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Two models based on convolutional neural networks are trained to predict the
two-dimensional instantaneous velocity-fluctuation fields at different wall-normal
locations in a turbulent open-channel flow, using the wall-shear-stress components and
the wall pressure as inputs. The first model is a fully convolutional neural network
(FCN) which directly predicts the fluctuations, while the second one reconstructs the flow
fields using a linear combination of orthonormal basis functions, obtained through proper
orthogonal decomposition (POD), and is hence named FCN-POD. Both models are trained
using data from direct numerical simulations at friction Reynolds numbers Reτ = 180
and 550. Being able to predict the nonlinear interactions in the flow, both models show
better predictions than the extended proper orthogonal decomposition (EPOD), which
establishes a linear relation between the input and output fields. The performance of the
models is compared based on predictions of the instantaneous fluctuation fields, turbulence
statistics and power-spectral densities. FCN exhibits the best predictions closer to the wall,
whereas FCN-POD provides better predictions at larger wall-normal distances. We also
assessed the feasibility of transfer learning for the FCN model, using the model parameters
learned from the Reτ = 180 dataset to initialize those of the model that is trained on the
Reτ = 550 dataset. After training the initialized model at the new Reτ , our results indicate
the possibility of matching the reference-model performance up to y+ = 50, with 50 %
and 25 % of the original training data. We expect that these non-intrusive sensing models
will play an important role in applications related to closed-loop control of wall-bounded
turbulence.
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1. Introduction

In this work, we assess the potential of deep neural networks (DNNs, see LeCun, Bengio &
Hinton 2015) to perform non-intrusive sensing, that consists of using measurable quantities
in a fluid flow to reconstruct its behaviour in another location in the domain or to predict
its dynamics in the future, without using probes that affect the flow itself. For instance, it is
possible to accurately measure time-resolved quantities at the wall, such as the wall-shear
stress or the pressure, and then correlate these measurements with the flow farther away.
A reliable flow estimation is typically a prerequisite for closed-loop control applications,
where the actuation is applied with the aim of suppressing the effect of certain structures
in the flow (Choi, Moin & Kim 1994). In order to effectively perform closed-loop control
it is necessary to monitor the instantaneous state of the flow so as to devise the best way to
affect it, however, characterizing the flow state can be extremely challenging, particularly
at very high Reynolds numbers where the near-wall structures become progressively
smaller.

Before the appearance of DNNs, flow-field predictions were performed mainly through
linear methods. Among them, the linear stochastic estimation (LSE) introduced by Adrian
(1988) stands out. Recently Suzuki & Hasegawa (2017) and Encinar & Jiménez (2019) have
used LSE to reconstruct the velocity field on a wall-parallel plane in a turbulent channel
flow employing wall measurements. The latter study showed that LSE can only reconstruct
the large wall-attached eddies in the outer part of the logarithmic region. An extension of
the LSE method in the spectral domain (Tinney et al. 2006) was shown to be more suitable
for noisy predictions in turbulent flows. More recently, Baars & Tinney (2014) proposed
a method based on proper orthogonal decomposition (POD) to improve the spectral-LSE
approach. Borée (2003) reported the possibility of projecting a synchronized field on the
POD temporal modes of another quantity; this method is known as extended POD (EPOD).
The correlation matrix between the temporal POD coefficients of two given quantities can
be used to predict one based on the other. The work of Borée (2003) proved EPOD to be
equivalent to LSE when all modes are retained in the reconstruction. Using remote probes,
EPOD has been used to provide predictions in turbulent jets (Tinney, Ukeiley & Glauser
2008), channel flows (Discetti, Raiola & Ianiro 2018), pipe flows (Discetti et al. 2019) and
wall-mounted obstacles (Bourgeois, Noack & Martinuzzi 2013; Hosseini, Martinuzzi &
Noack 2016). Note, however, that, in the latter work, quadratic terms are included in the
model of the POD coefficient dynamics, hinting at the need of nonlinear estimation even
for a relatively simple, predominantly oscillatory flow. In this regard, Sasaki et al. (2019)
recently assessed the capabilities of both linear and nonlinear transfer functions with single
and multiple inputs to provide turbulent-flow predictions. They documented a significant
improvement in the predictions when the transfer functions were designed to account for
nonlinear interactions between the inputs and the flow field. The improved prediction
capabilities of nonlinear methods over linear ones were also reported by Mokhasi, Rempfer
& Kandala (2009) and Nair & Goza (2020).

DNNs are nonlinear models that have found application in many research areas (Jean
et al. 2016; De Fauw et al. 2018; Norouzzadeh et al. 2018; Ham, Kim & Luo 2019;
Udrescu & Tegmark 2020; Vinuesa et al. 2020). Due to their potential applications
in flow modelling, identification of turbulence features and flow control, DNNs have
recently received extensive attention in the fluid-mechanics research community (Kutz
2017; Jiménez 2018; Duraisamy, Iaccarino & Xiao 2019; Brunton, Noack & Koumoutsakos
2020). Here, we provide a brief overview of the recent neural-network applications in
fluid mechanics, before coming back to the flow estimation problem we investigated in
this work. In the case of turbulence modelling, DNNs have been reported to improve
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the results of Reynolds-averaged Navier–Stokes (Ling, Kurzawski & Templeton 2016;
Wu, Xiao & Paterson 2018) models and large-eddy simulations (Beck, Flad & Munz
2019; Lapeyre et al. 2019; Maulik et al. 2019). There are also a number of ongoing
efforts towards including the constraints from the Navier–Stokes equations into prediction
models through the so-called physics-informed neural networks (Wang, Wu & Xiao 2017;
Raissi, Perdikaris & Karniadakis 2019). Furthermore, several artificial-intelligence-based
solutions have been proposed to perform optimal control on different types of flows, such
as the wake behind one or more cylinders (Rabault et al. 2019; Raibaudo et al. 2020).
Other promising applications of machine learning to fluid mechanics include generation
of inflow conditions (Fukami et al. 2019b) and extraction of flow patterns (Raissi, Yazdani
& Karniadakis 2020).

DNNs have also been used in temporal prediction of dynamical systems. As an example,
Srinivasan et al. (2019) compared the capabilities of the multi-layer perceptron (MLP,
also known as a fully connected neural network) and several long–short-term memory
(LSTM) networks to predict the coefficients of a low-order model for near-wall turbulence
(Moehlis, Faisst & Eckhardt 2004). While the most relevant flow features are captured
by both architectures, the LSTM network outperformed the MLP in terms of ability to
predict turbulence statistics and the dynamics of the flow. This work has been extended by
Eivazi et al. (2021), where the LSTM network has been compared with a Koopman-based
framework which accounts for nonlinearities through external forcing. Although both
approaches provide accurate predictions of the dynamical evolution of the system, the
latter outperforms the LSTM in terms of time and data required for training. Similar
temporal predictions of the near-wall model (Moehlis et al. 2004) were conducted by
Pandey, Schumacher & Sreenivasan (2020) using echo state networks. Moreover, nonlinear
autoregressive exogeneous networks have been used by Lozano-Durán, Bae & Encinar
(2020) to exploit the relation between the temporal dynamics of the Fourier coefficients
of a minimal turbulent channel flow. Their results showed accurate predictions of the
bursting events in the logarithmic layer from buffer-region data. Other related work, in the
context of control of the Kuramoto–Sivashinsky chaotic system, was recently conducted
by Bucci et al. (2019). Note, however, that the use of temporal sequences implies a
high computational cost to generate well-resolved temporal data. Furthermore, longer
sequences require higher memory requirements in order to predict the future behaviour.
For these reasons, several neural-network-based models that learn spatial relations have
been proposed in the literature. Convolutional neural networks (CNNs) have become
increasingly popular during the last years due to the hierarchical structure of their input
(Fukushima 1980, 1988; LeCun et al. 1989; Lecun et al. 1998). For instance, Fukami,
Fukagata & Taira (2019a, 2021); Güemes et al. (2021) have shown that flow fields
from the laminar wake of a cylinder and a turbulent channel can be reconstructed from
extremely coarse data with remarkable success. CNNs have also been used to investigate
the dynamical features of the flow without a priori knowledge, as shown by Jagodinski,
Zhu & Verma (2020).

Neural networks are mathematical models which exhibit very appealing properties,
such as being universal approximators (Hornik, Stinchcombe & White 1989). This means
that they can potentially represent any continuous function with the adequate model
parametrization, even though there is no guarantee that it is possible to infer the value of
the parameters from data sampled from the original function. Nonetheless, neural-network
parameters are typically tuned through data-driven training, and as such they have been
compared and used together with other data-driven methods. For instance, the relationship
between POD (see Lumley 1967) and the MLP is well documented in the literature
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(Bourlard & Kamp 1988; Baldi & Hornik 1989). These works showed that a MLP with a
single hidden layer is equivalent to POD if a linear activation function is used. One of the
early applications on a fluid-dynamics dataset was proposed by Milano & Koumoutsakos
(2002), who compared the results of POD-based neural networks with linear and nonlinear
functions for the prediction of near-wall velocity fields, showing that nonlinear POD has
significantly better predictive capabilities. More recently, the emergence of autoencoder
architectures has motivated a renewed interest in the application of neural networks
for dimensionality reduction. Hinton & Salakhutdinov (2006) proposed the use of deep
autoencoders to obtain a low-order representation of high-dimensional data, showing that
this approach is able to retain more information than POD. It is interesting to note that
this work avoids the inherent difficulty of optimizing weights in deep autoencoders by
training each layer with a restricted Boltzmann machine. Murata, Fukami & Fukagata
(2020) used an autoencoder with convolutional layers to obtain a low-order representation
of the flow around a cylinder. Their results suggest that CNN autoencoders with linear
activation functions reproduce the same dimensionality reduction as POD, while the use
of nonlinear activation functions improves the reconstruction performance. On a related
note, flow reconstruction based on shallow neural networks was studied by Erichson et al.

