extracted, the

features were regrouped in a time-series matrix Fl 2 Rm�n (m = 100 and n = 60) with each

group given by: (1) the finger and thumb end-effector (EF) relative distance, (2) their distance

with the palm, (3) the relative orientation of the hand with the forearm, (4) the relative

Table 1. Numbers of sign gathered during the experiment with the 25 subjects.

Dataset (25 subjects)

Sign # Sign # Sign # Sign # Sign # Sign #

0 285 Big 251 Come 296 Green 268 Red 272 Where 256

1 322 Blue 239 Cost 290 Happy 275 Shoes 311 Why 254

2 308 Brush 275 Cry 280 Hot 288 Small 279 With 305

3 277 Bug 252 Dad 278 Hungry 291 Socks 265 Work 289

4 296 Candy 258 Deaf 223 Hurt 286 Stop 277 Yellow 247

5 320 CarDrive 250 Dog 272 Milk 301 Store 272

6 299 Cat 262 Drink 280 Mom 298 Thanks 270

7 283 Cereal 250 Egg 307 More 315 Warm 299

8 275 Clothes 292 Finish 323 Orange 287 Water 260

9 297 Coat 283 Go 293 Pig 277 What 287

10 260 Cold 345 Good 315 Please 262 When 263 Total 16890

https://doi.org/10.1371/journal.pone.0228869.t001
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orientation of the fingers and thumb with the hand and (5) the thumb and finger angles.

Fl ¼

f1;1 f1;2 . . . f1;i
f2;1 f2;2 . . . f2;i

. . . . . . . .
.

. . .

ft;1 ft;2 . . . ft;i

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼ fi;j 2 R
m�n

ð1Þ

All feature matrices were computed for all signs (l) and subjects (k). Finally, each feature fi,j
was standardized with the mean μ and standard σ deviation of their respective group presented

above as follow:

fi;j ¼
fi;j � m
s

ð2Þ

Then, each subject in the dataset is represented as Ds ¼ fFl; ylg
N
l¼1

with N the numbers of sign

and yl the corresponding outputs labels of Fl represented as a binary vector.

Data augmentation

To prevent the overfitting of the model and help generalize the classification, data augmenta-

tion was considered. A given signal fi is sliced into 10 parts of equal length. Then, data warping

was considered on the magnitude and the temporal location of the signal with the following

properties. First, each part was distorted to a random value p fp 2 Nj5 � i � 15g with a cubic

Fig 1. Hand joints. Thumb, index, middle, ring, and pinky are numbered from 1 to 5 respectively. EFi (i = 1–5): finger and thumb end-effector

position, Mi (i = 1–5): finger and thumb metacarpophalangeal joint, Pi (i = 1–5): finger and thumb proximal interphalangeal joints, Di (i = 2–5):

finger distal interphalangeal joints. EL: elbow joint (not represented here), WR: wrist joint, RS: radial styloid, US: ulnar styloid, PALM: palm

center.

https://doi.org/10.1371/journal.pone.0228869.g001
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spline interpolation and all parts were reconstructed and interpolated to 100 frames. Then, the

amplitude of the signal was slightly altered. A sinus wave with a random period P
fP 2 Rj0:5 � P � 2g, phase φ fφ 2 Rj0 � φ � pg and amplitude A
fA 2 Rj � 0:2 � A � 0:2g was generated. Finally, this sinus wave was multiplied by A and by

the amplitude range of the current signal fi and added to it, thus allowing a smooth variation.

This procedure is repeated 40 times for each Fl in the training set (described in the next

section).

Gesture classification

Training, validation, and test

This study considers a user-independent approach, i.e. data from the same participant appears

either in the train, validation or test sets. To do so, nested k-fold cross-validation with a user-

independent approach is considered. It consists of an inner and an outer loop. In each loop,

the model is always trained from a random initial point to keep each inner and outer loop

independent from each other. Moreover, the first outer loop is considered for hyper-parame-

ters tuning (e.g. number of layers, cells unit size, learning rate, strides, patch size. . .).

The inner loop consists of splitting the participants into two sets: 20 subjects are assigned to

the training/validation set and 5 to the test set. The test set was kept aside to assess the final

performance of the models. The training/validation set is used in a non-exhaustive user-inde-

pendent k-Fold cross-validation that consisted of a rotating K = 4 folds with 15 and 5 subjects

to train and validate respectively. To reduce overfitting of the neural network, early-stopping

is applied at each k-fold when the accuracy of the validation set starts to decrease (overfitting

of the model on the training set).

