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an affinity graph using a convolutional network (CN) trained using
ground truth provided by human experts. The CN affinity graph can be
paired with any standard partitioning algorithm and improves segmenta-
tion accuracy significantly compared to standard hand-designed affinity
functions.

We apply our algorithm to the challenging 3D segmentation problem of
reconstructing neuronal processes from volumetric electron microscopy
(EM) and show that we are able to learn a good affinity graph directly
from the raw EM images. Further, we show that our affinity graph im-
proves the segmentation accuracy of both simple and sophisticated graph
partitioning algorithms.

In contrast to previous work, we do not rely on prior knowledge in the
form of hand-designed image features or image preprocessing. Thus, we
expect our algorithm to generalize effectively to arbitrary image types.

1 Introduction

Image segmentation algorithms aim to partition pixels into domains corre-
sponding to different objects. Graph-based algorithms solve the segmenta-
tion problem by constructing and then partitioning an affinity graph where
the nodes correspond to image pixels or image regions. Edges between im-
age pixels are weighted and reflect the affinity between nodes. Affinity func-
tions used to compute the edge weights are traditionally hand-designed
and use local image features such as image intensity, spatial derivatives,
texture, or color to estimate the degree to which nodes correspond to the
same segment (Shi & Malik, 2000; Fowlkes, Martin, & Malik, 2003). In this
letter, we have pursued a different approach, which is to use learning to
generate the affinity graph. Using a machine learning architecture known
as a convolutional network (LeCun et al., 1989) and ground truth segmen-
tations generated by human experts, we train a function that maps a raw
image directly to an affinity graph. This learned affinity graph can then be
partitioned using any standard partitioning algorithm.

It has been recognized for some time that the performance of a graph-
based segmentation algorithm can be hampered by poor choices in affinity
function design. To this end, there has been a limited amount of prior work
on learning affinity functions from training data sets. Much prior work has
been confined to estimating affinities by classifying carefully chosen hand-
designed image features, which are often image domain specific (Fowlkes
et al., 2003). This may have been for lack of a good image processing ar-
chitecture that can discover the appropriate features directly from the raw
image. Here, we present a new approach using convolutional networks.
With a rich architecture possessing many thousands of free parameters, it
can in principle extract and effectively utilize a huge variety of image fea-
tures. We demonstrate in practice that a gradient descent procedure is able
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to adjust the many parameters of the network to achieve good segmentation
performance. Since our approach does not contain image-domain-specific
assumptions, we expect it to generalize to images from diverse application.

We have conducted quantitative performance tests on a database of elec-
tron microscopic brain images described below. The tests demonstrate a
marked improvement in the quality of segmentations resulting from parti-
tioning our learned affinity graph versus commonly used heuristic affinity
functions.

We consider the segmentation of neural processes, such as axons, den-
drites, and glia, from volumetric images of brain tissue taken using serial
block-face scanning electron microscopy (SBF-SEM; Denk & Horstmann,
2004). This technique produces 3D images with a spatial resolution of
roughly 30 nm or better (see Figure 1A). If applied to a tissue sample of
just 0.5 mm × 0.5 mm × 1.2 mm from the cerebral cortex, the method
would yield a 3D image of several tens of teravoxels. Such a volume would
contain about 15,000 neurons and many thousands of nonneuronal cells
(Smith, 2007). Neurons are particularly challenging to segment due to their
highly branched, intertwined, and densely packed structure. In addition,
at the imaging resolution, axons can be as narrow as just a few voxels
wide (Briggman & Denk, 2006). The sheer volume and complexity of data
to be segmented preclude manual reconstruction and make automated re-
construction algorithms essential. Small differences in segmentation per-
formance could lead to differences in weeks to months of human effort to
proofread machine segmentations.

