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Abstract—In this paper, a new class of circulant matrices for
compressed sensing are proposed by introducing nearly perfect
sequences into the random convolution framework. Measure-
ments are obtained by circularly convolving the signal not with
a random sequence, but with a well-designed deterministic se-
quence, followed by random subsampling. Both uniform recovery
and non-uniform recovery of sparse signals are investigated,
based on the coherence parameter of the proposed sensing matri-
ces. Many examples of the sequences are investigated, particularly
the Frank-Zadoff-Chu (FZC) sequence and the Golay sequence.
A salient feature of the proposed sensing matrices is their semi-
universality, i.e., they can not only handle sparse signals in the
time domain, but also those in the frequency or discrete-cosine
transform (DCT) domain.

Index Terms—Compressed sensing, Frank-Zadoff-Chu se-
quence, Golay sequence, nearly perfect sequences, random con-
volution.

I. INTRODUCTION

COMPRESSED sensing (CS) is a growing theory in signal
processing aiming at simultaneous sampling and com-

pression of a signal [1], [2]. Consider a length-N signal x and
suppose that the basis Ψ provides a K sparse representation
of x. That is, x = Ψf, where f can be approximated using
only K ≪ N non-zero entries and Ψ is referred to as
the sparsifying transform. Throughout this paper, we assume
that Ψ is an N × N normalized unitary matrix satisfying
Ψ∗Ψ = IN . The data acquisition process in CS can be
described as

y = Φx+ e = ΦΨf + e, (1)

where y represents an M ×1 sampled vector, Φ is an M ×N
measurement/sensing matrix and e is a noise vector. It was
shown in [1], [2] that if Φ is a Gaussian or Bernoulli random
operator, x can be faithfully recovered from y using nonlinear
optimization provided that M ≥ O(K log(N/K)).

Although Gaussian or Bernoulli operators offer optimal
theoretical bounds, they require huge memory for storage and
high computational cost for signal reconstruction. Besides,
fully random matrices are often difficult or expensive in
hardware implementation. Taking these facts into account,
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many researchers have investigated structured random or de-
terministic operators [3]–[10]. Among them, one class of fast
CS sampling operators is through convolving the signal of
interest with a random filter and then subsampling [4], [5], [8],
[9], [11]. Such operators are memory efficient, fast computable
and hardware friendly in implementation [11]. They hold great
potential in applications such as sparse channel estimation [4],
Fourier optics [8], Radar imaging [8], [11] and coded aperture
imaging [12].

Note that for convolution-based CS, most existing works
focus on filters with independent and identically distributed
(i.i.d.) random coefficients. In this paper, we propose a new
framework by convolution with a deterministic filter followed
by random sampling of the outputs. A deterministic filter
has the advantage of being more convenient to implement.
The filter coefficients are obtained by taking the inverse fast
Fourier transform (IFFT) of a unimodular (nearly) perfect
sequence (e.g., the Frank-Zadoff-Chu (FZC) [13] and the
Golay sequences [14]) or its extended version (a precise
definition will be given in Section III). We show that such
a scheme is semi-universal, i.e., it can efficiently sample a
sparse signal in the time (Ψ = IN ) or spectral (Ψ = 1√

N
IFFT)

domain. Specifically, for all K-sparse signals of length N
in the time or spectral domain, robust reconstruction can be
achieved when the number of measurements satisfies M ≥
O
(
K log4 N

)
, while for any given K-sparse signal, it can be

recovered from only M ≥ O(K logN) measurements. To our
best knowledge, these bounds offer the strongest theoretical
guarantee for convolution-based CS. In addition, when the
filter is constructed from the FZC sequence, these results also
hold for sparse signals in the DCT domain.

The rest of this paper is organized as follows. Section II
gives a brief review of CS theory and in particular, random
convolution-based CS. Section III introduces the framework
of the proposed system and summarizes the main results of
this paper. Sections IV and V are devoted to the analysis of
complex and real coefficient sensing matrices, respectively.
Simulation results are given in Section VI, followed by con-
clusions in Section VII.

Notation: In this paper, bold letters are used to denote a
vector or a matrix. For an M × N matrix A, A(p, q) (0 ≤
p ≤ M−1, 0 ≤ q ≤ N−1) represents the element on its p-th
row and q-th column. AT and A∗ denote the transpose and
Hermitian transpose of A, respectively. For an N ×N given
matrix A, we use µ(A) to denote its coherence parameter,
i.e., the maximum magnitude,

µ(A) = max
0≤p,q≤N−1

|A(p, q)|.
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For two N × N matrices A and B, their mutual coherence
µ(A,B) is defined as

µ(A,B) = µ(AB) = max
0≤p,q≤N−1

|A(p, :)B(:, q)|,

where A(p, :) and B(:, q) correspond to the p-th row of A and
q-th column of B, respectively. F is the N ×N fast Fourier
transform (FFT) matrix where F(p, q) = e−

2πjpq
N (0 ≤ p, q ≤

N − 1). If a is a function of N , a .
= b means limN→∞ a = b.

We use the standard asymptotic notation f (x) = O (g (x))
when lim supx→∞ |f(x)/g(x)| < ∞.

II. REVIEW OF COMPRESSED SENSING

In this section, we first review uniform and non-uniform
recovery in compressed sensing, and in particular theoretical
performance bounds for randomly subsampled unitary matri-
ces. We then highlight existing works of random convolution-
based CS.

A. Uniform vs. Non-Uniform Recovery

Let Θ = ΦΨ. Then (1) can be re-written as

y = Θf + e. (2)

Hence, reconstruction of x = Ψf is equivalent to recovery
of a K-sparse vector f . Note that as M < N , eq. (2) is in
general under-determined. To recover f (or equivalently, x)
from y, nonlinear optimization is required. In the noiseless
case (i.e, e = 0, exact recovery can be achieved by a standard
l1 minimization program [15]

min ∥f∥l1 s.t. y = Θf . (3)

In the noisy case, f can be reconstructed using the uncon-
strained LASSO [16] that solves the l1 regularized square
problem

minλ∥f∥l1 +
1

2
∥y −Θf∥2, (4)

where λ is the Lagrangian constant. In addition to l1-based al-
gorithms, many greedy algorithms, such as orthogonal match-
ing pursuit [17], subspace pursuit [18], CoSaMP [19] and their
variants have been proposed for sparse signal reconstruction.
These algorithms require lower computational complexity than
l1-based optimization with somewhat weaker theoretical guar-
antees.

In CS reconstruction, uniform recovery [2] means that once
the sampling operator Φ is constructed, all sparse signals in a
certain basis Ψ can be recovered as long as M is sufficiently
large. To achieve uniform recovery, many existing sparse
recovery algorithms such as l1 optimization [15], LASSO
[16], subspace pursuit [18] and CoSAMP [19] require that
the restricted isometry property (RIP) is satisfied.

