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Abstract

The topic of semantic segmentation has witnessed con-

siderable progress due to the powerful features learned

by convolutional neural networks (CNNs) [13]. The cur-

rent leading approaches for semantic segmentation exploit

shape information by extracting CNN features from masked

image regions. This strategy introduces artificial bound-

aries on the images and may impact the quality of the ex-

tracted features. Besides, the operations on the raw image

domain require to compute thousands of networks on a sin-

gle image, which is time-consuming.

In this paper, we propose to exploit shape information

via masking convolutional features. The proposal segments

(e.g., super-pixels) are treated as masks on the convolu-

tional feature maps. The CNN features of segments are di-

rectly masked out from these maps and used to train clas-

sifiers for recognition. We further propose a joint method

to handle objects and “stuff” (e.g., grass, sky, water) in

the same framework. State-of-the-art results are demon-

strated on benchmarks of PASCAL VOC and new PASCAL-

CONTEXT, with a compelling computational speed.

1. Introduction

Semantic segmentation [14, 19, 24, 2] aims to label each

image pixel to a semantic category. With the recent break-

throughs [13] by convolutional neural networks (CNNs)

[15], R-CNN based methods [8, 10] for semantic segmen-

tation have substantially advanced the state of the art.

The R-CNN methods [8, 10] for semantic segmentation

extract two types of CNN features - one is region features

[8] extracted from proposal bounding boxes [22]; the other

is segment features extracted from the raw image content

masked by the segments [10]. The concatenation of these

features are used to train classifiers [10]. These methods

have demonstrated compelling results on this long-standing

challenging task.

However, the raw-image-based R-CNN methods [8, 10]

have two issues. First, the masks on the image content can

lead to artificial boundaries. These boundaries do not ex-

hibit on the samples during the network pre-training (e.g.,

in the 1000-category ImageNet [5]). This issue may de-

grade the quality of the extracted segment features. Second,

similar to the R-CNN method for object detection [8], these

methods need to apply the network on thousands of raw

image regions with/without the masks. This is very time-

consuming even on high-end GPUs.

The second issue also exists in R-CNN based object de-

tection. Fortunately, this issue can be largely addressed by

a recent method called SPP-Net [11], which computes con-

volutional feature maps on the entire image only once and

applies a spatial pyramid pooling (SPP) strategy to form

cropped features for classification. The detection results via

these cropped features have shown competitive detection

accuracy [11], and the speed can be ∼50× faster. There-

fore, in this paper, we raise a question: for semantic seg-

mentation, can we use the convolutional feature maps only?

The first part of this work says yes to this question. We

design a convolutional feature masking (CFM) method to

extract segment features directly from feature maps instead

of raw images. With the segments given by the region pro-

posal methods (e.g., selective search [22]), we project them

to the domain of the last convolutional feature maps. The

projected segments play as binary functions for masking

the convolutional features. The masked features are then

fed into the fully-connected layers for recognition. Because

the convolutional features are computed from the unmasked

image, their quality is not impacted. Besides, this method is

efficient as the convolutional feature maps only need to be

computed once. The aforementioned two issues involving

semantic segmentation are thus both addressed. Figure 1

compares the raw-image-based pipeline and our feature-

map-based pipeline.

The second part of this paper further generalizes our

method for joint object and stuff segmentation [18]. Dif-

ferent from objects, “stuff” [18] (e.g., sky, grass, water) is

usually treated as the context in the image. Stuff mostly ex-

hibits as colors or textures and has less well-defined shapes.

It is thus inappropriate to use a single rectangular box or

a single segment to represent stuff. Based on our masked
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Figure 1: System pipeline. Top: the methods of “Regions with CNN features” (R-CNN) [8] and “Simultaneous Detection

and Segmentation” (SDS) [10] that operate on the raw image domain. Bottom: our method that masks the convolutional

feature maps.

convolutional features, we propose a training procedure that

treats a stuff as a compact combination of multiple segment

features. This allows us to address the object and stuff in

the same framework.