Prior work on electron and optical microscopic reconstruction of neu-
rons has ranged the spectrum from completely manual tracing (White,
Southgate, Thomson, & Brenner, 1986; Fiala, 2005) to semiautomated
interactive methods (Liang, McInerney, & Terzopoulos, 2006; Carlbom,
Terzopoulos, & Harris, 1994) and fully automated methods (Mishchenko,
2009; Helmstaedter, Briggman, & Denk, 2007; Jurrus et al., 2009; Andres,
Köthe, Helmstaedter, Denk, & Hamprecht, 2008). White et al. (1986) took
over 10 years to complete the manual reconstruction of the entire nervous
system of a nematode worm C. elegans, which contains only 302 neurons,
underscoring the need for significant automation. Most attempts at automa-
tion have involved hand-designed filtering architectures with little machine
learning (Vasilevskiy & Siddiqi, 2002; Al-Kofahi et al., 2002; Jurrus et al.,
2009; Mishchenko, 2009; Andres et al., 2008). For example, Jurrus et al. (2009)
first do an extensive denoising procedure, followed by an initial 2D segmen-
tation and then a Kalman filter to track an object outline through successive
sections. Carlbom et al. (1994) adapted the widely used active contour
(snakes) technique for semiautomated neuron tracing. However, this pro-
cess is interactive and requires human selection of seed points and careful
controlling of parameters for each neuron to be segmented. In contrast to
these approaches, Helmstaedter et al. (2007) use supervised learning in the
form of a nearest-neighbor classifier to segment expectation-maximization
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Figure 1: (A) View of 3D stack of images generated by serial block-face scanning
electron microscopy (SBF-SEM). Tissue is from the outer plexiform layer of the
rabbit retina. The total volume is 800 × 600 × 100 voxels corresponding to 20.96
× 15.72 × 5 μm3. (B) Larger view of a section from this volume. The region
traced by humans is divided into training and test sets, shown in green and
blue. Some of the large gray objects are axon terminals of light-sensitive rod
cells, while many of the smaller, brighter objects are dendrites. (C) Original
images and human tracings of two sections, each 100 × 100 × 100 voxels,
where each color indicates a different process. Red arrows indicate challenging
regions for segmentation algorithms. In section 22 (top), the boundary between
two processes is faint, yet these processes are segmented as different objects. In
section 38 (bottom), some processes become very small, less than 10 voxels in
area through this section.
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Figure 2: The convolutional network architecture used for our experiments
contains four layers of convolutions with six feature maps each and three output
images. Each node is an image, and each edge represents convolution by a filter.

(EM) images, eliminating the need for human interaction and parameter
tuning. Other popular segmentation methods make use of Markov random
fields (MRFs). Convolutional networks are closely related to but provide
superior performance to MRFs, as explained in our prior work (Jain et al.,
2007).

The paper is organized as follows. We first define convolutional networks
in section 2. Section 3 describes the structure of the affinity graph and how
we apply convolutional networks to produce this graph directly from the
raw image. In section 4 we present results from various network architec-
tures and graph partitioning algorithms and quantitatively evaluate the
results against human labeled ground truth. We conclude in section 5 with
some future directions, and the three appendixes give algorithmic details
and performance metrics.

2 Convolutional Networks Are a Powerful Image Processing
Architecture

Neural networks (NN) have been long used for image processing applica-
tions (Egmont-Petersen, de Ridder, & Handels, 2002; Sinthanayothin, Boyce,
Cook, & Williamson, 1999; Nekovei & Sun, 1995). Although convolutional
networks (CNs) are closely related to NNs, here we simply define CNs
without explaining the relationship. A detailed explanation can be found
in appendix A.

Formally, a CN is defined on a directed graph as in Figure 2. (The di-
rected graph representing a CN must not be confused with the undirected
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affinity graph.) The a th node of the graph corresponds to an image-valued
activation Ia and a scalar-valued bias ha , and the edge from node b to a
corresponds to the convolution filter wab . In addition, there is a smooth
activation function, often the sigmoid f (x) = (1 + e−x)−1. The images at
different nodes are related by

Ia = f

(

∑

b

wab ∗ Ib + ha

)

. (2.1)

The sum runs over all nodes b with edges into node a . Here wab ∗ Ib rep-
resents the convolution of image Ib with the filter wab . After adding the
bias ha to all pixels of the summed image, Ia is generated by applying the
element-wise nonlinearity f (x) to the result.

The CNs studied in this letter are based on graphs with nodes grouped
into multiple layers. In an image processing application, the first layer
typically consists of a single input image. The final layer consists of one or
more output images. In our case, we shall generate several output images—
one image for each edge class in the nearest-neighbor graph (see Figure 3A).
The intermediate or hidden layers also consist of images, or feature maps,
which represent the features detected, and are the intermediate results of
the overall computation.

The filters wab and the biases ha constitute the adjustable parameters
of the CN. Features in the image are detected by convolution with the
filters wab . Thus, learning the filters from the training data corresponds to
automatically learning the features that are most useful to the classifier. The
role of the values ha is to bias the network for or against the detection of
the features. The training procedure for ha can be thought of as finding the
correct a priori belief as to the existence of certain features in the image.