The outer loop follows the same procedure as the inner loop except that the test set is

changed (as well as the train/validation one) with user that still appeared once either in the

train/validation or test set. This loop is performed until all participants are tested.

Training properties

Models were trained with mini-batches composed of 500 samples and a learning rate of η =

0.001 with exponential decay of 0.9 every 5 epochs. As a form of regularization, a dropout

wrapper is added on each layer to randomly select units that are ignored at each epoch with a

probability value of 0.8. The Adam gradient descent optimization algorithm [25] was used to

minimize the cost function E that corresponds to a softmax cross-entropy between the esti-

mated vector (logits) (y’) and the true labels vector (y):

E ¼ �
Xn

i¼0

y0ilogðsoftmaxðyiÞÞ

with softmaxðyiÞ ¼
expðyiÞ
Xn

i¼0

expðyiÞ

ð3Þ

For each k-fold cross-validation, the training phase was stopped when the accuracy of the vali-

dation set starts to decrease and the corresponding model was saved.

After the k-fold cross-validation in each outer loop, 4 trained models are created. The test

set is fed to each model (k = 4) and the final predicted class is considered with a majority vote

decision.

Convolutional and Recurrent Neural Network for Human Activity Recognition
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Models

In this study, different conventional machine learning and deep learning models are consid-

ered. Regarding the conventional machine learning models, k-nearest neighbors (k-NN) [26],

random forest (RF) [27] and support vector machine (SVM) [28] are used as a baseline com-

parison. The retained hyperparameters are as follows: k-NN is used with k = 10, RF is used

with 1000 trees classifier with a depth of 5 and SVM is used with a linear kernel. The deep

learning models considered were Multi-layer Perceptron (MLP), ConvNet, RNN with LSTM

cell from Zaremba et al. [29] and DeepConvLSTM (Fig 2). Detailed regarding their hyperpara-

meters is provided in Table 2.

Tensorflow 1.4 [30] with Python 3.5.2 was used and the training was performed on a GTX

1060 6GB that integrates 1280 CUDA cores [31].

Specifically to DeepConvLSTM, the output of the last convolutional layers is fed into 2

LSTM layers composed of the LSTM cell from Zaremba et al. [29]. Moreover, as the time-series

is fed to the LSTM layers, the LSTM hidden state contains more and more information about

the current sequence. Therefore, the last time step of the LSTM layer is connected to the soft-

max layer to retrieve the class probabilities. Finally, the last output of the last recurrent layers is

connected to a layer with a softmax activation function to normalize the output to a probability

distribution.

Results

The results from all different models considered with and without data augmentation are pre-

sented in Table 3. To compare the results of the different approaches, a one-way Analysis of

Variance (ANOVA) with repeated measures was performed. Then, the Dunnett post hoc test

was used to compare the DeepConvLSTM with data augmentation with all other models. The

significance level was set at α = 0.05 and the Statistica software (Statsoft, Tulsa, OK, USA) was

used. ANOVA on models showed a significant main effect (F(10, 264) = 42.454, p< 0.05) and

Dunnett’s test revealed higher value of accuracy for DeepConvLSTM with data augmentation

compared to all other models (p< 0.05 for each comparison) except with ConvNet with data

augmentation (p> 0.05).

The normalized confusion matrix and a Sankey diagram created using SankeyMATIC

(http://sankeymatic.com/) are presented in the supplementary materials S1 and S2 Figs in the

supplementary materials respectively.

Moreover, the holdout method with the same DeepConvLSTM hyperparameters without

data augmentation was also considered. It simply consists in splitting the complete dataset into

two parts randomly selected (80% training and 20% testing) in a stratified way (the same per-

centage of labels in each set). The holdout method was repeated 10 times and results showed a

mean accuracy of 0.997 (0.001) with the test set.

Discussion

The aim of this study was to classify 60 signs of ASL using deep neural networks with a fore-

arm, hand, and finger kinematics models from joint position data provided by the LeapMo-

tion. The raw data from the LeapMotion for the 25 subjects are freely provided with this study

(https://doi.org/10.17632/8yyp7gbg6z.1). Moreover, a robust user-independent k-fold cross-

validation was used to create the model. This step was composed of four cycles (k = 4) with 15

subjects for training and 5 subjects for validation without overlap. It was followed by a user-

independent test phase with 5 subjects used to apply the model in a “real-world case” to pres-

ent the classification results. Moreover, the DeepConvLSTM was compared with a recurrent
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neural network composed of the LSTM cell from Zaremba et al. [29] to demonstrate the

improvement of a combined approach.