(2020) in several fluid-mechanics examples.
This work is not the first in which neural networks are used to perform non-intrusive

sensing in wall-bounded flows: in a seminal study over 20 years ago, Lee et al. (1997)
tested a two-layer neural network (with a single nonlinear activation function) to predict
the wall actuation, based on the wall-shear-stress components, in order to reduce the
drag at the wall. Guzmán Iñigo, Sipp & Schmid (2014) predicted the velocity field in a
transitional boundary-layer flow using wall-shear measurements, by projecting the velocity
fields on a POD basis and using a dynamic observer to predict the dynamics of the
flow. More recently, Kim & Lee (2020) used the two wall-shear-stress components to
predict the instantaneous wall-normal heat flux with satisfactory results. The same wall
information was used by Guastoni et al. (2020) to predict the instantaneous streamwise
flow fields at several wall-normal positions using convolutional networks. Their results
show that these neural networks provide better predictions than linear methods (see below)
in terms of instantaneous predictions and second-order statistics. The predictions were
limited to one velocity component and to a low Reynolds number. In this work, all the
velocity components are predicted and a higher Re is investigated as well. Furthermore,
in the work by Güemes, Discetti & Ianiro (2019) the information of the most-energetic
scales was encoded into a POD basis, and a CNN was used to predict that information at
different wall-normal locations from streamwise wall-shear-stress measurements. Their
results demonstrated that CNNs can significantly outperform linear methods in the
prediction of POD time coefficients for low-order reconstruction of the velocity fields.
Their convolutional network would predict only one POD temporal coefficient at a time, in
this work all the coefficients are computed at the same time thanks to the implementation
of an improved network architecture.

DNNs perform best when training and test data are taken from the same distribution,
i.e. for the same flow and at the same Reynolds number in our case. However, in a
real-world application the flow conditions will be continuously varying and/or it might be
unfeasible to perform a full training at exactly the same conditions. If the flow behaviour
at the Reynolds number of interest is roughly the same as the training Reynolds number
and if the neural network can successfully approximate it, then the model should be
able to perform consistently across the different Reynolds numbers, as shown in active
flow control applications by Tang et al. (2020). In order to improve the performance
at a different Reynolds number, it would then be possible to exploit initial training at
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a certain flow condition and transfer this knowledge to another one. Such knowledge
transfer could reduce significantly the amount of data needed for training and improve
the network applicability for industrial applications. Transfer learning (Pan & Yang 2009)
is the suitable learning framework to address this issue, and it is discussed in detail below.

The methods proposed by Guastoni et al. (2020) and Güemes et al. (2019), henceforth
referred to as fully convolutional network (FCN) and FCN-POD respectively, are extended
in the present study. Both models are able to provide a nonlinear characterization of the
relation between wall features and the flow on wall-parallel planes. The purpose of this
work is to provide a detailed comparison of the two aforementioned nonlinear methods
regarding their capabilities in predicting turbulent flow fields from wall information. Their
improvement over linear methods is measured using EPOD as a reference. Furthermore,
transfer learning was applied to the FCN approach with the purpose of evaluating to what
extent a network trained at one Reynolds number can be used at a different one.

The remainder of this article is organized as follows. Section 2.1 describes the numerical
databases used for training and testing the neural networks and § 2.2 provides a brief
comparison between the considered models. The FCN and FCN-POD methods are further
detailed in § 2.4 and § 2.5, respectively, while EPOD is discussed in § 2.3. Results from the
considered prediction methods are presented and compared in § 3, including instantaneous
fields in § 3.1, second-order statistics in § 3.2 and spectra in § 3.3. Furthermore, an
assessment of transfer learning between different Reynolds numbers is presented in § 4.
Finally, the main conclusions of the work are presented in § 5. Two appendices are
provided containing additional information about the training of the neural-network-based
models and regarding the predicted instantaneous flow fields.

2. Methodology

2.1. Datasets

All the DNN variants in this study have been trained using the data generated from
direct numerical simulations (DNS) of a turbulent open-channel flow. Periodic boundary
conditions are imposed in the x- and z-directions (which are the streamwise and spanwise
coordinates, respectively), and a no-slip condition is applied at the lower boundary
(y = 0, where y is the wall-normal coordinate). Differently from a standard channel-flow
simulation, a symmetry condition is imposed at the upper boundary. In standard channel
flows, the wall-attached coherent structures may extend beyond the channel centreline,
thus affecting the other wall (Lozano-Durán, Flores & Jiménez 2012). On the other hand,
in open-channel flows there is no upper wall. This makes the simulation more suitable to
investigate to which extent the neural networks are able to learn the dynamics of near-wall
turbulence, since the interaction of the large scales with both walls is not present.

The simulation is performed using the pseudo-spectral code SIMSON (Chevalier et al.

2007) with constant mass flow rate, in a domain Ω = Lx × Ly × Lz = 4πh × h × 2πh

(where h is the channel height), as shown in figure 1. Two friction Reynolds numbers
Reτ (based on h and the friction velocity uτ = √

τw/ρ, where τw is the wall-shear stress
and ρ is the fluid density) are considered, as summarized in table 1. The flow field is
represented with Ny Chebyshev modes in the wall-normal direction and with Nx and Nz

Fourier modes in the streamwise and spanwise directions, respectively. The instantaneous
fields are obtained at constant time intervals from the time-advancing scheme, which is a
second-order Crank–Nicholson scheme for the linear terms and a third-order Runge–Kutta
method for the nonlinear terms. Dealiasing using a standard 3/2 rule is employed in
the wall-parallel Fourier directions. The velocity fields to be used as ground truth for
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Figure 1. Computational domain and frame of reference for the DNS of the turbulent open channel
considered in this study.

Reτ Nx × Nz × Ny No. fields �t+s,train T+
train Test fields �t+s,test T+

test

180 192 × 192 × 65 50 400 5.08 ≈ 2.56 × 105 3125 1.69 ≈ 5.3 × 103

550 512 × 512 × 193 19 920 1.49 ≈ 2.97 × 104 3320 1.49 ≈ 5 × 103

Table 1. Description of the DNS datasets used for computing the EPOD and training/testing the CNN-based
models. The number of fields refers to the number of training and validation fields.

training and testing are sampled at the following inner-scaled wall-normal coordinates:
y+ = 15, 30, 50 and 100. Note that ‘+’ denotes viscous scaling, i.e. in terms of the friction
velocity uτ or the viscous length ℓ∗ = ν/uτ (where ν is the fluid kinematic viscosity).
A dataset is defined as a collection of samples, each consisting of the shear-stress and
pressure fields at the wall as inputs, along with the corresponding velocity fields at
the target wall-normal locations as outputs. The training/validation dataset at Reτ = 180
consists of 50 400 instantaneous fields, with a sampling period of �t+s = 5.08. The
sampling period at Reτ = 550 is set to �t+s = 1.49 and the training/validation dataset
includes 19 920 fields. The resolution in viscous units of the individual fields is the same
in both Reτ datasets. This is necessary to represent all the flow features; however, this
also implies that the number of Fourier modes in the wall-parallel directions is higher at
Reτ = 550, as shown in table 1, even if the domain Ω is the same. A higher number of
modes corresponds to a higher number of spatial locations in which the different quantities
are sampled from the DNS and this partially compensate the lower number of fields since
the two proposed neural-network-based methods act locally on the input data, as will be
shown in § 2.2.

In both Reτ cases, the dataset is split into training and validation sets, with a ratio of
4 : 1. The training and validation sets are obtained from a group of randomly initialized
simulations. With the number of samples chosen for our investigation at either Reτ , there
is a simulation whose samples are used both for training and for validation. Note that
there is no temporal overlapping between the two datasets, as the first samples from the
‘shared’ simulation are sequentially added to the training set until the required number of
training samples is reached. The remaining samples are then added to the validation set.
This is done to reduce the correlation between the two datasets. While using the separate
groups of simulations or adding an additional time separation between the last sample
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of the training set and the first sample of the validation would have further reduced the
correlation, this was not enforced, since the validation error is only used during training to
tune the network hyperparameters and avoid overfitting the training dataset. If the training
provides satisfactory results, it is common practice to use both training and validation
sets for the training of the final models. This was not implemented in our case, but it
allows the model to make use of all the available data to improve its performance. The
validation error may be significantly different from the one computed during testing, hence
all the comparisons in this work are based on the error computed on the test dataset.
The predictions used to assess the performance of the trained models were obtained from
additional simulations. This is done both at Reτ = 180 and Reτ = 550, and it is necessary
to ensure that the training and test datasets are completely uncorrelated, both in space and
time. Test samples were taken from simulations initialized with a random seed, different
from that of the training-data simulation. The correlation between training simulations
and between training and test simulations was checked with the cross-correlations ρij(h),
defined as (Makarashvili et al. 2017)

ρij(h) = γij(h)
√

γi(0)γj(0)
, (2.1)

where h is the time lag and γij(h) = E[(xi,t+h − µi)(xj,t − µj)] are the cross-covariances.
i and j refer to the two simulations and x is the considered quantity, in this case one of
the velocity components at a given wall-normal location. By computing ρij(0), it was
possible to verify that the simulations had run sufficiently long to ensure that they are
overall statistically uncorrelated, before starting the sampling to build the datasets.

The size of the test dataset (more than 3000 fields for both Reτ ) is sufficient to
achieve convergence of the turbulence statistics from the predicted flow, and then these
are compared with the reference values from the DNS.

2.2. Summary of the methods

In this study we consider three different data-driven methods to estimate the instantaneous
two-dimensional fields of the velocity fluctuations, at a given wall-normal distance. The
velocity-fluctuation fields are obtained from the sampled DNS fields by subtracting the
mean flow, averaged in time and in the two spatially homogeneous directions. Two models
(FCN and FCN-POD) are introduced and compared with the EPOD method, which is used
as a baseline model, highlighting the capabilities (and limitations) of linear estimation.
Despite using the same input data and predicting the same output quantities, the three
models leverage different tools in order to extract the information from the inputs and
estimate the outputs. Here, we briefly review the differences and similarities between the
models, each method is described in detail in the dedicated sections.