The well-known error backpropagation algorithm for training NNs can
be easily generalized for training wab and ha in a CN (LeCun, Bottou, Bengio,
& Haffner, 1998; LeCun, Bottou, Orr, & Muller, 1998). This gradient descent
procedure minimizes a cost function that measures the discrepancy between
the output image produced by the CN, IO, and a desired output image I d

O,
L(IO, I d

O) =
∑

pixels
1
2
(IO − I d

O)2. The gradient of the CN parameters with
respect to this cost function can be computed using the following equations:

SO =
(

IO − I d
O

)

⊙ f ′(IO)

Sb =

(

∑

a

Sa ⊛ wab

)

⊙ f ′(Ib) (2.2)

�wab = ηIa ⊛ Sb

�ha = η
∑

pixels

Sa .
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These equations implement an efficient recursive gradient computation that
gives the backpropagation algorithm its name. While equation (2.1) imple-
ments a recursive computation where information flows in the direction
indicated by the directed edges of the CN graph, the recursion in equa-
tion 2.2 progresses in the opposite direction. The sum in this equation is
over all edges leading out of a given node b. Here Sa ⊛ wab represents the
cross-correlation of the image Sa with the filter wab , ⊙ a pixel-wise im-
age multiplication operation and f ′(x) the derivative of the nonlinearity
f (x). The size of the gradient update at each iteration is controlled by the
constant η.

In the past, convolutional networks have been successfully used for im-
age processing applications such as object recognition, handwritten digit
classification, and cell segmentation (LeCun et al., 1989; Ning et al., 2005).
For recognition tasks, the network is trained to produce a categorical classi-
fication, such as the identity of the digit. In the cell segmentation application
(Ning et al., 2005), a CN produces five outputs (such as cell wall, nucleus,
outside medium) for every input pixel. In our case, we use these networks
to perform a nonlinear transformation that maps one 3D image to a set of
other 3D images. There are two important contrasts between our work and
that of Ning et al. (2005). First, our architecture does not include subsam-
pling layers, which means that all filters at every layer are learned, rather
than some layers containing predefined down-sampling filters. This leads
to output images that are at the same resolution as the input image. Second,
we use these networks to generate a nearest-neighbor graph, where the
number of edges is proportional to the size of the image. This allows our
networks (in combination with a graph partitioning algorithm) to segment
objects that may have no boundary pixels separating them (in contrast to
Ning et al., 2005, which would require at least one pixel separation between
adjacent objects). This is important in our application, where we are severely
resolution limited when compared to the thickness of cell boundaries and
neurites.

3 Using Convolutional Networks to Generate an Affinity Graph

Figure 3 illustrates the computational problem solved in this letter using
convolutional networks. We wish to map an input image to a set of affinities
corresponding to the edges of an affinity graph. The nodes of the graph
represent image voxels, which form a three-dimensional cubic lattice. There
are edges between all pairs of nearest neighbors. Each node is connected
to six neighbors in the x, y, and z directions, as shown in the right side
of Figure 3A. Since each edge is shared by a pair of nodes, there are three
times as many edges as nodes. As shown in Figure 3A, we can think of the
affinity graph as three different images, each representing the affinities of
the edges of a particular direction. Therefore, the problem can be seen as
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Figure 3: (A) Creating the affinity graph using a convolutional network. The
input to the network is the 3d EM image and the desired output is a set of 3D
images: one each for the x, y, and z directions representing the affinity graph.
(B) The edges of the nearest-neighbor affinity graph form a lattice. (C) Desired
affinities for a set of three segments (gray). Edges contained within a segment
have desired affinity 1 (green for x edges and red for y edges). Edges not
contained within a segment have desired affinity 0, implying that boundary
voxels are disconnected from themselves.

the transform of one input image into three output images representing the
affinity graph.

Ultimately our goal is to generate an image segmentation. This is accom-
plished by using a graph-partitioning algorithm to cut the affinity graph
into a set of discrete objects. This partitioning segments the image by cutting
weak affinity edges to create clusters of nodes corresponding to different
image segments. The computational problem of segmentation thus involves
two steps: the transformation of the input image into an affinity graph and
then the partitioning of this graph into a segmentation. The quality of a seg-
mentation can be improved by generating affinity graphs that accurately
indicate segment boundaries.
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We define the desired affinity graph as a same-segment indicator func-
tion. Edges between nodes in the same segment have value 1, and edges
between nodes not contained in the same segment have value 0 (see Fig-
ure 3C). Further, boundary voxels are also defined to have 0 affinity with
each other. This causes boundary voxels to form separate segments; this is
a subtlety in our definitions that leads to a more robust segmentation. If
reproduced faithfully, this affinity graph should lead to perfect segmenta-
tion, since the graph can be easily partitioned along segment boundaries. It
should be noted, however, that this is only one of many affinity graphs that
are capable of yielding perfect segmentation.