Based on the above methods, we show state-of-the-art re-

sults on the PASCAL VOC 2012 benchmark [7] for object

segmentation. Our method can process an image in a frac-

tion of a second, which is ∼150× faster than the R-CNN-

based SDS method [10]. Further, our method is also the

first deep-learning-based method ever applied to the newly

labeled PASCAL-CONTEXT benchmark [18] for both ob-

ject and stuff segmentation, where our result substantially

outperforms previous states of the art.

2. Convolutional Feature Masking

2.1. Convolutional Feature Masking Layer

The power of CNNs as a generic feature extractor has

been gradually revealed in the computer vision area [13,

6, 25, 8, 11]. In Krizhevsky et al.’s work [13], they sug-

gest that the features of the fully-connected layers can be

used as holistic image features, e.g., for image retrieval. In

[6, 25], these holistic features are used as generic features

for full-image classification tasks in other datasets via trans-

fer learning. In the breakthrough object detection paper of

R-CNN [8], the CNN features are also used like holistic

features, but are extracted from sub-images which are the

crops of raw images. In the CNN-based semantic segmen-

tation paper [10], the R-CNN idea is generalized to masked

raw image regions. For all these methods, the entire net-

work is treated as a holistic feature extractor, either on the

entire image or on sub-images.

In the recent work of SPP-Net [11], it shows that the con-

volutional feature maps can be used as localized features.

On a full-image convolutional feature map, the local rect-

angular regions encode both the semantic information (by

strengths of activations) and spatial information (by posi-

tions). The features from these local regions can be pooled

[11] directly for recognition.

The spatial pyramid pooling (SPP) in [11] actually plays

two roles: 1) masking the feature maps by a rectangular re-

gion, outside which the activations are removed; 2) gener-

ating a fixed-length feature from this arbitrary sized region.

So, if masking by rectangles can be effective, what if we

mask the feature maps by a fine segment with an irregular

shape?

The Convolutional Feature Masking (CFM) layer is thus

developed. We first obtain the candidate segments (like

super-pixels) on the raw image. Many regional proposal

methods (e.g., [22, 1]) are based on super-pixels. Each pro-

posal box is given by grouping a few super-pixels. We call

such a group as a segment proposal. So we can obtain the

candidate segments together with their proposal boxes (re-

ferred to as “regions” in this paper) without extra effort.

These segments are binary masks on the raw images.

Next we project these binary masks to the domain of the

last convolutional feature maps. Because each activation in

the convolutional feature maps is contributed by a recep-

tive field in the image domain, we first project each acti-

vation onto the image domain as the center of its receptive

field (following the details in [11]). Each pixel in the binary

masks on the image is assigned to its nearest center of the

receptive fields. Then these pixels are projected back onto
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Figure 2: An illustration of the CFM layer.

the convolutional feature map domain based on this center

and its activation’s position. On the feature map, each po-

sition will collect multiple pixels projected from a binary

mask. These binary values are then averaged and thresh-

olded (by 0.5). This gives us a mask on the feature maps

(Figure 2). This mask is then applied on the convolutional

feature maps. Actually, we only need to multiply this bi-

nary mask on each channel of the feature maps. We call the

resulting features as segment features in our method.

2.2. Network Designs

In [10], it has been shown that the segment features alone

are insufficient. These segment features should be used

together with the regional features (from bounding boxes)

generated in a way like R-CNN [8]. Based on our CFM

layer, we can have two possible ways of doing this.

Design A: on the last convolutional layer. As shown in

Figure 3 (left part), after the last convolutional layer, we

generate two sources of features. One is the regional fea-

ture produced by the SPP layer as in [11]. The other is

the segment feature produced in the following way. The

CFM layer is applied on the full-image convolutional fea-

ture map. This gives us an arbitrary-sized (in terms of its

bounding box) segment feature. Then we use another SPP

layer on this feature to produce a fixed-length output. The

two pooled features are fed into two separate fc layers. The

features of the last fc layers are concatenated to train a clas-

sifier, as is the classifier in [10].

In this design, we have two pathways of the fc layers in

both training and testing.

Design B: on the spatial pyramid pooling layer. We first

adopt the SPP layer [11] to pool the features. We use a 4-

level pyramid of {6 × 6, 3 × 3, 2 × 2, 1 × 1} as in [11].