The three methods mainly differ when it comes to the use of POD (see Lumley 1967)
on the input and output data, as well as the presence of a neural network in the prediction
model. These differences are summarized in table 2, but it is important to note that the
use of these mathematical tools can substantially differ from one method to the other, as
detailed later. EPOD and FCN-POD use POD, which has the advantage of allowing us to
filter out the noise content represented by small and uncorrelated scales, taking advantage
of the energy optimality of POD modes. Additionally, spatial and temporal dynamics are
separated.
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POD (input) POD (output) Nonlinear mapping (neural network)

EPOD � � —
FCN-POD — � �

FCN — — �

Table 2. Summary of the properties from each method.

EPOD decomposes both the input and the output: the flow field at a certain wall-normal
distance is reconstructed as a linear combination of orthogonal modes φi(x)

u(x, t) ≈
Nm
∑

i=1

ψi(t)σiφi(x), (2.2)

where Nm is the total number of POD modes, ψi(t) is the temporal POD coefficient
corresponding to mode i and σi is its corresponding root-squared energy contribution.
While the orthogonal modes are computed from a POD of the training dataset, the
temporal coefficients are estimated by decomposing input wall quantities using POD and
assuming a linear correlation between the known temporal modes of the wall quantities
ψw,i(t) and the temporal modes ψi(t) of the output flow field of the test dataset. Further
details are provided in § 2.3. On the other hand, FCN-POD applies POD only on the output
flow fields, using the spatial modes from the training set and predicting the corresponding
temporal coefficients using a neural network. This is a development of the model used
by Güemes et al. (2019), note, however, that, in that study, the domain employed and
reconstructed provided a compact POD eigenspectrum, here, the availability of a larger
domain in the streamwise and spanwise directions spreads the energy content over a wider
set of POD modes. This makes the predictions of temporal coefficients more difficult,
especially those associated with the least energetic modes. To address this issue, the
large instantaneous flow fields were subdivided into Nsx × Nsz smaller regions (henceforth
referred to as subdomains). The neural network predicts the temporal coefficients for all
subdomains at the same time.

The FCN and FCN-POD models consider the instantaneous two-dimensional fields of
the streamwise and spanwise wall-shear-stress components and of the wall pressure as
inputs. In the physical coordinates representation of these fields, the presence of coherent
features motivates the use of convolutional layers in our neural-network models to process
the information. In these layers, the inputs are processed at the same time, hence a
convolution in three dimensions is performed and it is defined as

Fi,j =
∑

l

∑

m

∑

n

Ii−m,j−n,lKm,n,l, (2.3)

following Goodfellow, Bengio & Courville (2016), where I ∈ R
d1×d2×d3 is the input,

K ∈ R
k1×k2×k3 is the so-called kernel (or filter) containing the learnable parameters of

the layer and the transformed output F is the feature map. Note that we consider d3 = k3,
meaning that the resulting feature map is two-dimensional. Multiple feature maps can be
stacked and sequentially fed into another convolutional layer as input. This allows the
next layer to combine the features individually identified in each feature map, enabling
the prediction of larger and more complex features for progressively deeper convolutional
networks. Note that a convolutional layer can be rewritten as a matrix multiplication,
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hence it is mathematically equivalent to a fully connected layer (Ma & Lu 2017). If we
assume that the input features are spatially localized, using a convolutional layer allows
translational equivariance to be enforced in both periodic directions. Furthermore, since
ki ≪ di ∀i /= 3, the use of kernels greatly reduces the number of parameters that need to
be learned during training (in comparison with fully connected MLP networks).

Both neural-network-based models use fully convolutional neural network (hence FCN
in the names). This architecture is similar, but conceptually different from, CNNs, which
typically have several convolutional layers followed by one or more fully connected
layers (which are the building blocks of MLP networks). In CNNs, the localized
information processed by the individual convolutional kernels is combined to obtain
a global prediction, whereas in FCNs only convolutional layers are present and the
network architecture is based on the assumption that the relation between input and
output variables is spatially localized. The input region from which a single point of the
output can draw information is called receptive field and it can be computed based on
the network architecture, as described by Dumoulin & Visin (2016). In the FCN model, the
instantaneous two-dimensional velocity fluctuations are directly predicted from the input
fields by using the fully convolutional neural network. Additional details are provided in
§ 2.4. On the other hand, the neural network in the FCN-POD model predicts the temporal
coefficients for each of the Nsx × Nsz subdomains at once, as described in § 2.5.

2.3. Extended POD

EPOD provides a linear relation between input and output and it is the reference method for
all the following comparisons. Doing so, it is possible to assess the prediction improvement
with nonlinear, neural-network-based methods in the context of wall-bounded turbulence.
Wall quantities at each instant can be rearranged as a row vector and used to assemble a
snapshot matrix

W =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂u

∂y

∣

∣

∣

∣

t1

x1

· · · ∂u

∂y

∣

∣

∣

∣

t1

xNp

∂w

∂y

∣

∣

∣

∣

t1

x1

· · · ∂w

∂y

∣

∣

∣

∣

t1

xNp

p
t1
x1 · · · p

t1
xNp

...
. . .

...
...

. . .
...

...
. . .

...

∂u

∂y

∣

∣

∣

∣

tNt

x1

· · · ∂u

∂y

∣

∣

∣

∣

tNt

xNp

∂w

∂y

∣

∣

∣

∣

tNt

x1

· · · ∂w

∂y

∣

∣

∣

∣

tNt

xNp

p
tNt
x1 · · · p

tNt
xNp

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2.4)

Here, Nt refers to the total number of snapshots (equal to the number of instantaneous flow
fields Nf for the EPOD) and Np refers to the total number of grid points in one field. Such
formulation applies for regular grids; for non-regular grids, the snapshot matrix should be
adapted to take into account the area associated with each grid point. Using the method
proposed by Sirovich (1987), it is possible to decompose this matrix into POD modes as

W = Ψ wΣwΦw, (2.5)

with Ψ w ∈ R
Nf ×Nf and Φw ∈ R

Nf ×3Np being the temporal and spatial mode matrices,
respectively, and Σw ∈ R

Nf ×Nf being a diagonal matrix containing the singular values.
Note that we perform an economy-size decomposition, such that the size of the square
matrix Σw is min(Nf , 3Np). The EPOD modes (Borée 2003), corresponding to the
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projection of the wall quantities on the flow-field temporal basis, are defined as

L = Ψ T
wU, (2.6)

where U is the snapshot matrix in which the instantaneous velocity fluctuations in the three
directions are rearranged

U =

⎡

⎢

⎣

u
t1
x1 · · · u

t1
xNp

v
t1
x1 · · · v

t1
xNp

w
t1
x1 · · · w

t1
xNp

...
. . .

...
...

. . .
...

...
. . .

...

u
tNt
x1 · · · u

tNt
xNp

v
tNt
x1 · · · v

tNt
xNp

w
tNt
x1 · · · w

tNt
xNp

⎤

⎥

⎦
. (2.7)

If the dataset is sufficiently large to reach statistical convergence, the matrix L describes
the relationship between the temporal POD coefficients of a certain distribution of wall
features, and those of the corresponding flow field. Once the temporal correlation matrix
is known, an out-of-sample flow field u can be reconstructed using L and the instantaneous
realization of wall features as follows:

u = ψwL, (2.8)

where ψw is the vector containing the temporal coefficients of the wall fields used for
prediction. Note that ψw is retrieved by projecting the out-of-sample wall field w on the
POD basis: ψw = wΦT

wΣ−1
w , where ΦT

wΣ−1
w is readily available from the training dataset.

An important remark is that, due to the homogeneity in the streamwise and spanwise
directions and the very large number of fields for the lower Reynolds number Reτ = 180,
the wall-based matrix Σw is ill conditioned. In fact, due to the correlation between
subsequent time-resolved snapshots, the rank of Σw is smaller than Nf , which is the
number of snapshots (here smaller than Np). A well- or ill-conditioned matrix is based
on the condition number: if the condition number is large the matrix is ill conditioned,
while if it is small the matrix is well conditioned. Defining the condition number as
κ(Σw) = max(Σw)/min(Σw), the large difference between the first and the last POD
modes leads to an ill-conditioned matrix, which is difficult to be inverted numerically. To
address this issue, a reduced-order representation of the matrix Σw is employed, using
a number of modes equal to the rank of the matrix. The energy contribution of the
excluded modes is zero, and thus the predictions are numerically equivalent to a full-rank
estimation. Differently from the Reτ = 180 case, the singular values matrix at the wall
Σw has a lower condition number for Reτ = 550 case, possibly because of the smaller
number of snapshots that are used in this case. As a result, it is not necessary to resort
to a reduce-order representation in order to invert the matrix Σw. Even when Σw has
rank equal to Nf , it might be convenient to truncate the matrix L (Discetti et al. 2018).
Decomposing the flow quantities as U = Ψ ΣΦ, similarly to what is done for the wall
quantities in (2.5), it can be observed that the product of the two matrices Ψ Ψ T

w in (2.6)
returns a unitary-norm matrix with rank equal to those of Ψ and Ψ T

w, which are bases in
the R

Nf vector space. As a consequence, a certain jth wall mode, uncorrelated with any
field mode, would not result in a corresponding null row or column. To ensure the removal
of the uncorrelated content from the matrix Ψ Ψ T

w, Discetti et al. (2018) proposed to set to
zero all the entries of the matrix with absolute values smaller than a threshold proportional
to the matrix standard deviation. This operation reduces the expressivity of the EPOD,
reducing the number of modes that can be used to represent the output fields. On the
other hand, for the predictions in this work, we have found a mean-squared error reduction
of approximately 10 percentage points with respect to the standard EPOD procedure.
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Despite this, since the EPOD is used as a benchmark for the performance of linear methods
with respect to the FCN-based approaches proposed herein, the filtered EPOD by Discetti
et al. (2018) is not included in this comparison for brevity.