Definition 1 (RIP): An M ×N matrix Θ = ΦΨ is said to
satisfy the RIP with parameters (K, δ) (δ ∈ (0, 1)) if

(1− δ)∥f∥2 ≤ ∥Θf∥2 ≤ (1 + δ)∥f∥2, for all f ∈ Γ, (5)

where Γ represents the set of all length-N vectors with K
non-zero coefficients.

For RIP constant δ required in different sparse recovery
algorithms, please refer to [7] for details. Note that the RIP is
a very strong restriction. Among existing sampling operators, it
is known that the i.i.d. Gaussian and Bernoulli matrices satisfy
the RIP when M ≥ O(δ−2K logN). However, as we have
mentioned before, these full random operators are impractical
for large-scale CS data acqusition. Another subclass of oper-
ators satisfying the RIP is random sampled unitary matrix, as
summarized in the following theorem [7], [20].

Theorem 1 (RIP for randomly subsampled unitary matrix):
Suppose that the M ×N matrix Θ is a randomly subsampled
unitary matrix, i.e., it can be written as Θ =

√
N
MRΩU,

where
√
N/M is a normalizing coefficient, RΩ is a random

sampling opertor which selects M samples out of N ones
uniformly at random, and U is an N × N unitary matrix
satisfying U∗U = NIN . Then Θ satisfies the RIP with high
probability provided that [7], [20]

M ≥ O
(
δ−2µ2(U)K log4 N

)
. (6)

The above theorem implies that the RIP bound of a ran-
domly subsampled unitary matrix depends on µ(U). Note
that for a unitary matrix U with U∗U = NIN , we have
1 ≤ µ(U) ≤

√
N . In case when U is chosen as the FFT or

the Walsh-Hadamard transform, µ(U) = 1 and by Eq. (6), we
have

M ≥ O
(
δ−2K log4 N

)
. (7)

One can also observe that compared with the optimal
bound provided by full random matrix, there is an extra
log3 N factor in (7). To address this issue, several researchers
have relaxed the conditions and investigated the case of non-
uniform recovery, where one just needs to reconstruct a given
sparse signal. Theorem 2 presents the results for non-uniform
recovery of a randomly subsmapled unitary matrix using l1-
based optimization.

Theorem 2 (Non-uniform recovery): Assume that Θ is a
randomly subsampled unitary matrix that follows the same
definition as in Theorem 1. Let f in (2) be a fixed arbitary
K-sparse signal. Then f can be faithfully recovered from y
using l1-based optimization (i.e., (3) in the noiseless case and
(4) in the noisy case) if M satisfies [21]

M ≥ O(µ2(U)K logN). (8)

Theorem 2 implies that using randomly subsampled FFT
or Walsh-Hadamard transform (WHT), the number of samples
required for non-uniform reconstruction is nearly optimal. This
is because that non-uniform recovery is much weaker than
uniform recovery. It should also be noted that the above non-
uniform recovery only holds for l1 optimization. It is still
unknown whether we can get similar bounds for fast greedy
recovery algorithms such as the subspace pursuit [18] and
CoSaMP [19].

At this point, it is worth pointing out that although partial
FFT (or WHT) has near-optimal theoretical guarantee, easy
hardware implementation and fast-computable recovery, its
major shortcoming is the lack of universality. A universal
sensing matrix means that it can handle signals that are
sparse on any domain. If Φ is a Gaussian random matrix, the
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matrix ΦΨ will remain Gaussian for any unitary transform Ψ.
However, if Φ is randomly sampled from a FFT, it will not be
universal, as µ(FΨ) can not be O(1) for all bases Ψ. In this
paper, we will propose a new class of randomly subsampled
circulant matrices that are semi-universal, which can be used
to efficiently sample sparse signals on both time and frequency
domains.

B. Random Convolution for CS

Tropp et al. [5], [22] first proposed the idea of CS using
convolution with an i.i.d. sequence followed by fixed regular
sampling. The effectiveness of such an approach has been
demonstrated through numerical simulations. Later, many peo-
ple have investigated cyclic convolution with an N -tap random
filter [4], [8], [9], in which the sampling operator Φ can be
represented as a partial circulant matrix with the following
form

Φ =

√
N

M
RΩA (9)

where A is a circulant matrix that can be expressed as

A =


a0 aN−1 · · · a1
a1 a0 · · · a2
...

...
. . .

...
aN−1 aN−2 · · · a0

. (10)

For Φ given in (9), the measurement process can be
realized by circularly convolving x with a filter a =[
a0 a1 · · · aN−1

]T
and then downsample the output at

locations indexed by Ω. It is also well known that a circulant
matrix A can be diagonalized using FFT as follows

A =
1√
N

F∗ΣF, (11)

where Σ = diag(σ) = diag(σ0, σ1, · · · , σN−1). Eq. (11)
suggests that a circulant operator is fast computable. It is
easy to see that the filter vector a (i.e., the first column
of A) can be obtained by taking the IFFT1 of sequence
σ =

[
σ0 σ1 · · · σN−1

]T
, i.e.,

a =
1√
N

F∗σ. (12)

In other words, σ is the normalized FFT of a. It is clear that
when σ is a unimodular sequence, i.e., |σk| = 1 (0 ≤ k ≤
N − 1), A is a unitary matrix satisfying A∗A = NIN .

In most existing works, the coefficient vector a is con-
structed randomly. In [4], [9], a is a binary random sequence,
where each ai takes the values of +1 and −1 with equal
probability. An alternative way is to obtain a from σ, which
is a binary random sequence [9] or a unimodular sequence
with random phases [8], i.e., σk = ejθk , where θk is a random
variable that is uniformly distributed in [0, 2π).

The sampling operator RΩ can be either deterministic or
random, as summarized below.

1For convenience, the definition here differs from the standard one IFFT =
1
N
F∗ by a factor of 1/

√
N .

1) Deterministic subsampling: In deterministic sampling,
Ω is chosen as any arbitrary subset of {1, 2, · · · , N} with
cardinality |Ω| = M . It was shown in [9] that Φ given
by (9) satisfies RIP with parameters (K, δ) provided that
M ≥ O

(
(K logN)

3
2

)
. Note that there is an extra term

√
K logN factor in this bound. On the other hand, non-

uniform recovery results have been investigated in [23], where
the author considered the recovery of a given K-sparse signal
whose nonzero components have random signs. Under this
model, it was established in [23] that exact recovery can be
achieved using l1 optimization when M ≥ O(K log2 N).
However, unlike Theorem 2, this bound only holds for noise-
less measurement and hence the guarantee for stable recovery
under noisy measurements is unclear. Besides, as we will show
later, when RΩ is a deterministic operator, Φ given in (9)
works poorly for a spectrally sparse signal, which implies that
it cannot be used directly to sample a natural image (which is
often sparse in the DCT or the wavelet domain).