The 6× 6 level is actually a 6× 6 tiny feature map that still

has plenty spatial information. We apply the CFM layer on

this tiny feature map to produce the segment feature. This

feature is then concatenated with the other three levels and

fed onto the fc layers, as shown in Figure 3 (right).

In this design, we keep one pathway of the fc layers to

reduce the computational cost and over-fitting risk.

2.3. Training and Inference

Based on these two designs and the CFM layer, the train-

ing and inference stages can be easily conducted following

the common practices in [8, 11, 10]. In both stages, we use

the region proposal algorithm (e.g., selective search [22]) to

generate about 2,000 region proposals and associated seg-

ments. The input image is resized to multiple scales (the

shorter edge s ∈ {480, 576, 688, 864, 1200}) [11], and the

convolutional feature maps are extracted from full images

and then fixed (not further tuned).

Training. We first apply the SPP method [11]1 to finetune

a network for object detection. Then we replace the fine-

tuned network with the architecture as in Design A or B,

and further finetune the network for segmentation. In the

second fine-tuning step, the segment proposal overlapping

a ground-truth foreground segment by [0.5, 1] is considered

as positive, and [0.1, 0.3] as negative. The overlap is mea-

sured by intersection-over-union (IoU) score based on the

two segments’ areas (rather than their bounding boxes). Af-

ter fine-tuning, we train a linear SVM classifier on the net-

work output, for each category. In the SVM training, only

the ground-truth segments are used as positive samples.

Inference. Each region proposal is assigned to a proper

scale as in [11]. The features of each region and its associ-

ated segment are extracted as in Design A or B. The SVM

classifier is used to score each region.

Given all the scored region proposals, we obtain the

pixel-level category labeling by the pasting scheme in SDS

[10]. This pasting scheme sequentially selects the region

proposal with the highest score, performs region refinement,

inhibits overlapping proposals, and pastes the pixel labels

onto the labeling result. Region refinement improves the ac-

curacy by about 1% on PASCAL VOC 2012 for both SDS

and our method.

2.4. Results on Object Segmentation

We evaluate our method on the PASCAL VOC 2012 se-

mantic segmentation benchmark [7] that has 20 object cat-

egories. We follow the “comp6” evaluation protocol, which

is also used in [4, 8, 10]. The training set of PASCAL VOC

1https://github.com/ShaoqingRen/SPP_net
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Figure 3: Two network designs in this paper. The input image is processed as a whole at the convolutional layers from conv1

to conv5. Segments are exploited at a deeper hierarchy by: (Left) applying CFM on the feature map of conv5, where “ b”

means for “bounding boxes” and “ s” means for segments; (Right) applying CFM on the finest feature map of the spatial

pyramid pooling layer.

2012 and the additional segmentation annotations from [9]

are used for training and evaluation as in [4, 8, 10]. Two

scenarios are studied: semantic segmentation and simulta-

neous detection and segmentation.

Scenario I: Semantic Segmentation

In the experiments of semantic segmentation, category la-

bels are assigned to all the pixels in the image, and the ac-

curacy is measured by region IoU scores [7].

We first study using the “ZF SPPnet” model [11] as our

feature extractor. This model is based on Zeiler and Fer-

gus’s fast model [25] but with the SPP layer [11]. It has

five convolutional layers and three fc layers. This model is

released with the code of [11]. We note that the results in

R-CNN [8] and SDS [10] use the “AlexNet” [13] instead.

To understand the impacts of the pre-trained models, we re-

port their object detection mAP on the val set of PASCAL

VOC 2012: SPP-Net (ZF) is 51.3%, R-CNN (AlexNet) is

51.0%, and SDS (AlexNet) is 51.9%. This means that both

pre-trained models are comparable as generic feature ex-

tractors. So the following gains of CFM are not simply due

to pre-trained models.