2.4. Fully convolutional neural-network predictions

Fully convolutional networks are commonly used in applications where the input and
output domains have structural similarities. Image segmentation (Long, Shelhamer &
Darrell 2015) is one such case, since the output has the same spatial dimension as the
input, as in our predictions of two-dimensional flow fields. The inputs of the network
are the wall-shear-stress components in the streamwise and spanwise directions, as well
as the pressure at the wall. Each of the inputs of the network is normalized using the
respective mean and standard deviation, as computed from the training/validation set. The
predictions are performed using the same mean and standard deviation values on the test
dataset inputs. The outputs are the instantaneous velocity fluctuations, denoted as u, v and
w (corresponding to the streamwise, wall-normal and spanwise velocities, respectively),
at a given distance from the wall. Note that the predictions are carried out at the same
time as the input fields. In our previous work (Guastoni et al. 2020), a similar FCN was
used to predict the streamwise component of instantaneous flow fields. In the present study
the predictions are extended to the wall-normal and spanwise components, however, the
back-propagation algorithm that is used to train the networks works best when the error in
the prediction of three outputs (i.e. the three velocity components) has a similar magnitude
for all of them. Thus, the fluctuations are scaled as follows:

û = u, v̂ = v
urms

vrms

, ŵ = w
urms

wrms

, (2.9a–c)

where rms refers to root-mean-squared (r.m.s.) quantities. During inference (i.e. when the
predictions are computed from the inputs in the test dataset), the outputs of the network
are re-scaled back to their original magnitude. The network is trained to minimize the
following loss function:

LFCN(ûFCN; ûDNS) = 1

NxNz

Nx
∑

i=1

Nz
∑

j=1

∣

∣ûFCN(i, j) − ûDNS(i, j)
∣

∣

2
, (2.10)

which is the mean-squared error (MSE) between the instantaneous prediction ûFCN and
the true velocity fluctuations ûDNS, as computed by the DNS and scaled in the same way
as the network outputs. Training details are further discussed in Appendix A. The FCN
architecture is shown in figure 2. Each convolution operation (except for the last one) is
followed by batch normalization (Ioffe & Szegedy 2015) and a rectified-linear-unit (ReLU,
see Nair & Hinton 2010) activation function.

The chosen inputs and outputs allow the FCN to learn only the spatial relation between
the quantities at the wall and the fluctuations farther away from it. Note that it would
also be possible to consider predictions in time, and in that case convolutional neural
networks could be used (van den Oord et al. 2016) treating time as another spatial
coordinate, or it would be possible to use recurrent networks, specifically designed to
learn temporal sequences as we have recently shown with LSTM networks (Guastoni et al.

2019; Srinivasan et al. 2019). In both cases, the need for multiple samples in time makes
the model less flexible than one that relies only on spatial correlations, both during training
and testing. These models usually assume a constant sampling time for the data sequence,
which might be difficult to enforce, for example if the fields are taken from a numerical
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64 128
128

256 256

Figure 2. Schematic representation of the considered FCN architecture. The input fields are on the left (from
top to bottom: streamwise wall-shear stress, spanwise wall-shear stress and wall pressure) and the outputs are
on the right (from top to bottom: streamwise, wall-normal and spanwise fluctuations). The numbers indicate
the number of kernels applied to each of the layers. The kernels (not represented in the figure) have size (5 × 5)

in the first convolutional layer, and (3 × 3) in the subsequent layers. A darker colour corresponds to a higher
value of the represented quantity.

simulation with an adaptive timestep. During inference, models that work with sequences
would require input fields at different times to perform the prediction. On the other hand,
a single input sample is sufficient for the FCN to predict the output.

Input and output fields of the FCN model are obtained from a simulation with periodic
boundary conditions in the streamwise and spanwise directions. Such constraints could
be added to the loss function, however, this would imply that periodicity would only
be satisfied in a least-square sense and for this reason they are not used in the present
study. Instead, in our implementation we are able to strictly enforce periodicity in both
wall-parallel directions by leveraging the fact that the convolutional-network output is
deterministic and influenced only by the local information in the receptive field. In other
words, if the network receives a certain local input, the local output value will always
be the same, regardless of the local position within the input field. In order to have the
same values on both edges of the domain, the inputs fields are padded in the periodic
directions, i.e. they are extended on both ends, using the values from the other side of
the fields. The padding procedure is exemplified in figure 3, which highlights how the
information in the receptive field at the two ends of the domain is indeed the same. The
receptive field for this architecture is 15 × 15 points, hence 16 points are added to each
field in both streamwise and spanwise directions. Note that this padding would determine
a network output size that is slightly larger than the size of the velocity fields from the
DNS, and therefore the network output is cropped to match the size of the reference flow
fields. The padding involves a computational overhead due to the increased size of the
input fields, however, it is important to highlight that the padding is architecture dependent
and not input dependent, meaning that the input is ≈ 17 % bigger with a 192 × 192 field
resolution (at Reτ = 180), but only ≈ 6 % bigger when the fields have a size of 512 × 512
(at Reτ = 550).

2.5. POD-based predictions with convolutional neural networks

The FCN-POD model is built upon the previous work by Güemes et al. (2019). In the
present work a different neural-network architecture, a fully convolutional one, is used
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Figure 3. Example of padding of the input streamwise wall-shear-stress field. The solid blue line indicates the
size of the original field. The orange boxes show the information available to the FCN for the reconstruction of
a single point of the output fields, at both edges of the domain. A darker colour corresponds to a higher value
of the represented quantity.

Reτ Nf Nsx × Nsz Nt Np Nm Nr

180 40 320 12 × 12 5 806 080 256 768 64
550 15 936 32 × 32 16 318 464 256 768 128

Table 3. Description of the POD settings for the subdomain decomposition. Note that only the training set
has been used to compute the POD modes.

instead of a CNN. The network takes as inputs the wall-shear-stress and wall-pressure
fields as sampled from the DNS to predict the temporal coefficients of the POD modes in
each of the Nsx × Nsz subdomains in which the output velocity-fluctuation field is divided.
The advantage of this approach compared with directly decomposing the full field lies in
the fact that, in these subdomains, the first POD modes contain a very large fraction of the
total energy content. This is a direct consequence of including the energy of the structures
larger than the domain into the first POD mode (Liu, Adrian & Hanratty 2001; Wu 2014).
As a result, a lower number of modes is needed in each subdomain to reconstruct a large
fraction of the total energy, as shown in figure 5(a,c). The same amount of energy would
have been spread over a larger number of modes if the entire field had been considered at
once. The number of subdomains in each homogeneous direction, as well as the other
parameters of the POD for the two Reτ cases are reported in table 3. Further details
regarding the subdomain choice are provided at the end of this subsection.

Similarly to what was done for EPOD in § 2.3, the snapshot matrix U is assembled. The
most important difference is that in this case the total number of snapshots Nt is equal to
the number of instantaneous flow fields Nf times the number of subdomains per each flow
field (Nsx × Nsz × Nf ), and Np refers to the total number of grid points in one subdomain.
This organization of the snapshots implies that the spatial modes are assumed to be the
same for each individual subdomain. These POD spatial modes can be computed solving
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u(x, t) ≈Σψi(t)σiφi(x)

i = 1

i = 2

i = 3

i = Nr

Nsx

Nsz

Nsx

Nsz

ψi

Figure 4. Schematic representation of the encoding of turbulent-flow fields into target tensors of the network,
containing the temporal POD coefficients. When Reτ = 180, the flow field is divided into 12 × 12 subdomains
in the streamwise and spanwise directions respectively; a three-dimensional tensor is built, where the first two
dimensions correspond to the streamwise and spanwise position of the subdomain, while the third one accounts
for the number of POD modes to be predicted.

the eigenvalue problem of the spatial correlation matrix C as follows:

C = U
T

U = ΦTΛΦ, (2.11)

where Φ is a matrix the rows of which contain the spatial POD modes, while Λ is a
diagonal matrix with elements λi = σ 2

i , which represent the variance content of each
mode. The POD coefficients ψi(t) are obtained by projecting the flow fields on the spatial
POD modes computed with (2.11).

The economy-size decomposition just described returns a number of POD modes
Nm = 3Np. This implies that the flow field in each subdomain is represented with Nm

modes without approximation. On the other hand, the FCN-POD only predicts the POD
temporal coefficients corresponding to a limited number of modes, so each turbulent-flow
field is encoded using a tensor of size Nsx × Nsz × Nr, where Nr < Nm is the number POD
modes to be predicted on each subdomain, as illustrated in figure 4. This tensor contains
a set of Nr temporal POD coefficients for each subdomain in which the output flow field
is divided. Even if the spatial modes are the same for all the subdomains, the temporal
coefficient can have different values on the individual subregions, in order to provide a
faithful local reconstruction of the flow. In this regard, it is important to note that the
temporal coefficients for the subdomains are predicted together, and each subdomain is
receiving information from the surrounding ones through the convolutional operations.
This is a significant difference with the implementation in Güemes et al. (2019), where
subdomains were not required, having considered a smaller flow field. Furthermore, in the
previous cited work a different network is used to predict each mode, while in this study a
single network is used to predict the full set of POD coefficients.

The FCN-POD architecture considered here blends the FCN shown in figure 2 and the
network used by Güemes et al. (2019) (see figure 1 in that work). As in the FCN approach,
each convolution operation (except for the last one) is followed by batch normalization
(Ioffe & Szegedy 2015) and a ReLU (Nair & Hinton 2010) activation function. After each
activation function a max pooling layer is added. Differently from what was done in the
FCN approach, here and in the EPOD approach the output velocity components were
not scaled before the decomposition, in order to keep the physical encoding based on the
turbulent kinetic energy (TKE) of the flow. Note that by modifying the relative contribution
of the velocity components to the energy norm, the modes would have been sorted based
928 A27-14
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on a norm different from the TKE. The network is trained to minimize the loss function

LFCN-POD(ψPOD;ψDNS) = 1

NsxNszNr

Nsx
∑

i=1

Nsz
∑

j=1

Nr
∑

k=1

|ψPOD(i, j, k) − ψDNS(i, j, k)|2 ,

(2.12)
which is the MSE between the predicted and the actual POD temporal coefficients
of the DNS data. Similarly to the FCN, the predictions are performed at the same
instant as that of the input fields, hence the neural network does not require the
knowledge of the input at previous timesteps. Parameter settings for training are detailed
in Appendix A.