2) Random subsampling: To achieve a universal
convolution-based CS, Romberg [8] proposed to use a
random sampling operator RΩ. Under such a setting, it can
be shown that for any orthonormal basis Ψ, A given by (11)
satisfies

µ(AΨ) = O(
√
logN). (13)

By Theorem 1, such a universal operator satisfies the RIP
when M ≥ O(δ−2K log5 N) and by Theorem 2, M ≥
O(δ−2K log2 N) measurements are required for non-uniform
recovery. Note that compared with the optimal bounds offered
by a randomly subsampled unitary matrix, there is an extra
logN factor in random convolution. It is thus natural to
ponder: Can we get better bounds for convolution-based CS
systems?

III. DETERMINISTIC FILTER FOR CONVOLUTIONAL CS

In this Section, we propose a new framework which answers
the afore-posed question affirmatively.

A. Our Proposal

Unlike previous work, in this paper, we propose the use
of a deterministic filter followed by random sampling for
convolution-based CS. Specifically, for Φ given in (9), RΩ is
a random sampling operator and A is constructed from (11)
by choosing σ as a deterministic unimodular sequence. As
mentioned before, under this constraint, A is a unitary matrix
satisfying A∗A = NIN . When Ψ = IN , by Theorem 1 and
Theorem 2, the performance bounds depend on µ(A), which
is given by

µ(A) = max(|a0|, |a1|, · · · , |aN |).

Hence, we need to find a unimodular sequence σ so that the
maximum magnitude of a = 1√

N
F∗σ is minimized. To this

end, we consider the construction of σ using a perfect or nearly
perfect sequence [24], [25], whose definition is given below:

Definition 2 (Perfect and nearly perfect sequences): A se-
quence s of period N is called a perfect sequence if it has
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Fig. 1. Implementation schemes of convolutional CS: (a) Implementation in frequency domain: Fourier optics imaging. The lenses transform the signal to
Fourier domain and back. (b) Implementation in time domain: convolution with a deterministic filter followed by random sampling.

perfect periodic autocorrelation

Rs(l) =
N−1∑
k=0

sk · s∗mod (k+l,N) =

{
N l = iN
0 l ̸= iN

(14)

where l = 0, 1, 2, · · · is an integer. A nearly perfect sequence
is a sequence with the off-peak autocorrelation magnitude
bounded by a small ϵ, i.e.,

|Rs(l)| < ϵ, l ̸= iN. (15)

Note that when σ is a unimodular sequence, Φ in general
is complex valued. Yet real-valued filters are desired in many
applications, such as image processing. To generate real sens-
ing matrices, we need conjugate symmetry of the diagonal
sequence σ. More precisely, we define an extended sequence

σk =


±1 k = 0

e−jθk 1 ≤ k ≤ N/2− 1
±1 k = N/2

ejθN−k N/2 + 1 ≤ k ≤ N − 1;

(16)

when N is even, and

σk =


±1 k = 0

e−jθk 1 ≤ k ≤ (N − 1)/2
ejθN−k (N + 1)/2 ≤ k ≤ N − 1,

(17)

when N is odd, for some phases θk. Thus, to get a real-valued
filter, we just need to use a length-N0 unimodular sequence
s =

[
s0, s1, · · · , sN0−1

]
, where

N0 =

{
N
2 , N even,
N−1,

2 N odd;
(18)

then σ can be obtained by extending s using (16) and (17) for
even N and odd N , respectively.

The scheme of convolutional CS is illustrated in Fig. 1.
In particular, Fig. 1(a) shows the frequency domain imple-
mentation: the FFT of the signal is multiplied with a de-
terministic diagonal matrix Σ, fed to IFFT (up to a scaling
factor N−1/2), then randomly subsampled. It is similar to the
imaging architecture in [8] but with fixed coefficients. Fig.
1(b) shows the alternative implementation in the time domain:
the signal passes through a deterministic filter (i.e., convolved
with the IFFT of sequence σ), then randomly subsampled. By
using a deterministic construction of σ (or equivalently, filter
coefficient vector a), not only can we simplify the design and
implementation, it also offers better theoretical guarantee, as
explained in the next subsection.

B. Main Results

Lemma 1 (Bound on the coherence parameter): Let the
complex-valued matrix A be defined by (11) where σ = s. If
s is a unimodular perfect sequence, then µ(A) = 1. If s is a
unimodular nearly perfect sequence satisfying (15), then

µ(A) ≤
√
1 + ϵ. (19)

Proof: First, we examine the FFT ŝ = Fs of sequence s.
By the Wiener-Khinchin theorem, the power spectrum |ŝ|2 is
given by the FFT of the periodic autocorrelation function Rs.
Thus, we have (for 0 ≤ k ≤ N − 1)

|ŝk|2 =

N−1∑
l=0

Rs(l)e
− j2πkl

N

≤ N +

∣∣∣∣∣
N−1∑
l=1

Rs(l)e
− j2πkl

N

∣∣∣∣∣
≤ N + (N − 1)ϵ. (20)

Now consider the sequence a = 1√
N
F∗s. It is easy to show

that F∗s is a reversed version of ŝ (with respect to index
k), hence the same magnitudes. From (20), the coherence
parameter, i.e., the peak magnitude of a, is bounded by

µ(A) ≤ 1√
N

√
N + (N − 1)ϵ ≤

√
1 + ϵ.

When ϵ = 0, we get the ideal bound µ(A) = 1 for perfect
sequences.

Lemma 1 forms the motivation of the method to be devel-
oped in this paper. It shows that µ(A) will be small for perfect
or nearly-perfect sequences. In particular, we require µ(A) =
O(1) in this paper, which means that ϵ is bounded by a con-
stant. The only known binary perfect sequence is [1, 1,−1, 1].
So in general we have to use polyphase perfect sequences. We
refer to [26] for a unified construction of polyphase perfect
sequences. A survey of binary and quadriphase nearly-perfect
sequences is given in [27]. Examples of binary sequences with
ϵ = 1 are m-sequences, Legendre sequences, and twin-prime
sequences. An example of quadriphase sequences with ϵ = 1
is the complementary-based sequence. Sequences with other
values of ϵ such as 2, 3, and 4, can be found in [27].

Yet, Lemma 1 has some limitations: firstly, it is difficult, if
not impossible to extend to real sensing matrices; secondly,
the bound (19) is pessimistic; thirdly, an extension to other
domains (e.g., DCT) seems difficult. In the following, we
derive, in a case-by-case manner, the bound on µ(A) for both
complex and real sensing matrices, which is often better than
(19).
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TABLE I
COHERENCE PARAMETER µ(A) FOR DIFFERENT DIAGONAL SEQUENCES σ

σ N µ(A)

Complex matrices

FZC Arbitrary 1

m-sequence 2k − 1, k ∈ N
√

1 + 1
N

Legendre sequence
N ≡ 3 (mod 4) and N prime

√
1 + 1

N

N ≡ 1 (mod 4) and N prime 1 + 1√
N

Golay sequence 2κ110κ226κ3 , κ1, κ2, κ3 ∈ N
√
2

Real matrices
Extended chirp

Even N 4 + 4√
N

Odd N 2.69 + 8.15√
N

Extended Golay
Even N , N = 2κ110κ226κ3 , κ1, κ2, κ3 ∈ N 2 + 2√

N

Odd N , N = 2κ110κ226κ3 ± 1, κ1, κ2, κ3 ∈ N 2 + 1√
N

Table I lists the different unimodular sequences σ used
in this paper, along with the corresponding N and µ(A).
Derivations of µ(A) are heavily based on Gaussian sums given
in Appendix A. Details will be explained in Section IV and
Section V for complex and real-coefficient filters, respectively.
Based on Lemma 1, Table I, Theorem 1 and Theorem 2, we
arrive at the following theorem:

Theorem 3: Consider a CS sampling operator Φ given
in (9), where RΩ is a random sampling operator and the
unitary circulant matrix A is generated from (11), with
σ = [σ0, σ1, · · · , σN−1]

T , |σk| = 1, k = 0, 1 · · ·N − 1,
being a unimodular sequence as listed in Table I. Then, for
all K-sparse signals in the time (Ψ = IN ) or spectral domain
(Ψ = 1√

N
F∗), M ≥ O(K log4 N) measurements are required

for uniform recovery; for any given K-sparse signal in the
time or spectral domain, M ≥ O(K logN) measurements are
needed using l1-based reconstruction.

Proof: As one can see from Table I, in our proposed
systems,

µ(A) = O(1). (21)

Hence, it can be easily derived from Theorem 1 and Theorem 2
that Theorem 3 holds for time-domain K-sparse signals (i.e.,
Ψ = IN ). To see this is the case in frequency domain (i.e.,
Ψ = 1√

N
F∗), let us examine the coherence parameter µ(AΨ).

Note that

AΨ =
1√
N

F∗ΣF
1√
N

F∗ = F∗Σ.

Obviously that the square matrix F∗Σ is unitary, and all
the entries are unimodular, which implies an ideal coherence
parameter µ

(
1√
N
AF∗

)
= 1. Therefore, Theorem 3 also holds

for spectrally sparse signals.
In addition to the above Theorem, we will show in Theo-

rem 4 that if σ is chosen as the FZC sequence, similar bounds
hold for sparse signals in the DCT domain. Details will be
given in the next Section. It is well known that most natural
images are sparse in the DCT domain. Thus, this represents a
major advantage of the proposed scheme over the partial FFT
sensing matrix, which does not work for the DCT domain,
because the FFT and DCT matrices are mutually coherent [6].

C. Connections With Existing Work
The comparison between the proposed scheme and existing

random convolution-based operators is shown in Table II. It

can be seen that the proposed scheme offers the strongest
theoretical performance guarantee for both uniform and non-
uniform CS recovery, thanks to its deterministic construction
of σ. Recall that for a random filter, the coherence parameter is
bounded by O(

√
N) [8], [9]. The O(1) coherence parameter

associated with deterministic σ enables us to remove the
extra (logN ) factor in existing random convolution. Although
the proposed scheme can not offer universality, it works for
time and frequency domains (and the DCT domain for FZC
sequences). This implies that the proposed scheme can be used
as a hardware friendly, memory efficient and fast computable
solution for large scale CS applications, e.g., hyperspectral
imaging.

Chirp sequences were applied to radio interferometry in
[28], where the sensing matrix was constructed in a different
way, namely, it was the product of a rectangular binary
matrix M, Fourier matrix F, diagonal matrix C implementing
chirp modulation and diagonal matrix D implementing the
primary beam. The coherence was analyzed when Ψ is formed
by Gaussian waveforms. Chirp sequences were also used to
construct deterministic sensing matrices in [29], which cannot
be implemented through convolution. Besides, the sizes of the
sampling operators in [29] are restricted to be M×M2. Upon
completion of this work, we learned that perfect sequences
(including the FZC sequence) were used as the entries of
Toeplitz sensing matrices in radio spectrum estimation [30].
Yet the analysis of the coherence parameter or RIP were
limited to the cases Ψ = IN and Ψ = F in [30]. Taking
a step forward, we generalize the analysis to the case of DCT
in this paper. Besides, we extend it to the case of real-valued
sensing matrices in Section V (the sensing matrices in [30]
are complex-valued.).

IV. UNITARY MATRIX A

In this Section, we deal with unitary sensing matrices A
(A∗A = NIN ) which are generated from polyphase and
binary sequences σ.

A. Polyphase Sequences

When the diagonal sequence σ is a unimodular perfect
sequence whose elements have unit modulus |σk| = 1, we
have the ideal coherence parameter µ(A) = 1. Here, we use
a well known chirp-like sequence, the FZC sequence with
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TABLE II
COMPARISON OF DIFFERENT CIRCULANT OPERATORS FOR COMPRESSED SENSING

Measurement Operator Φ Random Convolution [8] Partial Circulant Operator [9] This work
Filter Coefficients Random Random Deterministic

Sub-sampling Operator Random Deterministic Random
Universality Yes No Semi-Universal

Restricted Isometry Property M ≥ O(K log5 N) M ≥ O((K logN)
3
2 ) M ≥ O(K log4 N)

Non-Uniform Recovery M ≥ O(K logN) M ≥ O(K log2 N) M ≥ O(K logN)

perfect auto-correlation [13]. The mth sequence within the
FZC family is given by [31]2

sk =

{
e−

jπmk2

N , for even N

e−
jπmk(k+1)

N , for odd N
(22)

for k = 0, 1, · · · , N − 1.
In what follows, we show the matrix A generated from the

FZC sequence can also recover the sparse signals in the DCT
domain.

Theorem 4: Let IDCT represent the inverse DCT matrix,
and let A be generated from the FZC sequence with m = 1.
The matrix

U = A · IDCT = N−1/2F∗ΣF · IDCT (23)

has coherence parameter µ(U) ≤ 6
√
2.

Proof: For clarity we only give the proof for even N
here. The case of odd N is similar and is omitted. We apply
a result from [31] that the Fourier dual of a unimodular
perfect sequence yields another unimodular perfect sequence.
Specifically, the elements of A are given by [31]

A(p, q) =
1√
N

N−1∑
k=0

e
j2πkp

N ·−jπk2

N ·−j2πkq
N

= e
jπ(p−q)2

N − jπ
4 .

(24)

Obviously, we may ignore the phase e−
jπ
4 when calculating

its magnitude. From the definition of IDCT, we have

IDCT(p, q) =

{ 1√
N
, q = 0√
2
N cos

(
π
N (p+ 1

2 )q
)
, 1 ≤ q ≤ N − 1.

(25)
Thus, when q = 0 and 0 ≤ p ≤ N − 1,

|U(p, 0)| =

∣∣∣∣∣
N−1∑
k=0

A(p, k) · 1√
N

∣∣∣∣∣
=

1√
N

∣∣∣∣∣
N−1∑
k=0

e
jπ
N (p−k)2− jπ

4

∣∣∣∣∣
=

1√
N

∣∣∣∣∣
N−1∑
k=0

e
jπ
N k2

∣∣∣∣∣
=

1√
N

|GN (N)| ≤
√
2.