To show the effect of the CFM layer, we present a base-

line with no CFM - in our Design B, we remove the CFM

layer but still use the same entire pipeline. We term this

baseline as the “no-CFM” version of our method. Actually,

this baseline degrades to the original SPP-net usage [11],

except that the definitions of positive/negative samples are

for segmentation. Table 1 compares the results of no-CFM

and the two designs of CFM. We find that the CFM has ob-

vious advantages over the no-CFM baseline. This is as ex-

pected, because the no-CFM baseline has not any segment-

based feature. Further, we find that the designs A and B

perform just comparably, while A needs to compute two

pathways of the fc layers. So in the rest of this paper, we

adopt Design B for ZF SPPnet.

In Table 2 we evaluate our method using different region

proposal algorithms. We adopt two proposal algorithms:

Selective Search (SS) [22], and Multiscale Combinatorial

Grouping (MCG) [1]. Following the protocol in [10], the

“fast” mode is used for SS, and the “accurate” mode is used

for MCG. Table 2 shows that our method achieves higher

accuracy on the MCG proposals. This indicates that our

feature masking method can exploit the information gener-

ated by more accurate segmentation proposals.
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no-CFM CFM (A) CFM (B)

43.4 51.0 50.9

Table 1: Mean IoU on PASCAL VOC 2012 validation set

using our various designs. Here we use ZF SPPnet and Se-

lective Search.

ZF SPPnet VGG net

SS 50.9 56.3

MCG 53.0 60.9

Table 2: Mean IoU on PASCAL VOC 2012 validation set

using different pre-trained networks and proposal methods.

SS denotes Selective Search [22], and MCG denotes Multi-

scale Combinatorial Grouping [1].

ZF SPPnet VGG net

5-scale 53.0 60.9

1-scale 52.9 60.5

Table 3: Mean IoU on PASCAL VOC 2012 validation set

using different scales. Here we use MCG for proposals.

conv time fc time total time

SDS (AlexNet) [10] 17.8s 0.14s 17.9s

CFM, (ZF, 5 scales) 0.29s 0.09s 0.38s

CFM, (ZF, 1 scale) 0.04s 0.09s 0.12s

CFM, (VGG, 5 scales) 1.74s 0.36s 2.10s

CFM, (VGG, 1 scale) 0.21s 0.36s 0.57s

Table 4: Feature extraction time per image on GPU.

In Table 2 we also evaluate the impact of pre-trained net-

works. We compare the ZF SPPnet with the public VGG-16

model [20]2. Recent advances in image classification have

shown that very deep networks [20] can significantly im-

prove the classification accuracy. The VGG-16 model has

13 convolutional and 3 fc layers. Because this model has no

SPP layer, we consider its last pooling layer (7×7) as a spe-

cial SPP layer which has a single-level pyramid of {7× 7}.

In this case, our Design B does not apply because there is

no coarser level. So we apply our Design A instead. Table

2 shows that our results improve substantially when using

the VGG net. This indicates that our method benefits from

the more representative features learned by deeper models.

2www.robots.ox.ac.uk/˜vgg/research/very_deep/

In Table 3 we evaluate the impact of image scales. In-

stead of using the 5 scales, we simply extract features from

single-scale images whose shorter side is s = 576. Table 3

shows that our single-scale variant has negligible degrada-

tion. But the single-scale variant has a faster computational

speed as in Table 4.

Next we compare with the state-of-the-art results on

the PASCAL VOC 2012 test set in Table 5. Here SDS

[10] is the previous state-of-the-art method on this task,

and O2P [4] is a leading non-CNN-based method. Our

method with ZF SPPnet and MCG achieves a score of 55.4.

This is 3.8% higher than the SDS result reported in [10]

which uses AlexNet and MCG. This demonstrates that our

CFM method can produce effective features without mask-

ing raw-pixel images. With the VGG net, our method has a

score of 61.8 on the test set.

Besides the high accuracy, our method is much faster

than SDS. The running time of the feature extraction steps

in SDS and our method is shown in Table 4. Both ap-

proaches are run on an Nvidia GTX Titan GPU based on the

Caffe library [12]. The time is averaged over 100 random

images from PASCAL VOC. Using 5 scales, our method

with ZF SPPnet is ∼ 47× faster than SDS; using 1 scale,

our method with ZF SPPnet is ∼150× faster than SDS and

is more accurate. The speed gain is because our method

only needs to compute the feature maps once. Table 4 also

shows that our method is still feasible using the VGG net.