During inference, the velocity-fluctuation fields need to be reconstructed from the POD
temporal coefficients. For each subdomain, the Nr predicted POD temporal coefficients
are used to reconstruct the local fluctuation field within the subdomain. This is done with
the orthonormal basis functions retrieved from the training data, even at test time. The
underlying assumption is ergodicity, i.e. both the training and test datasets share the same
statistical features and, consequently, the same spatial modes. This requires a sufficiently
large training dataset to ensure convergence of the spatial modes, which is generally
ascribed to the convergence of second-order statistics. Once the velocity-fluctuation fields
are reconstructed within each subdomain, they are assembled together to provide the
full-domain prediction. Note that the tiling of the subdomains does not provide any
guarantee of smoothness across the edges of the subdomains because of the finite number
of modes that are used to reconstruct the flow and because of the prediction error in the
temporal coefficients.

As mentioned earlier, dividing the output velocity-fluctuation fields in subdomains
allows us to represent the flow in these subregions with a compact orthogonal basis, as
shown in figure 5(a,c). The energy distribution reported for the two Reτ cases is very
similar, only the energy distribution at y+ = 15 becomes slightly more compact for the
low-Reτ case. The size of the subdomains in the streamwise and spanwise directions is
roughly h × 0.5h for the Reτ = 180 case, and 0.4h × 0.2h at Reτ = 550. This is smaller
than the domain considered in the previous work by Güemes et al. (2019), where the
domain had size of h × h. The choice of the size of the subdomains is the result of
a compromise between network capability of reconstructing the majority of the energy
content of the flow and compression of the information. In particular, it is important to
reconstruct a significant portion of the total energy using a reduced number of modes.
As shown in figure 5(b,d), the first 64 POD modes account for 90 % of the total energy
at Reτ = 180, while 128 modes are needed at Reτ = 550 to retain a similar amount of
energy. Therefore our predictions are truncated at Nr = 64 and 128 for Reτ = 180 and
550, respectively. As larger and larger subdomains are considered, an increasing number
of modes would be needed to represent the same amount of energy. This would increase
the number of coefficients that have to be predicted by the FCN and since the temporal
coefficients of the less-energetic modes are difficult to correlate with the wall quantities
used as input, the use of larger subdomains can effectively hinder the network learning
process.

3. Results

The predictions of the trained models are compared with the data obtained from the DNS
at Reτ = 180 and 550. All the models use the same input data and predict the same
output fields, in an effort to provide a fair comparison. Other metrics, such as the number
of adjustable parameters, can be difficult to compare for different models. Furthermore,
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Figure 5. Distribution of (a,c) POD eigenvalues λi = σ 2
i (where i denotes mode number) and (b,d) cumulative

eigenspectra
∑i

j=1 λj normalized with the cumulative sum of the eigenvalues
∑Nm

j=1 λj of each case. The colour

refers to the wall-normal locations described in § 2.1, where darker colours indicate larger distance from the
wall. Note that (a,b) correspond to Reτ = 180, while (c,d) correspond to Reτ = 550. The solid black vertical
lines in (b,d) refer to the number of modes selected for prediction in this study.

a higher number of parameters may not translate immediately to a better performance,
as illustrated by Discetti et al. (2018) for the EPOD method. The performance
assessment is carried out first from a qualitative point of view and subsequently from a
quantitative perspective, based on predictions of instantaneous fields, turbulence statistics
and spectra.

3.1. Instantaneous predictions

The predicted fluctuation fields are first qualitatively inspected. Note that the fluctuation
flow fields are the direct output of the FCN models, while in the FCN-POD models the
temporal coefficients need to be processed to reconstruct the fluctuations, as outlined
above. In this work, the sampling period in the simulation is fixed, however, we showed in
our previous work (Guastoni et al. 2020) that using less correlated samples during training
(i.e. larger sampling period, that corresponds to a longer sampled time for the same number
of samples gathered) can effectively improve the quality of the instantaneous predictions
of the FCN method, provided that the neural-network capacity is sufficient to generalize
over the training dataset.

In figure 6, the predictions of an instantaneous field of streamwise velocity fluctuations
based on the various methods (namely FCN, FCN-POD and EPOD) are compared with
the reference DNS. The predictions of the wall-normal and spanwise fluctuations at the
same instant are shown in Appendix B. At y+ = 15 all the methods provide accurate
results, although the EPOD overestimates the fluctuations from the high-speed streaks.
At y+ = 30 such overestimation is reduced, although EPOD does not seem to reach a
level of accuracy comparable to the other two models. The CNN-based methods start to
exhibit some deviations with respect to the reference at y+ = 50, where the FCN-POD

928 A27-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

81
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.812


Wall-bounded turbulence from wall quantities

2.5

–2.5

0

2.5

–2.5

0

2.5

–2.5

0

2.5

–2.5

–5 0 5 –5 0 5 –5

3–3

0

0

5 –5 0 5

0

z/h

z/h

z/h

z/h

x/h x/h x/h x/h

E
P

O
D

F
C

N
-P

O
D

D
N

S
F

C
N

y+ = 15 y+ = 30 y+ = 50 y+ = 100(a) (b) (c) (d )

(e) ( f ) (g) (h)

(i) ( j) (k) (l)

(m) (n) (o) (p)

Figure 6. Comparison of the streamwise fluctuation fields at Reτ = 180, scaled with the corresponding urms,
from EPOD (a–d), FCN-POD (e–h), reference DNS (i–l) and FCN (m–p). Results at y+ = 15 (a,e,i,m), y+ = 30
(b,f ,j,n), y+ = 50 (c,g,k,o) and y+ = 100 (d,h,l,p).

field is smoother and the FCN is slightly noisier than the DNS. Farther from the wall,
the footprint of the large scales at the wall (through linear superposition, see Dogan et al.

2019) is less pronounced, and therefore the ability of EPOD (which is a linear method) to
predict the flow in this region is significantly reduced. In fact, the fields predicted through
EPOD at y+ > 15 are qualitatively very similar to the DNS, although the fluctuations
become increasingly attenuated at larger y+. Furthermore, the FCN-POD method tends
to merge neighbouring regions with high- or low-velocity fluctuations, predicting more
elongated streak-like patterns than in the reference field. This is more evident at y+ = 100,
leading to an overestimation of the amplitude of the regions in the flow where the velocity
fluctuations are higher. At this location, the FCN is not able to provide a reliable prediction
of the flow field, capturing only the regions in which the magnitude of the fluctuations is
higher. The corresponding structures probably have a distinct footprint at the wall, which
allows the FCN to identify them.

As discussed in § 2.5, the FCN-POD approach does not guarantee flow smoothness
across the edges of the subdomains. Close inspection of the predictions from the
FCN-POD method reveals the edges of the subdomains at all y+, and the tiling is more
evident in the streamwise direction because of the discontinuities located at the same
spanwise location, orthogonally to the main flow structures. Despite these limitations we
can observe that the velocity fields are generally smooth, without steep discontinuities at
the edges of the subdomains: the variations of the velocity magnitude at the edges are
of the same order as the fluctuations at the corresponding wall-normal distance. These
observations can be explained by the combination of two concurring elements. On one
hand, the first POD modes of each subdomain contain the energy of all the structures that
are larger than the individual subdomain. On the other hand, the temporal coefficients
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Figure 7. Mean-squared error in the instantaneous fields (scaled with the corresponding r.m.s. components)
predicted by the three models at Reτ = 180, for the streamwise (a), wall-normal (b) and spanwise (c) velocity
fluctuations.

of the POD modes are predicted for all the subdomains at the same time. These two
factors allow the FCN-POD network to predict the turbulent structures larger than a single
subdomain, also providing smooth transitions at the edges of the subdomains.

The qualitative observations discussed above are complemented with a quantitative
assessment of the instantaneous prediction performance, by analysing the MSE L between
the instantaneous predictions (denoted by ’Pred’) and the reference (defined for each of
the fluctuations independently), as shown in figure 7. The error in the streamwise velocity
fluctuations is defined as

L(uPred; uDNS) = 1

NxNz

Nx
∑

i=1

Nz
∑

j=1

|uPred(i, j) − uDNS(i, j)|2 , (3.1)

and similarly for the wall-normal and spanwise fluctuations. Note that the
velocity-fluctuation fields need to be reconstructed from the temporal coefficients in
POD-based models (FCN-POD and EPOD). Both neural-network models (FCN and
FCN-POD) are trained using a stochastic algorithm and, in order to show the robustness
of the optimal configuration, the statistics at each y+ are averaged over 3 different
models, with different initial random weight initializations. Since the EPOD algorithm
is completely deterministic, one single prediction is needed. The neural-network-based
models consistently provide a lower error than the EPOD, with the FCN yielding a slightly
better instantaneous performance closer to the wall than the FCN-POD approach. The gap
between the two is reduced when moving away from the wall, where the prediction error
of the streamwise fluctuations is approximately the same for both models at y+ = 50, and
it is slightly higher for the FCN at y+ = 100.

The FCN architecture reported by Guastoni et al. (2020) would only predict the
streamwise velocity component of the velocity field at the target y+. The addition of
the two other components implies that the FCN has multiple outputs that need to be
optimized at the same time. We note that adding the two additional fluctuating components
as outputs leads to slightly less accurate predictions with respect to those reported by
Guastoni et al. (2020) for one single output. This is not surprising, since the capacity of
the network remained unchanged, however, we tested a variation of the model architecture
based on this observation, in order to have more layers dedicated to the prediction of
each individual component. This network variation has a common part, identical to the
original FCN up to the fourth convolutional layer, in which the weights are optimized
using the information from the error gradients computed for all the outputs. The last
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two convolution operations are replicated for each velocity component and the weights
of these layers are updated only with the error associated with the respective output.
Such a network, despite its higher capacity, provided worse predictions. A strong causal
relation between the different components of the velocity (Lozano-Durán et al. 2020) can
be a possible explanation for this result, which shows that updating all the weights with
information from the three components at the same time can be beneficial for the quality
of the predictions. Note that it is not trivial to design an architecture able to provide the
best trade-off between single-component predictions and usage of the information from
all the components, and obtaining such an architecture would require further investigation.
For the FCN-POD model the multiple-component predictions were obtained as discussed
by Güemes et al. (2019). The temporal POD coefficients can be projected on spatial POD
modes involving the three velocity components, thus requiring only one output to predict
the three fluctuations. The network architecture is different than the one used by Güemes
et al. (2019), since it predicts directly all the needed time coefficients for each snapshot.
While the final fully connected layer included in the network architecture by Güemes et al.