(26)

The last step is due to a property of the complete Gauss sum
GN (N) given in Appendix A.

2This definition gives a sequence which is the complex conjugate of the
standard one [13]. They obviously have the same autocorrelation magnitudes.

When 1 ≤ q ≤ N − 1 and 0 ≤ p ≤ N − 1,

U(p, q) =
N−1∑
k=0

A(p, k) cos

(
π

N
(k +

1

2
)q

)
·
√
2√
N

=

√
2

2
√
N

N−1∑
k=0

e
jπ
N (p−k)2− jπ

4

(
e−j π

N (k+ 1
2 )q + ej

π
N (k+ 1

2 )q
)
.

(27)

Rewriting the two terms in the summand as,

ej
π
N (p−k)2−j π

4 −j π
N (k+ 1

2 )q = ej
π
N [(k−p− 1

2 q)
2− 1

4 q
2−pq− 1

2 q−
N
4 ],

ej
π
N (p−k)2−j π

4 +j π
N (k+ 1

2 )q = ej
π
N [(k−p+ 1

2 q)
2− 1

4 q
2+pq+ 1

2 q−
N
4 ],

(28)

we obtain the bound

|U(p, q)| ≤
√
2

2
√
N

(∣∣∣∣∣
N−1∑
k=0

ej
π
N (k−p− 1

2 q)
2

∣∣∣∣∣+
∣∣∣∣∣
N−1∑
k=0

ej
π
N (k−p+ 1

2 q)
2

∣∣∣∣∣
)
.

(29)
Now let us examine the first sum. When q = 2q0 is an even
number, let p+ q0 = l, 0 ≤ l ≤ 3N

2 − 1. If 0 ≤ l ≤ N − 1,∣∣∣∣∣
N−1∑
k=0

ej
π
N (k−l)2

∣∣∣∣∣ =
∣∣∣∣∣

−1∑
k=−l

ej
π
N k2

+

N−1−l∑
k=0

ej
π
N k2

∣∣∣∣∣
=

∣∣∣∣∣
l∑

k=0

ej
π
N k2

+

N−1−l∑
k=0

ej
π
N k2

− 1

∣∣∣∣∣
= |G2N (l + 1) +G2N (N − l)− 1|
≤ 2

√
N + 1

(30)

where the last step is due to a property of the incomplete
Gauss sum |G2N (l)| ≤

√
N for l ≤ N . If N ≤ l ≤ 3N

2 − 1,∣∣∣∣∣
N−1∑
k=0

ej
π
N (k−l)2

∣∣∣∣∣ ≤
∣∣∣∣∣
N−1−l∑
k=−l

e
jπ
N k2

∣∣∣∣∣ =
∣∣∣∣∣
2N−1−l∑
k=−l+N

e
jπ
N k2

∣∣∣∣∣
= |G2N (2N − l) +G2N (l −N + 1)− 1|
≤ 2

√
N + 1

(31)

where again the property |G2N (l)| ≤
√
N for l ≤ N is

applied.
For the second sum, the calculation is similar and the bound

is exactly the same. So for even q, 0 ≤ p, q ≤ N−1, the bound
of U will be

|U(p, q)| ≤
√

2

N

(
2
√
N + 1

)
= 2

√
2 +

√
2√
N

.

(32)
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When q = 2q0 + 1 is an odd number, denote by

QN (m) =
m−1∑
k=0

ej
π
N (k+ 1

2 )
2

=
m−1∑
k=0

ej
π
4N (2k+1)2 , 0 ≤ m ≤ N

(33)
the modified Gauss sum. Again, let l = p + q0. After some
tedious calculation, we may break up (29) into

|U(p, q)| =
√
2

2
√
N

(∣∣∣∣∣
N−1∑
k=0

ej
π
4N (2k−2p−2q0−1)2

∣∣∣∣∣
+

∣∣∣∣∣
N−1∑
k=0

ej
π
4N (2k−2p+2q0+1)2

∣∣∣∣∣
)

≤
√
2

2
√
N

(|QN (mod(p+ q0, N) + 1)|

+ |QN (N − 1−mod(p+ q0, N))|
+ |QN (|p− q0|)|
+ |QN (N − |p− q0|)|) .

(34)

Meanwhile, since the Gauss sum G8N (2m) can be written as

G8N (2m) =
2m−1∑
k=0

e
2πj
8N k2

=
∑
k odd

e
2πj
8N k2

+
∑
k even

e
2πj
8N k2

=
m−1∑
v=0

e
2πj
8N (2v+1)2 +

m−1∑
v=0

e
2πj
8N (2v)2

=
m−1∑
v=0

e
πj
4N (2v+1)2 +

m−1∑
v=0

e
πj
N (v)2

= QN (m) +G2N (m),

(35)

we have

|QN (m)| = |G8N (2m)−G2N (m)|
≤ |G8N (2m)|+ |G2N (m)|
≤ 2

√
N +

√
N = 3

√
N

(36)

for 0 ≤ m ≤ N , where the inequality |G2N (l)| ≤
√
N for

l ≤ N is applied as before. As a result,

|U(p, q)| ≤ 6
√
2, (37)

when q is odd.
In summary, the bound of U(p, q) for 0 ≤ p, q ≤ N − 1 is

max

{
2
√
2 +

√
2√
N

, 6
√
2

}
= 6

√
2, (38)

which completes the proof.

B. Binary Sequences

In the binary case, the sequences are generally not perfect.
So we use nearly perfect sequences. There are various bi-
nary sequences with nearly perfect and good autocorrelation
property [27]. Specifically, we consider the m-sequence and
Legendre sequence.

The m-sequence is a binary signal of length N = 2k − 1,
where k is an positive integer. The autocorrelation of an m-
sequence s is given by [24]

Rs(l) =

{
N, l ≡ 0 mod N ;
−1, otherwise. (39)

Accordingly, from the Wiener-Khinchin relation we have

|ak| =
{

1, k = 0;√
N + 1, otherwise.

(40)

Therefore, the coherence parameter is

µm(A) =
√
(N + 1)/N

.
= 1. (41)

The Legendre sequence can provide a similar bound. A
Legendre sequence has a length equal to an odd prime N ,
and is defined as [32],

sk =

{
1, if k is a square or 0 (mod N)

−1, if k is a nonsquare (mod N).
(42)

The FFT of the Lengendre sequence is known as [32]

ŝk =

{
1 + sk

√
N, if N ≡ 1 (mod 4)

1 + jsk
√
N, if N ≡ 3 (mod 4).

(43)

Therefore, we have

µLegendre(A) =

{
1 + 1√

N

.
= 1 if N ≡ 1 (mod 4)√

1 + 1
N

.
= 1 if N ≡ 3 (mod 4).

(44)
The proof of the bound µGolay(A) ≤

√
2 for Golay se-

quences (for complex sensing matrices) is deferred to the next
section, which will simply follow as a corollary (Corollary 1).