Results showed that the DeepConvLSTM with data augmentation showed the highest

results with 91.1 (3.8) % of accuracy on the test sets. The effect of data augmentation on this

model showed a significant improvement of about 3.8% (Table 2) demonstrating the impor-

tance of using data augmentation technique to help the classifier to generalize human behavior

[32]. ConvNet with data augmentation showed non-significant different results compare to

DeepConvLSTM with an accuracy of 89.3 (4.0) % and RNN presented a lower accuracy of 87.2

(5.1) % (Table 2). Contrasting with the study of Ordóñez and Roggen [17], the Deep-

ConvLSTM did not outperform ConvNet but outperformed RNN demonstrating the impor-

tance of using convolutional layers for HAR. MLP, k-NN, SVM, and RF showed poorer results

compared to models composed of convolution or recurrent layers. The current approaches

considered the use of kernel size in the convolutional layers along the time axis (e.g. 20 x 1 on

the first convolutional layer). Using a larger kernel or changing the input tensor size to 100 x 1

x 60 to get the first convolution to capture all the vector interaction was also tested but was not

as successful. It may be difficult for the convolutional layer to capture 60 dimensions along the

feature axis at once. Convolutional layers are used to remove outliers’ values, extract features

and filter the input data independently along the time axis, making the classification more effi-

cient in the classifier part of the models. RNN models with LSTM cells reach high accuracy

Fig 2. DeepConvLSTM architecture. ConvNet-LSTM architecture. N1, N2, N3, and N4 represent the numbers of channels (also called

feature map) created after each convolutional layer. Their values are respectively 16, 16, 32 and 64. ReLU (rectified linear unit) represent the

activation function.

https://doi.org/10.1371/journal.pone.0228869.g002

Table 2. Detail of the hyperparameters retained for Multi-layer Perceptron (MLP), convolutional neural network (ConvNet), recurrent neural network (RNN) and

DeepConvLSTM.

MLP ConvNet RNN DeepConvLSTM

Input

shape

6000 100 x 60 x 1 100 x 60 100 x 60 x 1

Layers 1 Neurons: 256 Activation

function: Sigmoid

Filter size: 16 Kernal size: 20 x 1 Stride: 1 x 1

Activation function: ReLU

Cells: LSTM Cells size: 256 Filter size: 16 Kernal size: 20 x 1 Stride: 1 x 1

Activation function: ReLU

Layers 2 Neurons: 512 Activation

function: Sigmoid

Filter size: 16 Kernal size: 20 x 1 Stride: 2 x 1

Activation function: ReLU

Cells: LSTM Cells size: 256 Filter size: 16 Kernal size: 20 x 1 Stride: 2 x 1

Activation function: ReLU

Layers 3 Neurons: 1024 Activation

function: Sigmoid

Filter size: 32 Kernal size: 10 x 1 Stride: 2 x 1

Activation function: ReLU

Cells: LSTM Cells size: 256 Filter size: 32 Kernal size: 10 x 1 Stride: 2 x 1

Activation function: ReLU

Layers 4 Neurons: 60 Activation

function: Softmax

Filter size: 64 Kernal size: 5 x 1 Stride: 2 x 1

Activation function: ReLU

Cells: LSTM Cells size: 256 Filter size: 64 Kernal size: 5 x 1 Stride: 2 x 1

Activation function: ReLU

Layers 5 Neurons: 128 Activation function: tanh Neurons: 60 Activation

function: Softmax

Cells: LSTM Cells size: 256

Layers 6 Neurons: 60 Activation function: Softmax Cells: LSTM Cells size: 256

Layers 7 Neurons: 60 Activation function: Softmax

https://doi.org/10.1371/journal.pone.0228869.t002
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(87.2 (5.1) % with data augmentation) which are improved by the convolutional layer in the

DeepConvLSTM models. Nevertheless, using a 1D kernel on each feature independently along

the time axis in this study provided the best results. As also pointed out by Ordóñez and Rog-

gen [17], using max-pooling at each convolutional layers provided poorer results. Moreover,

the test time was about 15.3 (0.6)s and 8.8 (0.3)s. for 5 tested subjects in all outer loop for the

DeepConvLSTM and ConvNet respectively providing an advantage of using ConvNet for por-

table systems.