4 Results

In this section, we first demonstrate the ability of convolutional networks to
produce affinity graphs directly from the images. We find that after training,
our CN is able to correctly predict the affinity between two voxels about
90% of the time. This is comparable to the level of agreement between two
humans concerning object boundaries. We then test the segmentation per-
formance of this affinity graph using two graph-partitioning algorithms: the
well-known normalized cuts and a simpler connected-components method.
The segmentation using our affinity graph is dramatically better than with
a standard affinity graph; this is quantified using three different segmenta-
tion metrics and compared against interhuman variability in segmentation
by experts. We also find that our improved affinity enables partitioning
by connected components to be more accurate at segmentation than the
normalized cuts algorithm. This is a pleasant surprise, as connected com-
ponents also run much faster than normalized cuts.

4.1 About the Data Set. We use images of retinal tissue collected
with the serial block-face scanning electron microscope (SBF-SEM; Denk
& Horstmann, 2004). We imaged a volume of dimension 21 × 15.6 × 5 μm3,
corresponding to 800 × 600 × 100 voxels at a resolution of 26 × 26 × 50 nm3

(see Figure 1A). Cell bodies compose the majority of the volume at the sides,
while much smaller neurites are more common in the center. To focus on
neurites, a central region of 320 × 200 × 100 voxels was selected for inves-
tigating automated segmentations (see Figure 1B). A subvolume of 100 ×
100 × 100 voxels was completely segmented by two human experts who
traced the contours of all objects within this volume (see Figure 1C). These
segmentations were converted into desired affinity graphs, as described in
section 3, and half the volume was used for training and the other half
for testing. While we refer to human tracings as ground truth, it should be
noted that there is disagreement among experts on the exact placements
of boundaries. This variability is used in our analysis to suggest a baseline
interhuman error rate. Figure 1C highlights some of the difficult regions typ-
ical of those encountered in these data (red arrows). In z section 22 (upper
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Figure 4: Performance of the convolutional network at predicting affinity be-
tween individual voxels. (A) Approximately 10% of the affinities are misclassi-
fied in the test set. (B) A more thorough quantification of the continuous-valued
CN output using precision-recall curves (see appendix C) as in Martin et al.
(2004) shows good performance (higher F-scores and curves closest to the up-
per right are superior).

panel), the boundary between two objects is very faint, which could lead
to an incorrect merge of these processes. Section 38 (lower panel) shows
objects packed closely together with small cross-sections, which can be as
few as four voxels per section. These processes could be split by incorrect
labeling of only a few voxels. Since such splits and mergers are important
properties of the resulting segmentations, we have developed metrics to
quantify them (see appendix C).

4.2 Convolutional Networks Can Be Trained to Produce High-Quality
Affinity Graphs. Convolutional networks are trained using backpropa-
gation learning to take an EM image as input and output three images
representing the desired affinity graph. The gradient descent procedure is
detailed in section B.1.

Our CN has an architecture with three hidden layers, each containing
six feature maps. All filters in the CN are of size 5 × 5 × 5, but since CN
contains four convolutions between input and output, a single output voxel
is a function of a 17 × 17 × 17 voxel region of the input image.

After gradient-based training, the performance of the network at gener-
ating affinities can be quantified by measuring the classifier error at each
edge as compared with target affinities generated from the human seg-
mentations. The optimal threshold for classification is chosen by optimiza-
tion with respect to the training set. To demonstrate generalization, we
quantify these results on both the training and test image volumes. The
classifier error on this test image is quantified in Figure 4A, showing that
approximately 90% of the edges are classified correctly. Figure 4B quan-
tifies the performance at edge classification using a precision-recall curve
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(Van Rijsbergen, 1979; Martin, Fowlkes, & Malik, 2004). The curve shows
how the classification performance changes as the threshold is varied from
a high value (left) to a low value (right). The definitions of precision and
recall are given in section C.1. Here it is enough to know that perfect per-
formance would be a curve close to the upper and right boundaries of
the graph. The precision-recall curve is sometimes summarized by a single
number, the F -score, which equals 1 for perfect performance. As in Martin
et al. (2004), we present the precision-recall curve for classification of the
rarer class of boundary edges. In our representation, this corresponds to the
precision and recall of negative examples.