V. ORTHOGONAL MATRIX A

When σ satisfies the conjugate symmetry, the matrix A will
be an orthogonal matrix satisfying ATA = NIN .

A. Polyphase Sequences

We define an extended chirp sequence, which resembles but
is not the same as the FZC sequence, in the following manner.
When N is an even number, the diagonal sequence is given
by

σk =


1 k = 0

e−j π
N k2

1 ≤ k ≤ N
2 − 1

1 k = N
2

ej
π
N k2 N

2 + 1 ≤ k ≤ N − 1;

(45)

when N is an odd number, the diagonal sequence is given by

σk =


1 k = 0

e−j π
N k2

1 ≤ k ≤ N−1
2

−ej
π
N k2 N+1

2 ≤ k ≤ N − 1.

(46)

Theorem 5: Let σ be defined as (45) or (46), for even and
odd N , respectively. Then the coherence parameter satisfies

µ(A)
.
=

{
4, N even;

2.69, N odd. (47)
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We also adopt the incomplete Gauss sum to prove the result.
The case of even N is given below, while the case of odd N
is similar and the details are given in Appendix B.

Proof: Since σN−k = σ∗
k, 1 ≤ k ≤ N

2 − 1, we have

al =
1√
N

N−1∑
k=0

ej
2π
N lk · σk

=
1√
N

N/2−1∑
k=0

ej
2π
N lke−j π

N k2

+
(−1)l√

N
+

1√
N

N−1∑
k=N

2 +1

ej
2π
N lke

jπ
N k2

=
1√
N

N/2−1∑
k=0

e
jπ
N (−k2+2lk−l2) · e

jπ
N l2+

1√
N

N/2−1∑
k=0

e
jπ
N (k2−2lk+l2) · e−

jπ
N l2 − 1√

N
+

(−1)l√
N

.

(48)

As a result,

|al| ≤
2√
N

∣∣∣∣∣∣
N/2−1∑
k=0

e
jπ
N (k−l)2

∣∣∣∣∣∣+ 2√
N

, 0 ≤ l ≤ N − 1. (49)

Similar to the proof of Theorem 4, we analyze the absolute
value in different cases. When 0 ≤ l ≤ N

2 − 1,

|al| ≤
2√
N

∣∣∣∣∣∣
−1∑

k=−l

ej
π
N k2

+

N/2−1−l∑
k=0

ej
π
N k2

∣∣∣∣∣∣+ 2√
N

=
2√
N

∣∣∣∣∣∣
l∑

k=0

ej
π
N k2

+

N/2−1−l∑
k=0

ej
π
N k2

− 1

∣∣∣∣∣∣+ 2√
N

=
2√
N

∣∣∣∣G2N (l + 1) +G2N

(
N

2
− l

)
− 1

∣∣∣∣+ 2√
N

≤ 2√
N

(
2
√
N + 1

)
+

2√
N

= 4 +
4√
N

.

(50)

To deal with the other half, we consider |aN−l| for 0 ≤ l ≤
N
2 − 1. Because

|aN−l| ≤
2√
N

∣∣∣∣∣∣
N/2−1∑
k=0

e
jπ
N (k+l−N)2

∣∣∣∣∣∣+ 2√
N

=
2√
N

∣∣∣∣∣∣
N/2−1∑
k=0

e
jπ
N (k+l)2

∣∣∣∣∣∣+ 2√
N

=
2√
N

∣∣∣∣G2N

(
N

2
+ l

)
−G2N (l)

∣∣∣∣+ 2√
N

,

(51)

we have the same bound

|aN−l| ≤
2√
N

(∣∣∣∣G2N

(
N

2
+ l

)∣∣∣∣+ |G2N (l)|
)
+

2√
N

≤ 2√
N

· 2
√
N +

2√
N

= 4 +
2√
N

.

(52)

So for 0 ≤ l ≤ N − 1,

|al| ≤ 4 + 4/
√
N. (53)

Thus the coherence parameter

µ(A) = max{|al|} = 4 + 4/
√
N

.
= 4. (54)

B. Binary Sequences
In this subsection, we construct real sensing matrices from

binary sequences with low peak-to-mean envelope power
ratio (PMEPR). PMEPR has been extensively studied in the
area of orthogonal frequency-division multiplexing (OFDM)
communications, where the peak value of the IFFT of a data
sequence is to be reduced. Using this connection, many of
the low-PMEPR sequences can be applied to generate sensing
matrices with small µ(A).

Definition 3 (PMEPR [33]): Let c = (c0, . . . , cN−1) be
a codeword drawn from a given constellation. The complex
envelope of a multicarrier signal with N subcarriers may be
represented as

Sc(ω) =
N−1∑
k=0

cke
jωk, 0 ≤ ω < 2π. (55)

Then the PMEPR of codeword c is defined as3

PMEPRc = max
0≤ω<2π

|Sc(ω)|2

E
[∑N−1

i=0 |ci|2
] (56)

Theorem 6 (µ(A) for low PMEPR sequences): Let s be a
binary sequence with a constant PMEPR Cs. Construct se-
quence σ as σ = [s0, · · · , sN/2−1, s0, sN/2−1, · · · , s1] for
even N , and σ = [s0, · · · , s(N−1)/2, s(N−1)/2, · · · , s1] for odd
N . Then the coherence parameter of A is bounded by

µ(A) ≤

{ √
2Cs +

2√
N

.
=

√
2Cs, N even;√

2Cs +
1√
N

.
=

√
2Cs, N odd. (57)

Proof: We show the proof for even N , while the case of
odd N is omitted since it is very similar. Since the PMEPR
of s is Cs, we have

|Ss(ω)|2

N/2
≤ Cs, (58)

where Ss(ω) =
∑N/2−1

i=0 sie
jωi, for any 0 ≤ ω < 2π.

On the other hand, we have

µ(A) =
1√
N

max
k

∣∣∣∣∣
N−1∑
i=0

σie
2πj
N ki

∣∣∣∣∣ (59)

Due to the symmetry of the sequence, the second half (except
the i = N/2 term) is a complex conjugate of the first half.
Thus, the sum in (59) can bounded by

µ(A) ≤ 1√
N

max
k


∣∣∣∣∣∣
N/2−1∑
i=0

sie
2πj
N ki

∣∣∣∣∣∣+∣∣∣∣∣∣
N/2−1∑
i=0

sie
− 2πj

N ki + s0e
jπk − s0

∣∣∣∣∣∣
 .

(60)

3Sometimes it is also referred to as the peak-to-average power ratio (PAPR)
in literature.
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From (58), we obtain

µ(A) ≤ 2√
N

max
k


∣∣∣∣∣∣
N/2−1∑
i=0

sie
2πj
N ki

∣∣∣∣∣∣+ 1


≤ 2√

N

(√
N

2
Cs + 1

)
≤
√
2Cs +

2√
N

,

(61)

where the second inequality is because of (58). As N → ∞,
µ(A) will approach

√
2Cs.