Regarding the holdout method (used for demonstration purpose only), the accuracy on the

validation set was at 99.7 (0.1) %. This result showed how easy it is to gain very high accuracy.

This method should be avoided since the models have already learned all the subject’s behavior

and the results would remain specific to these subjects and would not be representative of new

users. Moreover, other DeepConvLSTM hyperparameters that provided lower accuracy with

the user-independent approach also provided accuracy around 99% with the holdout method
demonstrating the risk to create models with non-adapted hyperparameters. It remains diffi-

cult to compare our results with those of previously reported studies since they used different

validation and/or test methods, but we believe that considering a user-independent approach

with nested k-fold cross-validation is a relevant way to prove the reliability of a model.

The Sankey diagram (S2 Fig) shows for each true label y the wrong logits y’ that has been

identified in an easy-to-read manner. For a better reading, the wrong logits mislabelled 1 and

2 times for each label and subject independently were removed from the Sankey Diagram.

Some movements of the sign language were confused because of similarities between them or

difficulty from the LeapMotion to correctly detect all joint positions. For instance, Two was

confused with Three, Seven with height and Four with Five. Indeed, it was sometimes difficult

for the LeapMotion sensor to differentiate the numbers of extended fingers. Movement such

as dog (forearm in supination with index finger extended and snap the thumb with the middle

finger) is difficult to record by the LeapMotion since the thumb and the middle finger are hid-

den by the palm and can be confused with one (index finger extended) and brush (index finger

extended moving in front in the mouth). Thanks consist of only moving the forearms with the

hand flat and finger close to each other while warm consists of the same movement with finger

performing and abduction during the movement. The model may receive too limited informa-

tion to perfectly differentiate both signs. The same problem is observed with car, coat, and cold
since they are movements that require moving the forearms with the fists closed which may

also provide too limited information given the model here used to be differentiated properly.

Table 3. Accuracy (Mean (SD)) on the validation and test set for the different models considered (+DA: Include

data augmentation). The results include all inner and outer loops of the nested k-fold cross-validation (� p< 0.05).

k-fold cross-validation Test

DeepConvLSTM (+DA) 89.7 (2.1) 91.1 (3.8)

LSTM (+DA) 83.0 (3.5) 87.2 (5.1) �

ConvNet (+DA) 86.7 (2.7) 89.3 (4.0)

MLP (+DA) 81.3 (3.4) 84.5 (5.0) �

DeepConvLSTM 85.3 (1.9) 87.3 (4.5) �

LSTM 79.4 (2.7) 84.5 (5.4) �

ConvNet 83.7 (1.9) 87.4 (4.3) �

MLP 80.8 (2.4) 83.7 (5.0) �

k-NN 65.4 (2.9) 67.1 (6.4) �

RF 78.1 (2.5) 80.1 (4.9) �

SVM 77.7 (3.1) 80.6 (4.9) �

https://doi.org/10.1371/journal.pone.0228869.t003
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Finally, Dad was confused with Mom since they required the same hand movement to be per-

formed except that the position in front of the head is different from the thumb position at the

chin and at the forehead respectively. Despite this, Dad was confused with Mom for 23% in the

test set showing the capability of the DeepConvLSTM to differentiate the slight difference in

the global dynamics of the movement. Improvement in the hand tracking with depth-sensor

may leverage these problems and would help to reach higher accuracy in the future.

The main limitation of this study is that the recruited participants were new to sign lan-

guage. Beginners may have greater variability when performing movements and future work

should be considered with experts to assess if there would be an improvement in the classifica-

tion. In addition, a static neural network was used and future work will have to be considered

with a dynamic neural network that allows adapting the length of the input sequence coupled

with an automatic signal detection method [33]. Nevertheless, a static neural network may still

be considered with an automatic segmentation method and then interpolate the signal. Finally,

future studies should consider another model that will be fed by the output of the Deep-

ConvLSTM with the purpose of predicting the most probable word based on the previous

words/sentences to help the classification from a given context. Finally, sign language recogni-

tion may be improved with data provided by a camera or IMU sensors to gain information

about the hand position relative to the body.

Conclusion

This study compared various conventional machine learning and deep learning models to clas-

sify American sign language. Moreover, a robust user-independent k-fold cross-validation and

test phase were provided. This contrast previous work, where the validation and/or the test

phase were not user-independent, or lack of information was provided. There are several pos-

sibilities for future work to improve these results, such as the use of experts in sign language,

dynamic neural network, automatic segmentation technique and additional data from a cam-

era or IMU sensors.
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