Concurrent with our work, a Fully Convolutional Net-

work (FCN) method [16] is proposed for semantic segmen-

tation. It has a score (62.2 on test set) comparable with

our method, and has a fast speed as it also performs con-

volutions once on the entire image. But FCN is not able to

generate instance-wise results, which is another metric eval-

uated in [10]. Our method is also applicable in this case, as

evaluated below.

Scenario II: Simultaneous Detection and Segmentation

In the evaluation protocol of simultaneous detection and

segmentation [10], all the object instances and their seg-

mentation masks are labeled. In contrast to semantic seg-

mentation, this scenario further requires to identify different

object instances in addition to labeling pixel-wise semantic

categories. The accuracy is measured by mean APr score

defined in [10].

We report the mean APr results on VOC 2012 validation

set following [10], as the ground-truth labels for the test set

are not available. As shown in Table 6, our method has a

mean APr of 53.2 when using ZF SPPnet and MCG. This is

better than the SDS result (49.7) reported in [10]. With the

VGG net, our mean APr is 60.7, which is the state-of-the-

art result reported in this task. Note that the FCN method

[16] is not applicable when evaluating the mean APr metric,

5

www.robots.ox.ac.uk/~vgg/research/very_deep/


mean areo bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

O2P [4] 47.8 64.0 27.3 54.1 39.2 48.7 56.6 57.7 52.5 14.2 54.8 29.6 42.2 58.0 54.8 50.2 36.6 58.6 31.6 48.4 38.6

SDS (AlexNet + MCG) [10] 51.6 63.3 25.7 63.0 39.8 59.2 70.9 61.4 54.9 16.8 45.0 48.2 50.5 51.0 57.7 63.3 31.8 58.7 31.2 55.7 48.5

CFM (ZF + SS) 53.5 63.3 21.5 59.1 40.3 52.4 68.6 55.4 66.6 25.4 60.5 48.5 60.0 53.6 58.6 59.8 40.5 68.6 31.7 49.3 53.6

CFM (ZF + MCG) 55.4 65.2 23.5 59.0 40.4 61.1 68.9 57.9 70.8 23.9 59.4 44.7 66.2 57.5 62.1 57.6 44.1 64.5 42.5 52.9 55.7

CFM (VGG + MCG) 61.8 75.7 26.7 69.5 48.8 65.6 81.0 69.2 73.3 30.0 68.7 51.5 69.1 68.1 71.7 67.5 50.4 66.5 44.4 58.9 53.5

Table 5: Mean IoU scores on the PASCAL VOC 2012 test set.

method mean APr

SDS (AlexNet + MCG) [10] 49.7

CFM (ZF + SS) 51.0

CFM (ZF + MCG) 53.2

CFM (VGG + MCG) 60.7

Table 6: Instance-wise semantic segmentation evaluated by

mean APr [10] on PASCAL VOC 2012 validation set.

because it cannot produce object instances.

3. Joint Object and Stuff Segmentation

The semantic categories in natural images can be roughly

divided into objects and stuff. Objects have consistent

shapes and each instance is countable, while stuff has con-

sistent colors or textures and exhibits as arbitrary shapes,

e.g., grass, sky, and water. So unlike an object, a stuff re-

gion is not appropriate to be represented as a rectangular

region or a bounding box. While our method can gener-

ate segment features, each segment is still associated with

a bounding box due to its way of generation. When the

region/segment proposals are provided, it is rarely that the

stuff can be fully covered by a single segment. Even if the

stuff is covered by a single rectangular region, it is almost

certain that there are many pixels in this region that do not

belong to the stuff. So stuff segmentation has issues differ-

ent from object segmentation.

Next we show a generalization of our framework to ad-

dress this issue involving stuff. We can simultaneously han-

dle objects and stuff by a single solution. Especially, the

convolutional feature maps need only to be computed once.

So there will be little extra cost if the algorithm is required

to further handle stuff.