The binary Golay sequences, introduced by Golay in 1961
[14], have found numerous applications in communications
and signal processing [33], [34]. They are known to exist for
all lengths 2κ110κ226κ3 , κ1, κ2, κ3 non-negative integers. For
the constructions of Golay sequences, please refer to Appendix
C.

Definition 4 (Golay sequences): The aperiodic autocorrela-
tion function of a sequence s is defined by

rs(l) =

N−l−1∑
i=0

sis
∗
i+l, l = 0, · · · , N − 1. (62)

Let a = (a0, a1, · · · , aN−1) and b = (b0, b1, · · · , bN−1) be a
pair of binary sequences with values 1 or −1. Then a and b
form a Golay complementary pair if

ra(l) + rb(l) =

{
2N, l = 0
0, l = 1, · · · , N − 1.

(63)

A sequence in any complementary pairs is called a Golay
sequence.

Taking the Fourier transform of (63), the corresponding
power spectrum Sa and Sb satisfy the following relation

|Sa(ω)|2 + |Sb(ω)|2 = 2N. (64)

It simply follows that

|Ss(ω)|2 ≤ 2N, (65)

for any Golay sequence s with length N . Besides, |si|2 =
1, i = 0, · · · , N − 1 holds for all binary Golay sequences.
From (56), the PMEPR of a Golay sequence is [33]

PMEPRGolay = max
0≤ω<2π

|Ss(ω)|2

N
≤ 2. (66)

Substituting it into (57), we obtain the µ(A) based on Golay
sequence for real A:

µGolay(A) ≤

{
2 + 2√

N
, N even;

2 + 1√
N
, N odd. (67)

and when N → ∞, µGolay(A) will approach 2.
Remark 1 (Orthogonal symmetric Toeplitz matrices (OSTM)):

The authors introduced OSTM [35] as sensing matrices in
[36], and proposed to use the Golay sequence as the
diagonal sequence in [37]. In general, OSTM may be
viewed as a special case of convolutional CS, where the
sequence s ∈ {−1, 1}N/2\{(−1,−1, · · · ,−1), (1, 1, · · · , 1)}.
However, if the binary sequence s is randomly selected from

this set, the bound on µ(A) will be poor. In fact, it was shown
in [38] that the PMEPR of a random codeword of length N
is asymptotically logN with probability 1. Therefore, our
judicious selection of a deterministic sequence with constant
Cs leads to a stronger theoretic guarantee of µ(A).

Corollary 1: Let the diagonal sequence σ be simply a
Golay sequence s of length N such that A is a complex matrix.
Then the coherence parameter µ(A) ≤

√
2.

Proof: Let ω = 2πk/N in (65), we have the following
bound on the FFT of a Golay sequence s:

|ŝk|2 ≤ 2N. (68)

Thus, we obtain

µGolay(A) ≤
√

2N

N
=

√
2. (69)

Remark 2: Besides Golay sequences, other sequences with
low PMEPR can also be applied to obtain a constant coher-
ence parameter µ(A) ∼ O(1). In [39], near-complementary
sequences with PMEPR < 4 were proposed4. Using these
sequences, µ(A) will be about 2

√
2 for a real matrix A(and

2 for a complex matrix A).

VI. SIMULATION RESULTS

Extensive simulations have been carried out. For illustration
purposes, we first present some results for complex sampling
matrices of sizes 128 × 1024. The recovery performance is
compared with that of Gaussian random/Toeplitz matrices
and random sequence-based matrices (i.e., σ is a random
binary sequence). The reconstruction algorithms are based on
the fixed-point continuation and active set algorithm (FPC-
AS) for solving l1-regularized least-squares problem [40]. We
consider K-sparse signals in the time and DCT domains. For
the time domain, the K non-zero elements of signal x are
selected uniformly at random, and its non-zero coefficients xi

(i = 1, · · ·K) obey the Gaussian distribution. For the DCT
domain, the input signal is generated in the same way but
sparse in DCT domain. Fig. 2 depicts the empirical frequencies
of exact reconstruction for different sensing matrices with 500
trials run for each sparsity level K. We assume that the exact
reconstruction is achieved if the signal to noise ratio (SNR)
is greater than 50 dB. From these figures, one can observe
that the performance of proposed sensing matrices are quite
close to those of random sensing matrices in time domain,
while in DCT domain, proposed sensing matrices substantially
outperform complex Gaussian Toeplitz matrices.

Then we show simulation results on images using real-
valued sensing matrices in Fig. 3 for 10% sampling rate. The
Shepp-Logan phantom image (128 × 128) is used as a test
image and the results are compared with random convolution.
The fast reconstruction algorithm for Toeplitz matrices in
[11] is applied. The figure reveals that random sampling in
combination with both random sequences and deterministic
sequences have good reconstruction performance, while de-
terministic sampling yields poor performance. Specifically,

4These are q-phase sequences for even integer q.
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Fig. 2. Simulation results for 128 × 1024 complex sensing matrices for K-sparse signals: (a) in time domain with FPC-AS; (b) in DCT domain with
FPC-AS.

the performances of the proposed sensing matrices based
on extended chirp and Golay sequences are close to that
of random convolution, while the extended Golay sequence
results in better performance than the extended chirp sequence.

VII. CONCLUSIONS

In this paper, a new class of circulant sensing matrices are
proposed. We show that these convolutional sensing matrices
have small coherence parameter µ(A), so that the original
signal could be faithfully recovered. The underlying diagonal
sequence is fixed as a (nearly) perfect sequence, such as the
FZC sequence and Golay sequence. Our proposed matrices
have the semi-universal property, in the sense that they are
able to reconstruct sparse signals in more than one domain.
Experimental results show that these sensing matrices compare
favorably with existing structured random matrices.

APPENDIX A
GAUSS SUMS

Definition 5: Let N be a positive integer. The exponential
sum [41]

GN (m) =
m−1∑
k=0

e2πjk
2/N (70)

is an incomplete Gauss sum when m < N .

When m = N , the complete Gauss sum GN (N) is well
known [41]

GN (N) =


(1 + j)

√
N, if N ≡ 0 (mod 4)√
N, if N ≡ 1 (mod 4)
0, if N ≡ 2 (mod 4)

j
√
N, if N ≡ 3 (mod 4).

(71)

Moreover, when m ≤ (N + 1)/2,

GN (m) +GN (N −m+ 1) = 1 +GN (N). (72)

Define a normalized version gN (m) as

gN (m) = 2N− 1
2

m∑
k=0

e2πjk
2/N , (73)

then we have [41]

|gN (m)| ≤


√
2, if N = 4k,m ≤ N/2

1.07 +O(N− 1
2 ), if N = 4k + 1,m < N/2

0.95 + 101
40 N− 1

2 , if N = 4k + 2,m ≤ N√
1 +N−1, if N = 4k + 3,m < N/2,

(74)
where k is a positive integer.

Now we let N be an even integer, N = 2N0 and L = 2N ,
so that

GL(m) =

√
L

2
gL(m)

G2N (m) =

m−1∑
k=0

ej
2π
2N k2

=

m−1∑
k=0

ej
π
N k2

.