(2019) improves the robustness of the prediction, the FCN-POD implementation used here
has a much smaller number of weights, thus significantly reducing the computational cost,
and retains a larger number of POD modes (and thus more energy).

Predictions of the streamwise fluctuation fields from the various methods at Reτ = 550
are shown in figure 8, while the results for the wall-normal and spanwise components are
presented in Appendix B. Despite the higher friction Reynolds number, the FCN maintains
a performance similar to the one achieved for Reτ = 180, at all wall-normal locations.
Note that the FCN has the same architecture as the lower-Reynolds-number case, i.e. it has
the same number of trainable parameters, while in the case of the FCN-POD approach, the
network was modified to reconstruct approximately the same amount of energy as at Reτ =
180. Despite the higher number of employed subdomains, the tiling is more apparent at
Reτ = 550. The prediction performance of the FCN-POD model degrades less quickly
than the FCN when moving away from the wall, however, the latter still performs better
at y+ = 50, as shown in figure 9. On the other hand, the EPOD also exhibits similar error
levels as those reported for Reτ = 180, except at y+ = 15, where the reconstruction of the
streamwise fluctuation field is significantly worse.

3.1.1. Inclination of coherent structures

The coherent structures in wall-bounded turbulence are inclined (Marusic & Heuer 2007),
with a slope that can be computed by finding the maximum spatial correlation Rij(δx)

between the inputs at the wall (index i) and the outputs (index j), with δx representing the
distance in the streamwise direction at which the correlation is computed. By including a
streamwise shift in the output fields, it is possible to obtain the maximum correlation at
δx = 0, ensuring that the footprint of the coherent structure is included in the receptive
field of the output. The use of such a shift was also discussed by Sasaki et al. (2019) in a
similar context. By considering the maximum correlation between the wall-shear stress in
the streamwise direction and the streamwise velocity at a certain y+, we obtain an angle

θshift = tan−1
(

arg maxδx R11(δx)

δy

)

≈ 11◦, (3.2)

at Reτ = 180, where δy indicates the considered distance from the wall. The obtained value
is slightly lower than previous observations (Marusic & Heuer 2007; Sasaki et al. 2019),
possibly because of the low Reynolds number. The inclusion of the shift information has
been tested using two alternative implementations: first, by modifying the target output
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Figure 8. Comparison of the streamwise fluctuation fields at Reτ = 550, scaled with the corresponding urms,
from EPOD (a–d), FCN-POD (e–h), reference DNS (i–l) and FCN (m–p). Results at y+ = 15 (a,e,i,m), y+ = 30
(b,f ,j,n), y+ = 50 (c,g,k,o) and y+ = 100 (d,h,l,p).
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predicted by the three models at Reτ = 550, for the streamwise (a), wall-normal (b) and spanwise (c) velocity
fluctuations.

field, i.e. considering a field that has been sampled later in the simulation, although the
accuracy of the introduced shift is limited by the value of the sampling period. The second
approach makes use of the periodicity of the output fields, which are translated in the
streamwise direction until the maximum correlation is obtained at δx = 0. This approach
allows us to more accurately introduce the shift, however, in this case the underlying
hypothesis is that the shift is sufficiently small so that the temporal dynamics modifies the
flow in a negligible manner. None of the two shift implementations provided the expected
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Figure 10. Comparison between the DNS (solid line) and the predictions of streamwise (a), wall-normal (b)
and spanwise (c) velocity fluctuations at Reτ = 180.

improvement, and we observed a significant degradation of the prediction performance.
These results could possibly be explained by the fact that coherent structures of different
size have different inclinations, and imposing a single value is detrimental for the overall
network performance, despite having chosen the angle that provides the maximum spatial
correlation. Furthermore, the quality of the predictions is measured using the MSE
between the prediction and the reference: this error indicator considers all wavelengths
at the same time, without considering how the different wavelengths are affected by the
shift. Further investigation of this aspect, also at higher Reτ , will be conducted in future
work.

3.2. Predictions of turbulence statistics

By averaging over the fields obtained from the neural-network models and EPOD, it
is possible to evaluate the turbulence statistics of the predicted flow. First we consider
the dataset at Reτ = 180: the predicted r.m.s. fluctuations of the three components are
shown in figure 10, together with the reference DNS profiles. The error in these statistical
quantities is defined as

E+
rms(u) =

∣

∣

∣
u+

rms,Pred−u+
rms,DNS

∣

∣

∣

u+
rms,DNS

, (3.3)

for the streamwise component, and similarly for the other two components. As above, the
subscripts ‘DNS’ and ‘Pred’ refer to the reference and predicted profiles, respectively.
An important premise is that neither of the neural-network-based models is explicitly
optimized to reproduce the statistics of the original simulation. This prevents the
neural networks from learning only the average behaviour of the flow, however, the
predictions may be less statistically accurate, with the aim of maximizing the instantaneous
performance. Note that here we favor instantaneous performance because our motivation
is to use non-intrusive sensing for closed-loop flow control.

The prediction errors in the various r.m.s. profiles are summarized in table 4, and they
are averaged over the different training runs for the FCN and FCN-POD models. Note that
the average is performed over the fluctuation-intensity values and not on the predictions,
because that would alter the statistical properties of the predicted flow fields. The
comparison of the errors from the different models shows that the statistical performance
mimics the one observed for the instantaneous predictions at y+ = 15 and y+ = 30, with
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E+
rms(·) (%) y+ = 15 y+ = 30 y+ = 50 y+ = 100

u EPOD 6.03 13.87 20.50 25.15
FCN 1.16 (±0.74) 6.79 (±1.31) 21.47 (±1.97) 50.82 (±2.19)

FCN-POD 4.70 (±0.02) 10.70 (±0.02) 20.15 (±0.03) 35.46 (±0.02)

v EPOD 11.68 18.89 23.97 28.10
FCN 1.74 (±1.00) 10.18 (±1.67) 26.66 (±0.76) 59.05 (±1.61)

FCN-POD 20.29 (±0.02) 22.32 (±0.02) 31.32 (±0.01) 51.48 (±0.04)

w EPOD 13.01 22.48 27.27 28.72
FCN 2.79 (±0.36) 9.65 (±1.07) 25.60 (±1.214) 59.59 (±1.310)

FCN-POD 8.50 (±0.04) 15.95 (±0.06) 28.38 (±0.004) 47.42 (±0.001)

Table 4. Percentage error in the prediction of the various r.m.s. fluctuations at the different wall-normal
locations. Results at Reτ = 180.

the FCN performing better than the FCN-POD and EPOD models. Furthermore, the FCN
model provides a similar performance for the fluctuations of all three velocity components,
while POD-based methods are more accurate in the predictions of u+

rms. This is related to
the choice of not scaling the different velocity components in the FCN-POD and EPOD
approaches, and the fact that near the wall the most energetic dynamical structures of the
flow are in the streamwise direction. Taking into account the standard deviation in the
results of the neural-network-based methods, the three models provide similar error levels
at y+ = 50. At y+ = 100 the scenario is opposite to what we observed close to the wall:
the FCN exhibits the highest errors, while the EPOD provides the best results. The error in
the prediction of u+

rms from the FCN-POD model is between those of the two other models,
while the wall-normal and spanwise intensities are closer to the errors from the FCN, due
the reasons outlined above.

The statistical analysis is repeated also for the models trained at Reτ = 550, with
the predicted r.m.s. fluctuations shown in figure 11 and the relative error with respect
to the reference simulation in table 5. FCN-based models do not show a significant
variation in the prediction of the streamwise fluctuations with respect to the results at
Reτ = 180, whereas the EPOD exhibits higher errors at this Reynolds number (also in
the other two fluctuating components). The FCN has a consistent behaviour also for
the fluctuations in the y- and z-directions, however, the FCN-POD performs slightly
worse than before, following the same trend but with higher error levels. The FCN-POD
method outperforms the FCN approach only at y+ = 100, confirming the results of the
instantaneous performance at Reτ = 550.

3.3. Predictions of power-spectral density

The energetic scales present in the predicted fields, as well as their associated energy, are
compared with those in the reference DNS data through spectral analysis. In figure 12
we show the pre-multiplied two-dimensional power-spectral density of the streamwise,
wall-normal and spanwise fluctuations (denoted by φuu, φvv and φww, respectively) at
Reτ = 180, where λx and λz denote the streamwise and spanwise wavelengths, whereas
kx and kz are the corresponding wavenumbers. These results confirm the observations
made in § 3.1: at y+ = 15, all the considered models are able to correctly predict the
energy content of the flow at all wavelengths, with the FCN slightly outperforming the two
POD-based approaches. Note that the FCN-POD model is able to reconstruct the energy
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Figure 11. Comparison between the DNS (solid line) and the predictions of streamwise (a), wall-normal (b)
and spanwise (c) velocity fluctuations at Reτ = 550.