From Figure 4B, we can see that the absolute performance of the CN net-
work is encouraging. This demonstrates that it is possible to apply machine
learning to image segmentation without using hand-selection of features.
The CN has an input dimensionality of 4913 voxels and 12,021 free pa-
rameters. In spite of the large number of parameters, there appears to be
little overfitting, given that performance on the test set is comparable to
the training results. The lack of overfitting may be due to the large size of
the training set—about half a megavoxel. This could be viewed as half a
million examples of the affinity graph generation task, though this estimate
is a bit misleading since the examples are not statistically independent. In
contrast, other machine learning approaches to segmentation have relied
on specially selected features and used learning only to optimize the com-
binations of these features. For example, Fowlkes et al. (2003) use classifiers
with seven inputs and only a few dozen free parameters. Our approach
shows that good performance can be achieved without the careful design
and selection of image features.

4.3 Affinity Graphs Generated Using CN Improve Segmentation
Performance. In the previous section, we quantified network performance
by measuring the ability to generate the desired affinity graph. However,
the affinity graph is not an end in itself, only an intermediate step toward a
segmentation. Therefore, we evaluated the CN affinity graphs by applying
the popular normalized cuts algorithm to partition the affinity graph into
segments (see section B.2). It bears repeating, however, that our affinity
graph can be paired with any graph-partitioning algorithm.

Figure 5 shows that the segmentations using normalized cuts (lower left)
qualitatively match the human tracings (upper right). To more thoroughly
quantify the segmentation performance, we measured the number of split
and merge errors made in our segmentation. These results are shown in
Figure 6. In comparing the segmentation errors of the normalized cuts
algorithm using the standard affinity with the CN affinity (NCUT-STD ver-
sus NCUT-CN), we see a striking reduction of an order of magnitude in the
number of splits and a several-fold improvement in the number of splits. Be-
cause two independent human labelings are available, we can compare hu-
man versus human segmentations with the same metrics (Human-Human).
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Figure 5: (Top row) Original EM images and human-labeled segmentation,
where different colors correspond to different segments. (Bottom left) Using
normalized cuts on the output of the CN network qualitatively segments many
of the objects correctly. (Bottom right) The connected components procedure
using CN affinity creates segmentations that are structurally superior to nor-
malized cuts with fewer splits and mergers, and the segments are shrunk within
the intracellular regions.

Note that normalized cuts require the selection of the number of seg-
ments in an image, k. The true number of segments is difficult to determine
ahead of time and scales with the image size in an unpredictable man-
ner. This is known to be a difficult parameter to optimize, and for our
experiments, we choose k to be the known true number of segments to
demonstrate the best possible performance of this algorithm, although this
information would typically be unavailable at test time.

4.4 CN Affinity Graph Allows Efficient Graph Partitioning Using
Connected Components. A significant disadvantage of the normalized
cuts algorithm is its considerable computational cost. As described in
section B.2, the run time is typically at least quadratic in the image size,
and our images contain a large number of voxels. There is a simpler alter-
native to normalized cuts that does not require the solution of a complex
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Figure 6: Segmentation performance is quantified by measuring the number
of splits and merges per true segment. Points closer to the origin have lower
segmentation error. Circles and asterisks are used to denote the test and train-
ing set errors, respectively. CC+STD has split-merge errors of (121.9,15.7) and
(97.9,13.2) on the training and test set, respectively and is omitted here for clar-
ity. Many different segmentations can be generated by varying the threshold
parameter for the CC algorithm, yielding under- to oversegmentation.

optimization problem. The affinity graph is first pruned by removing all
edges with affinities below a certain threshold. Then a segmentation is gen-
erated by finding the connected components (CC) of the pruned graph,
where a connected component is defined as a set of vertices that can be
reached by following a path of connected edges (Cormen, Leiserson, Rivest,
& Stein, 2000). Since the connected components can be found in run time
roughly linear in the number of voxels, this approach is significantly faster.
Unlike with the normalized cuts procedure, the number of objects need
not be known ahead of time, since the adjustable threshold parameter is
independent of the number of objects.

This algorithm is extremely sensitive to errors in the affinity graph since
a single misclassified link can alter a segmentation by merging objects. In
practice, we find that our learned affinity graph is accurate enough that this
rarely happens. In contrast, the hand-designed affinity graph is extremely
noisy and leads to poor segmentations using this partitioning algorithm.
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Varying the threshold parameter for binarizing the graph results in seg-
mentations ranging from over- to undersegmentation of the image. The
performance of this segmentation algorithm using the CN affinity can be
seen for various thresholds in Figure 6. The performance of the standard
affinity using connected components is too poor to fit in this plot. It is no-
table that the simple connected components strategy outperforms the more
sophisticated normalized cuts graph-partitioning algorithm.