Our generalization is to modify the underlying proba-

bilistic distributions of the samples during training. Instead

of treating the samples equally, our training will bias to-

ward the proposals that can cover the stuff as compact as

possible (discussed below). A Segment Pursuit procedure

is proposed to find the compact proposals.

3.1. Stuff Representation by Segment Combination

We treat stuff as a combination of multiple segment pro-

posals. We expect that each segment proposal can cover

a stuff portion as much as possible, and a stuff can be fully

covered by several segment proposals. At the same time, we

hope the combination of these segment proposals is com-

pact - the fewer the segments, the better.

We first define a candidate set of segment proposals (in

a single image) for stuff segmentation. We define a “purity

score” as the IoU ratio between a segment proposal and the

stuff portion that is within the bounding box of this segment.

Among all the segment proposals in a single image, those

having high purity scores (> 0.6) with stuff consist of the

candidate set for potential combinations.

To generate one compact combination from this candi-

date set, we adopt a procedure similar to the matching pur-

suit [23, 17]. We sequentially pick segments from the can-

didate set without replacement. At each step, the largest

segment proposal is selected. This selected proposal then

inhibits its highly overlapped proposals in the candidate set

(they will not be selected afterward). In this paper, the in-

hibition overlap threshold is set as IoU=0.2. The process is

repeated till the remaining segments all have areas smaller

than a threshold, which is the average of the segment ar-

eas in the initial candidate set (of that image). We call this

procedure segment pursuit.

Figure 4 (b) shows an example if segment proposals are

randomly sampled from the candidate set. We see that there

are many small segments. It is harmful to define these small,

less discriminative segments as either positive or negative

samples (e.g., by IoU) - if they are positive, they are just a

very small part of the stuff; if they are negative, they share

the same textures/colors as a larger portion of the stuff. So

we prefer to ignore these samples in the training, so the clas-

sifier will not bias toward any side about these small sam-

ples. Figure 4 (c) shows the segment proposals selected by

segment pursuit. We see that they can cover the stuff (grass

here) by only a few but large segments. We expect the solver

to rely more on such a compact combination of proposals.

However, the above process is deterministic and can only

give a small set of samples from each image. For example,

in Figure 4 (c) it only provides 5 segment proposals. In
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(b) uniform(a) image

(c) deterministic segment pursuit  (d) stochastic segment pursuit  

Figure 4: Stuff segment proposals sampled by different

methods. (a) input image; (b) 43 regions uniformly sam-

pled; (c) 5 regions sampled by deterministic segment pur-

suit; (d) 43 regions sampled by stochastic segment pursuit

for finetuning.

the fine-tuning process, we need a large number of stochas-

tic samples for the training. So we inject randomness into

the above segment pursuit procedure. In each step, we ran-

domly sample a segment proposal from the candidate set,

rather than using the largest. The picking probability is pro-

portional to the area size of a segment (so a larger one is still

preferred). This can give us another compact combination

in a stochastic way. Figure 4 (d) shows an example of the

segment proposals generated in a few trials.

All the segment proposals given by this way are con-

sidered as the positive samples of a category of stuff. The

negative samples are the segment proposals whose purity

scores are below 0.3. These samples can then be used for

fine-tuning and SVM training as detailed below.

During the fine-tuning stage, in each epoch each image

generates a stochastic compact combination. All the seg-

ment proposals in this combination for all images consist

of the samples of this epoch. These samples are randomly

permuted and fed into the SGD solver. Although now the

samples appear mutually independent to the SGD solver,

they are actually sampled jointly by the rule of segment pur-

suit. Their underlying probabilistic distributions will impact

the SGD solver. This process is repeated for each epoch.

For the SGD solver, we halt the training process after 200k

mini-batches. For SVM training, we only use the single

combination given by the deterministic segment pursuit.