E+
rms(·) (%) y+ = 15 y+ = 30 y+ = 50 y+ = 100

u EPOD 49.69 48.53 47.62 46.53
FCN 0.98 (±0.66) 8.10 (±0.62) 15.33 (±0.22) 33.06 (±0.30)

FCN-POD 7.53 (±0.27) 15.53 (±0.39) 20.75 (±0.85) 26.79 (±0.36)

v EPOD 51.57 49.13 48.13 48.07
FCN 1.74 (±0.11) 11.21 (±1.41) 24.20 (±1.38) 50.82 (±0.26)

FCN-POD 30.73 (±0.06) 35.20 (±0.09) 41.75 (±0.10) 53.04 (±0.18)

w EPOD 51.56 50.35 49.42 49.08
FCN 1.86 (±0.60) 9.03 (±0.31) 21.21 (±1.27) 51.83 (±0.38)

FCN-POD 15.74 (±0.05) 23.63 (±0.07) 31.97 (±0.10) 48.20 (±0.24)

Table 5. Percentage error in the prediction of the various r.m.s. fluctuations at the different wall-normal
locations. Results at Reτ = 550.

content of the flow at wavelengths that are longer than the size of the subdomains, proving
that this is not a limiting factor for the model. However, a small jump, probably due to
a lack of smoothness at the edges of the subdomains, can be observed in the streamwise
wavelength for the 10 %-energy level in the wall-normal and spanwise components. These
jumps are found at a wavelength λ+x ≈ 180, corresponding to the subdomain size. At
y+ = 30 there is a slight energy attenuation which becomes increasingly more noticeable
when the predicted flow is farther away from the wall. At y+ = 100 the POD-based
methods perform better than the FCN model, a fact that can be explained by considering
two concurring aspects: the first is that POD methods only predict the temporal dynamics
of the system, thus the overall energy-scale distribution stored in the POD spatial modes
does not need to be predicted. This allows reconstruction of more than 50 % of the flow
fields, at least in the streamwise component. The second aspect is the fact that the receptive
field from the FCN method, while sufficient for planes closer to the wall, is not large
enough to reproduce the large scales present at larger y+.

Figure 13 reports the reference and predicted power-spectral densities at Reτ = 550.
As opposed to what was observed for the instantaneous predictions and the turbulence
statistics, the spectra highlight the differences and similarities between the models used
for the two Reynolds numbers. As noted above, the FCN architecture is the same for both
Reτ , however, this implies that the receptive field is smaller at higher Reynolds number
when it is measured in outer units. This can potentially help in the prediction of the small
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928 A27-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

81
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.812


Wall-bounded turbulence from wall quantities

λx
+

λz
+

102

102

103

103

λz
+

102

103

λz
+

102

103

λz
+

102

103

102

103

102

103

102

103

102

103

102

103

102

103

102

103

102

103

λx
+

102 103

λx
+

102 103

102 103 102 103 102 103

102 103 102 103 102 103

102 103 102 103 102 103

( j)

(i)

(k) (l )

(g) (h)

y+
ª

1
0
0

y+
ª

 5
0

y+
ª

 3
0

y+
ª

 1
5

kx kz φuu kx kz φvv
kx kz φww(b)(a) (c)

(e)(d ) ( f )
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10 %, 50 % and 90 % of the maximum DNS power-spectral density. Shaded contours refer to the reference data,
while contour lines refer to (orange dashed dotted line) FCN, (blue dashed line) FCN-POD and (green dotted
line) EPOD predictions, respectively.
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scales, but it can also be detrimental for the larger scales. Note that the different size
of the receptive field does not seem to affect the predicted energy content of the FCN,
which shows the same trends as for the low-Reτ case. On the other hand, the spectra of the
FCN-POD with 12 × 12 subdomains (the same amount as in the low-Reτ case, not shown)
exhibit spurious periodic peaks due to the tiling. This observation motivated the increased
number of subdomains considered at Reτ = 550. As in the low-Reτ case, the FCN-POD
approach is able to reconstruct the scales larger than the subdomain size, but the contour
line exhibits a small jump in the streamwise wavelength for the 10 %-energy level. This
jump appears at a wavelength λ+x ≈ 200, corresponding to the subdomain size employed in
the high-Reτ case. This jump is also appreciated in the streamwise component at y+ = 15.
The POD-based approaches are outperformed by the FCN in the range of y+ = 15–50.
Farther from the wall, the accuracy of the FCN is matched by the FCN-POD method. It
is interesting to note that the EPOD does not follow the same attenuation process as the
FCN-based methods in the wall-normal and spanwise components. As one moves farther
from the wall, the FCN-based methods fail to reproduce a wider range of small scales,
whereas the EPOD exhibits more difficulties predicting the large scales. When it comes
to the spectral peaks far from the wall, while the FCN-based methods produce noisier
predictions than in the low-Reτ case, the EPOD is not able to reproduce that part of the
spectra. Taking inspiration from the FCN-POD approach, it might be possible to improve
the EPOD performance by considering a local estimation on the subdomains, blended with
a global estimation on the entire flow field. However, the way these two estimations should
be combined is not trivial and this approach is left for future studies.

4. Transfer learning

A number of more advanced techniques have also started to be adopted from the
specialized machine-learning literature and applied to fluid-dynamics research. One
notable example is transfer learning (Pan & Yang 2009), a method that allows the transfer
of knowledge from one neural-network model to another one, thus reducing the amount
data and time required for training. Guastoni et al. (2020) showed that the training time
at a given wall-normal location may be significantly reduced if the network parameters
are initialized using the optimized parameters of a previously trained network at another
wall-normal location. Similarly, Kim & Lee (2020) used the convolutional network trained
at a low Reynolds number to predict the flow at a higher Reynolds number.

Transfer learning represents an appealing solution for the main drawback of neural
networks, which is the need to train them with a sufficient amount of data. Training
typically requires specialized hardware and in our specific application the computational
cost of generating the training and test datasets is not negligible. Furthermore, this cost
grows as Reτ increases, making the generation of training data through DNS unfeasible
at the Reynolds numbers that are relevant for engineering applications. In this regard, it
is important to make an efficient use of the data and the trained models at our disposal.
In this work, the possibility of transferring knowledge between models trained at different
friction Reynolds numbers is investigated. At a fixed wall-normal distance, the weights of
the FCN model trained on the dataset at Reτ = 180 are loaded before training the network
with the higher-Reτ dataset. This is possible because the network has the same number of
trainable parameters in both cases, as noted above. The learning rate is the only parameter
that needs to be modified: a lower value has to be set, in order to prevent the optimizer
from diverging too quickly from the weight configuration used for initialization. While in
Guastoni et al. (2020) we froze the first layers of the initialized network because the input
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Figure 14. Validation (solid line) and test (dashed line) loss in the FCN prediction at (from left to right, top
to bottom): y+ = 15, 30, 50 and 100. Orange represents the models trained with the full dataset and random
initialization, grey the models trained with the full dataset and initialized with previously trained networks,
pink and brown represent models initialized with the parameters from the Reτ = 180 network, trained with
50 % and 25 % of the original dataset, respectively.

was the same at the different wall-normal locations, in this case all the layers are trainable
because the input distribution changes from one Reτ to the other one.

The transfer-learning numerical experiments that follow are designed with two
objectives in mind. First, we investigate the effect of using the parameters of previously
trained model to initialize a model that will be trained at a different target Reτ than the
first model. Second, we verify whether the non-random initialization that we described
can potentially improve the training process, reducing the amount of data at higher Reτ

that is needed to achieve the same performance of a model trained from scratch, using
the entire training/validation dataset, as we did in § 3. To this end, we initialized a FCN
model with the parameters learnt on the Reτ = 180 dataset and we trained such model
on the full training/validation datasets at Reτ = 550. Subsequently, the same initialization
is used for models that are trained on a reduced dataset at Reτ = 550, namely 25 % and
50 % of the full dataset. Differently from the previous sections, only one training run was
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E+
rms(·) (%) y+ = 15 y+ = 30 y+ = 50 y+ = 100

u Ref. 0.98 (±0.66) 8.10 (±0.62) 15.33 (±0.22) 33.06 (±0.30)

100 % 1.22 7.15 16.09 32.75
50 % 2.94 7.11 16.33 34.11
25 % 1.15 7.74 14.78 33.78

v Ref. 1.74 (±0.11) 11.21 (±1.41) 24.20 (±1.38) 50.82 (±0.26)

100 % 1.86 9.40 24.40 51.59
50 % 2.40 9.46 25.96 50.90
25 % 1.71 11.33 23.15 50.43

w Ref. 1.86 (±0.60) 9.03 (±0.31) 21.21 (±1.27) 51.83 (±0.38)

100 % 1.75 8.65 21.05 53.04
50 % 2.61 7.70 21.34 52.60
25 % 1.22 9.67 20.35 49.75

Table 6. Percentage error in the prediction of the various r.m.s. fluctuations at the different wall-normal
locations from models initialized with parameters from the Reτ = 180 FCN. The statistics of the different
initialized models are computed after 250 000 updates, and they are shown together the models with full dataset
and random initialization, which is included as a reference. Results at Reτ = 550.

performed for each case. In order to compare models trained with datasets of different
sizes, we considered the number of weight updates through the optimization algorithm
during training. In figure 14 the validation and test losses are compared for the models
trained with the full dataset and a random initialization. When the initialized model is
trained on the full dataset, the performance is consistently better than that of the random
initialization, both in terms of validation and test loss. The improvement is more evident
close to the wall, whereas at y+ = 100 the two models provide approximately the same
results after the first 150 000 updates. Transferring knowledge between different Reynolds
numbers is then not only feasible, but also advantageous in terms of performance when
the same amount of data is considered. Note that we kept the same ratio (4 : 1) when
dividing training and validation sets even when the size of the dataset was reduced. In
particular, when 50 % or 25 % of the samples are used, the validation set becomes too
small to provide a reliable estimate of the error. On the other hand, the size of the test
dataset is the same as the previous experiments. Up to y+ = 50, the initialized networks
are able to provide a performance that is very similar to that of the reference model with
the same number of updates, with significant savings in terms of amount of data needed to
train the network. On the other hand, at y+ = 100 a sufficient number of samples becomes
a necessary condition to ensure the convergence to an optimal configuration: the loss of the
network trained with 50 % of the training dataset does not improve after the first 100 000
updates, while with 25 % of the original dataset the network exhibits overfitting. The
initialized models are able to provide a comparable accuracy also from the statistical point
of view, as reported in table 6. We stress once again that the networks are not explicitly
optimized to reduce the error in the statistics and that small variations in these error figures
can be ascribed to the stochastic nature of the optimization algorithm. Overall, these
results demonstrate the feasibility of knowledge transfer from models at different Reτ :
with careful tuning of the hyperparameters it should be possible to substantially reduce
the training time, as well as the amount of data needed for training. Although not tested,
the transfer between different wall-normal locations described in Guastoni et al. (2020) is
still applicable in this case, thus enabling a more efficient prediction of the flow at different
wall-normal locations.
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5. Conclusions

In this work, we introduced and compared two different models based on fully
convolutional neural networks, for prediction of the velocity fluctuations at a given
wall-normal distance, using quantities measured at the wall as inputs. The FCN and
FCN-POD models are improved versions of previous architectures, used by Guastoni et al.