Visualizations of typical components are shown in Figure 7, comparing
the original human segmentation to CN+CC and CN+NCUT. In Figure 7A,
the large branching component is segmented correctly by both algorithms,
while in Figure 7B, both algorithms split the component at narrow regions
(CC preserves slightly more of the object), and in Figure 7C, the thin branch-
ing component is correctly segmented.

5 Discussion

In this section, we discuss existing machine learning approaches to image
segmentation and how our approach differs. In general, most existing ap-
proaches use extensive pre- and postprocessing with learning as a middle
step. We show that emphasizing the learning stage can lead to an efficient
segmentation algorithm with simple and computationally efficient pre- and
postprocessing.

As an example, the problem of segmenting retinal blood vessels is an im-
portant medical application for which many machine learning approaches
have been implemented (Ricci & Perfetti, 2007; Sinthanayothin et al., 1999).
Most methods can be characterized as using edge detectors or wavelet fea-
tures followed by a classifier that produces a binary vessel or no-vessel
decision at each pixel and postprocessing to remove small spurious seg-
ments. Sinthanayothin et al. (1999) use a neural network on image patches
augmented with Canny edge-detected versions of the same patches. They
argue qualitatively that relying less on the learned network and more on
pre- and postprocessing makes the computation more efficient and relies on
fewer training data. We essentially take an opposite view: relying more on
the network avoids hand-designed features, which may throw away data
or bias results. In other work, Ricci and Perfetti (2007) use a hand-designed
set of thin, oriented line detectors, as well as local average intensities, as
features for input to an SVM classifier. The classifier outputs are vessel or no-
vessel decisions at each pixel location in the image. Preprocessing for these
methods generally includes a local adaptive contrast equalization method
specifically designed for these retinal images. In contrast, our method uses
only minimal preprocessing and relies on the learning procedure to account
for contrast and other image variations. While our method may require a
larger training set to include a statistically representative set of image vari-
ations, the learned convolutional filters are directly adapted to improve the
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Figure 7: Components traced by human (left) compared with automated re-
sults, convolutional network with connected component segmentation CN-CC
(middle) and normalized cut segmentation CN-NCUT (right). (A) Correctly
reconstructed object, showing close agreement between human tracings and
algorithm output. (B) An object that has thin processes incorrectly split by the
algorithms. A larger part of the object is split by normalized cuts than con-
nected components. The red oval indicates the size of the process that was split.
(C) Both algorithms correctly segment a thin branching process.

target metric and so are less likely than hand-designed preprocessing to
throw away valuable information.

To appreciate the power of the convolutional network (CN), it is useful to
compare it to a standard multilayer perceptron neural network (NN), which
has long been used to classify image patches (Egmont-Petersen et al., 2002;
Sinthanayothin et al., 1999). Conceptually the main difference between a
CN and an NN is the fact that an NN has only one stage of spatial filtering,
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Figure 8: A convolutional network constructs progressively larger as well as
more complex image features. A neural network can construct only more com-
plex features at each layer, not larger features.

while a CN can incorporate filtering at every layer of the network. This is a
subtle difference, however, since patch-based NNs can be constructed that
are constrained in a way that makes them exactly equivalent to a given CN,
and vice versa. We explore the details of this relationship in appendix C. The
practical benefit of using a CN is that it is easier to codify and implement
the spatial constraints that are relevant to an image processing problem.

We can compare an unconstrained patch-based NN to a CN to under-
stand the potential benefits of a CN. The unconstrained patch-based NN is
a special case of the CN, where filters in all layers after the first are scalars.
In this NN, the image context used to make classification is fixed to be the
size of the filters in the first layer, regardless of the number of layers in
the network. In contrast, as sketched in Figure 8, the image context of a
CN grows with every additional layer in the network. This suggests the
capability of each layer in the CN to construct larger spatial features using
smaller spatial features detected by the previous layer.