Using this way, we can treat object+stuff segmentation

in the same framework as for object-only. The only differ-

ence is that the stuff samples are provided in a way given

by segment pursuit, rather than purely randomly. To bal-

ance different categories, the portions of objects, stuff, and

ZF+SS VGG+SS VGG+MCG

Super

Parsing
O2P no-CFM

CFM

w/o SP
CFM CFM CFM

mean - 18.1 20.7 24.0 26.6 31.5 34.4

mean on † 15.2 29.2 32.4 37.2 40.4 46.1 49.5
aeroplane† 19.5 36.4 20.5 37.6 42.9 48.9 47.5

bicycle† 11.3 23.5 32.2 39.1 40.3 41.2 48.0

bird† 4.1 24.6 27.9 40.5 46.6 52.9 59.0

boat† 0.0 22.3 16.6 29.9 34.0 33.6 37.7

bottle† 1.2 15.0 40.0 39.0 39.8 41.5 51.6

bus† 14.0 43.2 50.0 52.4 53.5 61.0 65.2

car† 15.0 33.5 41.0 44.0 47.1 53.7 57.2

cat† 20.1 36.7 45.1 54.1 56.1 60.0 67.4

chair† 2.9 6.8 13.6 15.7 17.7 22.9 24.6

cow† 0.1 16.2 28.5 34.8 39.8 52.4 58.9

table† 6.4 7.0 12.1 12.3 13.9 11.5 16.7

dog† 11.5 26.9 39.5 48.3 51.4 57.6 63.7

horse† 2.0 26.4 33.0 40.2 43.1 50.5 58.0

motorbike† 14.3 32.8 40.4 45.1 47.9 54.8 55.0

person† 30.1 44.5 47.4 51.0 54.5 59.9 65.0

pottedplant† 1.1 15.9 31.4 31.5 34.9 34.1 41.1

sheep† 4.2 23.7 29.3 45.5 56.3 59.6 60.7

sofa† 3.6 16.1 15.2 19.1 22.0 22.1 31.8

train† 10.4 26.7 33.6 39.1 43.0 49.0 56.1

tvmonitor† 9.0 24.3 40.3 41.0 40.7 50.4 50.3

sky† 65.6 75.6 64.9 70.3 76.8 80.6 76.8

grass† 45.3 56.0 51.9 56.9 60.7 66.1 66.1

ground† 24.0 27.6 22.0 20.5 22.8 38.3 39.4

road† 15.8 31.2 25.3 30.6 34.0 36.2 37.8

building† 19.8 24.3 25.0 28.2 32.4 37.9 39.5

tree† 37.8 44.3 44.2 50.9 53.4 59.8 58.0

water† 34.5 54.8 51.4 54.1 59.7 65.3 69.1

mountain† 8.8 19.2 14.9 20.8 18.4 36.7 35.6

wall† 30.8 40.5 28.7 36.4 40.4 42.5 43.8

floor† 14.4 25.7 23.0 28.1 31.7 35.9 38.9

track† 17.5 29.5 35.7 27.3 31.9 40.1 38.2

keyboard† 0.1 18.2 26.1 30.2 25.1 36.7 39.8

ceiling† 6.4 12.7 19.3 13.4 20.3 27.9 23.8

bag - 1.2 0.5 2.1 2.8 2.1 9.0

bed - 0.7 0.0 1.2 3.0 1.1 2.9

bedclothes - 0.0 4.0 9.9 11.9 13.7 16.6

bench - 0.1 0.0 0.0 0.1 0.0 0.2

book - 5.0 15.0 8.9 14.8 20.5 20.1

cabinet - 4.4 4.2 5.0 8.7 11.4 18.4

cloth - 1.8 0.2 2.8 3.4 2.7 2.7

computer - 0.0 0.0 3.8 5.0 4.5 8.6

cup - 1.4 7.4 8.1 12.4 21.2 25.5

curtain - 11.6 12.5 9.2 15.5 21.4 25.1

door - 2.3 3.9 5.0 6.2 12.7 4.9

fence - 6.6 8.4 4.9 7.3 20.7 23.3

flower - 6.8 4.1 9.0 8.4 10.7 28.0

food - 10.7 22.7 23.3 29.8 35.2 38.1

mouse - 0.9 1.4 4.4 9.9 12.4 12.3

plate - 5.6 7.5 7.0 10.7 19.3 21.8

platform - 7.5 14.7 16.2 18.4 18.7 26.7

rock - 6.7 8.1 13.5 15.0 24.2 26.4

shelves - 3.7 1.8 1.5 3.6 3.1 10.4

sidewalk - 0.5 0.0 1.7 2.5 7.9 6.8

sign - 7.0 1.6 4.1 8.7 18.7 17.2

snow - 16.4 19.0 23.9 28.9 28.3 40.5

truck - 0.2 0.3 0.4 4.5 3.4 11.0

window - 14.6 10.7 11.9 12.4 21.7 19.2

wood - 0.8 0.5 2.4 2.8 1.9 5.8

light - 8.5 11.5 6.2 10.9 15.3 20.5

Table 7: Segmentation accuracy measured by IoU scores on

the new PASCAL-CONTEXT validation set [18]. The cat-

egories marked by † are the 33 easier categories identified

in [18]. The results of SuperParsing [21] and O2P [4] are

from the errata of [18].

background samples in each mini-batch are set to be ap-

proximately 30%, 30%, and 40%. The testing stage is the

same as in the object-only case. While the testing stage is

unchanged, the classifiers learned are biased toward those

compact proposals.