(2020) and Güemes et al. (2019), respectively. Both of them are able to provide predictions
in very good agreement with the reference data, simulated by means of the pseudo-spectral
DNS code SIMSON (Chevalier et al. 2007), up to y+ = 50. Such an agreement is verified
by comparing the error in instantaneous predictions, turbulence statistics (namely r.m.s.
fluctuations) and the energy content at the different wavelengths (i.e. spectral analysis).
Both models show better prediction capabilities than EPOD (which is a linear method)
in almost all the wall-normal locations and investigated features, thanks to their ability to
predict nonlinear scale interactions. Furthermore, we showed that these architectures can
be used at two different friction Reynolds numbers (Reτ = 180 and 550) with minimal
modifications, providing satisfactory results on both datasets.

The two models are designed under the assumption that local information at the wall
is sufficient to predict the flow farther away, however, the FCN-POD model partially
encodes further physical information of the system by using the spatial modes obtained
through POD of the training dataset. On the other hand, features like the periodicity of
the flow are enforced in the FCN by exploiting the mathematical characteristics of the
model. These architectural differences are associated with performance discrepancies at
the tested wall-normal locations; the FCN provides higher accuracy than the FCN-POD
model closer to the wall, i.e. up to y+ = 30 at Reτ = 180 and up to y+ = 50 at Reτ = 550.
Farther from the wall, the FCN-POD method produces the most accurate predictions. The
choice between these two models is motivated by the application into which the prediction
model is integrated.

Despite the encouraging results discussed here, both models can be improved in terms
of network architecture and training. An attempt to embed further physical information
into the FCN did not result in improved predictions, as reported in § 3.1.1. The correct way
of incorporating this information to enhance the predictions is an active area of research.
As another example, the high-frequency noise in the FCN predictions could be reduced
with appropriate filtering, possibly adding a trainable layer to the network to perform this
operation. The FCN-POD model has a higher number of hyperparameters to be set, such as
the number of predicted temporal modes or the size of the subdomains. A more thorough
inspection of the hyperparameter space may provide a significant improvement in the
prediction performance. Differently from the FCN, in the FCN-POD model the velocity
components are not scaled to have the same magnitude: such a modification could help to
predict the wall-normal and spanwise components of the velocity more accurately, even
though it would also modify the POD mode sorting because of the different energy norm.
Furthermore, the FCN-POD results exhibit lack of smoothness at the subdomain edges in
the flow predictions. Finally, both models are trained to minimize a loss function based
on the instantaneous error. Such a function could be modified to improve other physical
characteristics of the predicted flow, for example the turbulence statistics and the spectral
energy content.

To reduce the training time in view of industrial applications, the implementation of
transfer learning was tested for the FCN model. Transfer learning can exploit a network
trained at a lower Reynolds number to provide the weight initialization for training at a
higher Reynolds number, thus reducing the requirements in terms of training time and
data. The results are very encouraging, showing that it is possible to train the network with
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50 % and even 25 % of the original training dataset, obtaining a performance similar to
that of the reference model up to y+ = 50.

Once the neural networks are trained, they are computationally cheap to evaluate, and
they can become even cheaper by pruning the parts that have a negligible contribution to
the final result off the network. Such an operation is not possible a priori, since the training
determines how the inputs have to be processed to obtain the output. By reducing the
computational cost of the evaluation it is possible to deploy the model using low-powered
hardware and/or potentially run it in real time. Thus, the proposed FCN-based methods
could be used for non-intrusive sensing of the flow, which is needed for closed-loop
control applications. Furthermore, since the FCN models are able to reproduce nonlinear
interactions in wall-bounded turbulence, new promising avenues in turbulence research
could be opened by the network interpretation (Fan et al. 2021), as shown by Iten et al.

(2020), who demonstrated that neural networks can provide relevant physical insights.
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Appendix A

This appendix contains the training details of the neural-network models in the FCN and
FCN-POD method. Both models introduced in § 2 need to be tuned to perform optimally
on the chosen dataset. The networks were trained using the Adam (Kingma & Ba 2015)
optimization algorithm for 50 epochs, with a scheduled exponential learning-rate decay.
We used the optimizer hyperparameters suggested in the original paper, except the ǫ̂

parameter that was set to 0.1 following TensorFlow recommendations (Abadi et al. 2016).
The total number of trainable parameters in the FCN is 1 264 131 and it does not depend on
the Reτ of the dataset. On the other hand, this number is Reτ -dependent for the FCN-POD
model, as the number of subdomains and reconstructed POD modes changes. For the
Reτ = 180 case the number of trainable parameters is 4 733 248, while for the Reτ = 550
case it is 5 028 224.

For the FCN model the Reτ = 180 dataset, composed by input and output fields, has
a size of about 70 GB per wall-normal distance, while the Reτ = 550 dataset occupies
120 GB. Depending on the amount of available RAM it might not be possible to load
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Figure 15. Comparison of the wall-normal fluctuation fields at Reτ = 180, scaled with the corresponding
vrms, from EPOD (a–d), FCN-POD (e–h), reference DNS (i–l) and FCN (m–p). Results at y+ = 15 (a,e,i,m),
y+ = 30 (b,f ,j,n), y+ = 50 (c,g,k,o) and y+ = 100 (d,h,l,p).

the entire dataset in memory, however, our implementation does not require to load it at
once, allowing training on less-performing computer as well. The training was performed
on two different GPUs, namely NVIDIA K80 and NVIDIA RTX2080Ti. The former has
24 GB of GPU memory, whereas the latter only 12 GB. The turbulent field snapshots have
a comparatively high resolution with respect to the samples used in image processing
and the GPU memory can also be a limiting parameter. For a given dataset, the amount
of memory that is allocated on the GPU depend on the batch size, that is the number
of samples used to estimate the loss function gradient at each update of the learnable
parameters of the network. In the Reτ = 550, the batch size is limited to 2 samples when
the faster RTX2080Ti is used. With this setting the gradient approximation might be too
noisy and the training performance might be degraded, therefore we suggest using at least
a batch size of 4, using two RTX2080Ti GPUs.

Due to the reduced-order nature of FCN-POD method, the size of the training/validation
datasets is lower: 40 GB for Reτ = 180 dataset and 70 GB for Reτ = 550 dataset. Thanks
to the max pooling operations that are not present in the FCN model, the size of the tensors
allocated on GPU is smaller and this allows training of the model with a batch size of 8
for both datasets.

Appendix B

This appendix contains the wall-normal and spanwise fluctuations corresponding to the
fields shown in figures 6 and 8 for Reτ = 180 and 550, respectively. If we observe
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Figure 16. Comparison of the spanwise fluctuation fields at Reτ = 180, scaled with the corresponding wrms,
from EPOD (a–d), FCN-POD (e–h), reference DNS (i–l) and FCN (m–p). Results at y+ = 15 (a,e,i,m), y+ = 30
(b,f ,j,n), y+ = 50 (c,g,k,o) and y+ = 100 (d,h,l,p).
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Figure 17. Comparison of the wall-normal fluctuation fields at Reτ = 550, scaled with the corresponding vrms,
from EPOD (a–d), FCN-POD (e–h), reference DNS (i–l) and FCN (m–p). Results at y+ = 15 (a,e,i,m), y+ = 30
(b,f ,j,n), y+ = 50 (c,g,k,o) and y+ = 100 (d,h,l,p).
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Figure 18. Comparison of the spanwise fluctuation fields at Reτ = 550, scaled with the corresponding wrms,
from EPOD (a–d), FCN-POD (e–h), reference DNS (i–l) and FCN (m–p). Results at y+ = 15 (a,e,i,m), y+ = 30
(b,f ,j,n), y+ = 50 (c,g,k,o) and y+ = 100 (d,h,l,p).

the wall-normal fluctuations at Reτ = 180 in figure 15, the FCN model provides better
predictions than POD-based methods at y+ = 15. The tiling of the subdomains is more
apparent in the FCN-POD predictions, while the EPOD predictions contain small features
that are not present in the DNS reference field. Similar observations can be made at
y+ = 30. As we move farther away from the wall, at y+ = 50, the accuracy of the
neural-network-based models is similar. For the FCN-POD the flow features in the
streamwise direction appear smoothed out with respect to the DNS fields; on the other
hand, the same features have more jagged edges in the FCN predictions, possibly as a
consequence of the localized nature of the predictions. As observed for the streamwise
velocity fluctuations, the performance degrades as we move farther away from the wall.
Note that some features are completely missing in the EPOD predictions, due to the fact
that the three velocity components are predicted at the same time. From the observation
of figure 16, which shows the spanwise fluctuation predictions, the behaviour of the three
methods is similar to the one in the wall-normal components. Note, however, that, closer
to the wall, the FCN-POD provides more accurate predictions for the spanwise fluctuation
component than for the wall-normal component, as can be observed in figure 7.

When a higher Reynolds number is considered, the error trends of the
neural-network-based models in figure 9 are comparable to the one observed at Reτ = 180,
for the wall-normal and spanwise fluctuations. On the other hand, the EPOD predictions
improve when moving from y+ = 15 to y+ = 30, before the performance starts degrading
as we move farther from the wall. Additionally, figures 17 and 18 show that, close to
the wall, the intensity of the fluctuations in the wall-normal and spanwise direction is
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significantly underestimated by the POD-based methods, when compared with FCN. As
the wall-normal distance increases, the fluctuations range predicted by the FCN reduces
as well and at y+ = 100 the range is comparable for all three methods.
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