5.1 Efficient Graph Partitioning. There has been much research in re-
cent years on developing good graph-partitioning criteria and algorithms
(Shi & Malik, 2000; Felzenszwalb & Huttenlocher, 2004; Boykov, Veksler, &
Zabih, 2001; Cour, Benezit, & Shi, 2005; Gdalyahu, Weinshall, & Werman,
1999). Continuing our theme of relying more on learning methods and
less on elaborate postprocessing, we have instead focused on a method for
generating better affinity graphs. We have shown that convolutional net-
works can learn an affinity graph (directly from image patches) that is good
enough to be segmented without the need for complex graph partitioning
such as normalized cuts. While it is reasonable to expect that normalized
cuts would not be optimal for segmenting neurons, it is surprising that the
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simpler connected components algorithms work this well. This points to
the degree to which the learned affinity graph simplifies the segmentation
problem.

A consideration of the normalized cut objective suggests why it has trou-
ble with our data set. The normalized cuts criterion specifically aims to find
segments with minimal surface-area-to-volume ratios, while neurons are
highly branched structures with extremely high surface area. This makes
the criterion ill suited to our problem. Also, normalized cut is biased toward
segments of roughly equal size. Because the objects in our database vary in
volume over two orders of magnitude, this bias is not helpful. This illus-
trates the danger of using incorrect assumptions in an image segmentation
application and the advantages of adapting the algorithm to the application
by using training data.

In contrast to existing methods where affinities are computed based on
a few hand-picked features, our approach is considerably more powerful
in that it learns both the features and their transformation. This allows
us to learn affinity graphs for applications where there is little preexisting
knowledge of good features. This added flexibility comes at the price of
training a classifier with many parameters. But our results show that such
a classifier can be trained effectively using a CN.

Interestingly, our good segmentation performance is found using a graph
with only nearest-neighbor edges. One could argue that better performance
might be achieved by learning a graph with more edges between voxels.
Indeed, researchers have found empirically that segmentation performance
using hand-designed affinity functions can be improved by adding more
edges (Cour et al., 2005). The extension of our learned affinity functions to
more edges is left for future work.

5.2 Progress Toward Neural Circuit Reconstruction Using Serial-
Section EM. We have made a first step toward automated reconstructing
of neural circuits using images from serial block-face scanning electron
microscopy (SBF-SEM; Denk & Horstmann, 2004). Figure 9 shows the 3D
reconstruction of selected neural processes in the image volume, confirming
that the generated segments are biologically realistic. Figure 10 elaborates
on this by showing the largest 100 components in the 320 × 200 × 100 vol-
ume (omitting large glia and cell bodies). Most of the largest 40 components
span the volume, and smaller components appear to either terminate within
the volume or be fragments of glial-like processes. While we have observed
good performance with our current segmentation algorithm, significant
progress must yet be made in order to achieve large-scale neural reconstruc-
tion. In particular, while performance is close to human level on voxel error
and merged objects, there are significantly more split objects in our network
output. This indicates that there are small, thin processes that are broken
and could be reconnected using heuristics or another higher-level learning
procedure. We have yet to make use of high-level segmentation cues such
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Figure 9: Three-dimensional reconstructions of selected processes using our
algorithm (CN+CC). Large cell bodies are not shown to avoid hiding smaller
processes.

as the identity and shapes of the neurons in our data set. Efficiently repre-
senting and integrating such high-level information with low-level affinity
decisions is the next challenge.

Appendix A: Relationship Between Convolutional and Neural
Networks

A.1 Neural Networks and Image Processing. Conventionally NNs are
classifiers that operate on vector-valued input to produce scalar or vector-
valued output predictions. Similar to a CN, the NN is described using a
graph. But while the nodes and edges of a CN are image valued, those of a
NN are scalar valued. And the values of the nodes xa in an NN are computed
as xa = f (

∑

b Wab xb + hb), where Wab and hb are now scalars. Despite the
differences, there is an equivalence between these two architectures in the
context of image processing.

A neural network may be applied to an image processing problem in
several ways. In the simplest case, the pixels of an entire image may be
reordered as a vector and provided as input to a NN. This approach lends
itself well to tasks such as image recognition, where the input is image
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Figure 10: The 100 largest components in a 320 × 200 × 100 volume (7.86 μm×
5.24 μm × 5 μm), omitting cell bodies and large glial processes for clarity.

valued but the output is scalar valued or vector valued. A second approach
is more suitable to nonlinear filtering applications where we wish both
the input and the output to be image valued. The translational invariance
required by a filtering application is achieved by applying an NN to over-
lapping image windows. The image-valued output is generated by pasting
together scalar-valued NN output from translated windows of the image.
We call this a patch-based NN. The network labeled “NN” in our experiments
is exactly such a network, and a cartoon of it is shown in Figure 8.