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Figure 5: Some example results of our CFM method (with VGG and MCG) for joint object and stuff segmentation. The

images are from the PASCAL-CONTEXT validation set [18].

3.2. Results on Joint Object and Stuff Segmentation

We conduct experiments on the newly labeled PASCAL-

CONTEXT dataset [18] for joint object and stuff segmen-

tation. In this enriched dataset, every pixel is labeled with

a semantic category. It is a challenging dataset with various

images, diverse semantic categories, and balanced ratios of

object/stuff pixels. Following the protocol in [18], the se-

mantic segmentation is performed on the most frequent 59

categories and one background category (Table 7). The seg-

mentation accuracy is measured by mean IoU scores over

the 60 categories. Following [18], the mean of the scores

over a subset of 33 easier categories (identified by [18])

is reported in this 60-way segmentation task as well. The

training and evaluation are performed on the train and val

sets respectively. We compare with two leading methods -

SuperParsing [21] and O2P [4], whose results are reported

in [18]. For fair comparisons, the region refinement [10] is

not used in all methods. The pasting scheme is the same as

in O2P [4]. In this comparison, we ignore R-CNN [8] and

SDS [10] because they have not been developed for stuff.

Table 7 shows the mean IoU scores. Here “no-CFM”

is our baseline (no CFM, no segment pursuit); “CFM w/o

SP” is our CFM method but without segment pursuit; and

“CFM” is our CFM method with segment pursuit. When

segment pursuit is not used, the positive stuff samples are

uniformly sampled from the candidate set (in which the seg-

ments have purity scores > 0.6).

SuperParsing [21] gets a mean score of 15.2 on the easier

33 categories, and the overall score is unavailable in [18].

The O2P method [4] results in 29.2 on the easier 33 cate-

gories and 18.1 overall, as reported in [18]. Both methods

are not based on CNN features.

For the CNN-based results, the no-CFM baseline (20.7,

with ZF and SS) is already better than O2P (18.1). This

is mainly due to the generic features learned by deep net-

works. Our CFM method without segment pursuit improves

the overall score to 24.0. This shows the effects of the

masked convolutional features. With our segment pursuit,

the CFM method further improves the overall score to 26.6.

This justifies the impact of the samples generated by seg-

ment pursuit. When replacing the ZF SPPnet by the VGG

net, and the SS proposals by MCG, our method yields an

over score of 34.4. So our method benefits from deeper

models and more accurate segment proposals. Some of our

results are shown in Figure 5.

It is worth noticing that although only mean IoU scores

are evaluated in this dataset, our method is also able to gen-

erate instance-wise results for objects.

4. Conclusion

We have presented convolutional feature masking, which

exploits the shape information at a late stage in the network.

We have further shown that convolutional feature masking

is applicable for joint object and stuff segmentation.

We plan to further study improving object detection by

convolutional feature masking. Exploiting the context in-

formation provided by joint object and stuff segmentation

would also be interesting.
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