(75)

When 0 ≤ m ≤ N ,

G2N (m) =

√
L

2
gL(m) =

√
2N

2
g4N0(m),

|G2N (m)| ≤
√
2N

2
·
√
2 =

√
N,

(76)

where the second equality is because max |g2N (m)| =
√
2

when m ≤ N [41]. When N + 1 ≤ m ≤ 2N − 1,

G2N (m) = (1 + j)
√
2N + 1−G2N (2N − 1−m),

|G2N (m)| ≤
√
2 ·

√
2N + 1 +

√
N = 3

√
N + 1.

(77)

Moreover, when N is an odd integer, let N = 2N0 +1 and
L = 2N = 4N0 + 2. If m ≤ N , then [41]

GL(m) =

√
L

2
gL(m) =

m−1∑
k=0

ej
π
N k2

.

|G2N (m)| ≤
√
2N

2
·
(
0.95 +

101/40√
N

)
.

(78)
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(a) (b) (c) (d)

Fig. 3. Simulation results for different real-valued sensing matrices to recover the 128 × 128 Shepp-Logan phantom image: (a) random binary sequence,
deterministic sampling; (b) random binary sequence, random sampling; (c) extended chirp sequence, random sampling; (d) extended Golay sequence, random
sampling.

APPENDIX B
PROOF OF THEOREM 5 FOR ODD N

Since σN−k = σ∗
k, 1 ≤ k ≤ N−1

2 , we have

al =
1√
N

N−1∑
k=0

ej
2π
N lk · σk

=
1√
N

(N−1)/2∑
k=0

ej
2π
N lke−

π
N jk2

− 1√
N

N−1∑
k=(N+1)/2

ej
2π
N lke

jπ
N k2

=
1√
N

(N−1)/2∑
k=0

e
jπ
N (−k2+2lk−l2) · e

jπ
N l2+

1√
N

(N−1)/2∑
k=0

e
jπ
N (k2−2lk+l2) · e−

jπ
N l2 − 1√

N
.

(79)

As a result,

|al| ≤
2√
N

∣∣∣∣∣∣
(N−1)/2∑

k=0

e
jπ
N (k−l)2

∣∣∣∣∣∣+ 1√
N

, 0 ≤ l ≤ N−1. (80)

So

|aN−l| ≤
2√
N

∣∣∣∣∣∣
(N−1)/2∑

k=0

e
jπ
N (k+l−N)2

∣∣∣∣∣∣+ 1√
N

=
2√
N

∣∣∣∣∣∣
(N−1)/2∑

k=0

e
jπ
N (k+l)2

∣∣∣∣∣∣+ 1√
N

=
2√
N

∣∣∣∣G2N

(
N + 1

2
+ l

)
−G2N (l)

∣∣∣∣+ 1√
N

.

(81)

In this case let 2N = 4N0 + 2 (as N = 2N0 + 1 is odd),
where N0 is an integer. Because for any m < 4N0 + 2, we
have [41]

|g4N0+2(m)| < 0.95 +
101/40√

N
,

|G2N (m)| ≤
√
2N

2
·
(
0.95 +

101/40√
N

)
.

(82)

Therefore, we arrive at

µ(A) = max{|al|}

≤ 4√
N

√
2N

2
·
(
0.95 +

101/40√
N

)
+

1√
N

≤ 2.69 +
8.15√
N

.

(83)

APPENDIX C
CONSTRUCTIONS OF GOLAY SEQUENCES

There are two approaches to constructing binary Golay
sequences: direct construction and recursive construction.

A. Direct construction

Consider a Boolean function f from Zl
2 =

{(x0, x1 · · · , xl−1)|xi ∈ {0, 1}} to Z2. Any f can be
uniquely expressed as a linear combination of the 2l

monomials:

1, x0, x1, · · · , xl−1, x0x1, x0x2, · · · , xl−2xl−1, · · · , x0x1 · · ·xl−1.
(84)

The resulting expression is known as the algebraic normal
form of f [34]. With the Boolean function f , we asso-
ciate a length-2l sequence f , where the ith element of f is
f(i0, i1, · · · , il−1) and (i0, i1, · · · , il−1) is the binary repre-
sentation of the integer i =

∑l−1
k=0 ik2

l−k−1 (i0 is the most
significant bit). Taking l = 3 as an example,

f =(f(0, 0, 0), f(0, 0, 1), f(0, 1, 0), f(0, 1, 1),

f(1, 0, 0), f(1, 0, 1), f(1, 1, 0), f(1, 1, 1)) .
(85)

Now we can use this notion to describe the construction of
binary Golay sequences.

Theorem 7 ( [34]): For any permutation π of {0, 1, · · · , l−
1} and any choice of constants ck, c ∈ Z2, let

f(x0, · · · , xl−1) =
l−2∑
k=0

xπ(k)xπ(k+1) +
l−1∑
k=0

ckxk, (86)
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then

a(x0, x1, · · · , xl−1) = f(x0, x1, · · · , xl−1) + c (87)

generates a binary Golay sequence of length 2l under the
mapping 0 7→ 1, 1 7→ −1.

Using this construction, one obtains a set of 2(l+1)l!/2 Golay
sequences of length 2l.

B. Recursive construction

In this situation, it is helpful to rewrite a sequence a in the
polynomial form,

a(z) = aN−1z
N−1 + aN−2z

N−2 + · · ·+ a1z + a0. (88)

Then the corresponding polynomials (a(z), b(z)) of the Golay
complementary pair (a,b) satisfy

a(z)a(z−1) + b(z)b(z−1) = 2N. (89)

This equation is derived from (63). Simple calculation shows
that a(z) + zNb(z) and a(z) − zNb(z) are also a Golay
complementary pair satisfying (89) with length 2N . So a
length-2N Golay pair could be generated from a length-N
pair.

In addition, if (a,b) and (c,d) are Golay complementary
pairs of length N1 and N2, respectively, then

a(zN2)(c(z) + d(z))/2 + zN2(N1−1)b(z−N2)(c(z)− d(z))/2,

b(zN2)(c(z) + d(z))/2− zN2(N1−1)a(z−N2)(c(z)− d(z))/2
(90)

also form a Golay complementary pair of length N1N2.

Moreover, letting b̃ be the reversal of b, Golay gave the
following two constructions:
Concatenation:

a(zN2)c(z)+b(zN2)d(z)zN1N2 , b̃(zN2)c(z)−ã(zN2)d(z)zN1N2

(91)
is a Golay complementary pair of length 2N1N2.
Interleaving:

a(z2N2)c(z2)+b(z2N2)d(z2)z, b̃(z2N2)c(z2)− ã(z2N2)d(z2)z
(92)

is also a Golay complementary pair of length 2N1N2.

So Golay complementary pairs of lengths N =
2κ110κ226κ3 , κ1, κ2, κ3 ≥ 0 can be constructed in foregoing
ways from several primitive pairs of lengths 2, 10, 26. More
details could be found in [42].
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