A.2 Patch-Based Neural Networks Are a Special Case of Convolutional
Networks. Using the terminology developed in section 2, we can represent
any patch-based NN classifier as a special case of CNs. Let us recall the
standard forms of the neural network and convolutional network equations,

xα = f

⎛

⎝

∑

β

Wαβ xβ + hα

⎞

⎠

Ia = f

(

∑

b

wab Ib + ha

)

,

where xα , xβ , Wαβ , and hα are scalars; Ia , Ib are images; wab is a filter; and ha

is a scalar. In the case of the first layer of a patch-based NN, the elements of
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xβ form the pixels in the image patch. But since the output of a patch-based
NN is constructed by translating the network, there is an exact equivalence
between convolutional filtering and linear matrix multiplication implied
in this equation for the first layer of the NN. This means each row Wα. of
the weight matrix can be exactly interpreted as the filter wab applied to the
input image Ib . This implies a pairing between Ia and xα . Each image in the
second layer Ia is constructed by pasting together the values of xα derived
from translating the image patch.

After the first layer, all further computation in an NN occurs through
simple linear combinations of the existing features xα . Thus, the convolu-
tional network implied by a patch-based NN performs no filtering after the
first layer. The “filters” wab in the later layers correspond exactly to scalars
given by Wαβ .

Thus, the crucial difference between an NN and a CN is in the nature
of the wab parameters. An NN restricts all wab filters not operating directly
on the input image to be scalars. This means that only the first layer of
computation involves image convolutions, while the rest are constrained
to be simple linear combinations of existing image features Ia , followed
by a nonlinearity. A CN may be seen as a more powerful generalization
of an NN in a manner appropriate for image processing applications since
convolutions are allowed at all stages in the network.

A.3 Convolutional Networks Are a Special Case of Neural Networks.
A CN can also be seen as a special case of a NN with vectorial output by
recalling that convolution is a linear operation that can be represented in
terms of matrix multiplication by a special “convolution matrix.” In this
view, Ia is an image represented as a vector, and Wab is the convolution
matrix representing convolution by the filter wab :

Ia = f

(

∑

b

Wab Ib + ha

)

. (A.1)

Since a convolution matrix M may be constructed from a filter w as Mi j =
wi− j , we can see that the weight matrix of an NN equivalent to a CN
has a constrained translation-invariant structure that is useful for image
processing. However, the notation, interpretation, and representation of
the weight matrix and corresponding hidden units become complicated
and less useful for a CN with more than one hidden unit in each layer.

A.4 Comparing CN and NN for Affinity Graph Generation. In or-
der to assess the advantages of CN over NN, we also trained a CN with
NN constraints on the task of affinity graph generation. This network (see
Figure 11) has a single hidden layer of 75 feature maps. The filters con-
necting the input image to the feature maps in the hidden layer have size
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Figure 11: A restricted convolutional network that is equivalent to a two-layer
neural network. Only the first layer of the network is convolutional; edges from
the input image to the hidden nodes represent convolution filters, while edges
from the hidden units to the output units are scalar valued. This network has
many more nodes in the hidden layer than our CN but fewer layers.

Figure 12: CN and NN have similar performance at affinity prediction, but CN
has superior segmentation performance. (A) Approximately 10% of the affini-
ties are misclassified in the test set. (B) A more thorough quantification of the
continuous-valued affinity output using precision-recall curves (see section C.1)
as in Fowlkes et al. (2003) shows good performance (higher F -scores and curves
closest to the upper right are superior). (C) CN outperforms NN with fewer split
and merge errors (curves closest to the origin are superior).

7 × 7 × 7. The filters connecting the feature maps in the hidden layer to
the output images are 1 × 1 × 1 scalars. Since these filters are scalars, each
output image is a linear combination of the images in the hidden layer after
passing through a sigmoid nonlinearity. In contrast to our CN, this network
requires more than twice as many free parameters (25,876) to process an
input patch of only 7 × 7 × 7. Our attempts to train NN-like networks with
larger filters were plagued by poor generalization performance and with
gradient learning optimizing to poor local minima in parameter space.

From Figure 12, we can see that the CN is slightly superior to the NN
on the training set. Since the NN has twice as many parameters as CN,
one might expect it to be a more powerful representation and achieve lower
training error. However, the CN uses a larger context than the NN (17 × 17 ×
17 versus 7 × 7 × 7), and this may help the CN achieve lower training error.
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In addition to the improvement in performance, after training has been
completed, the CN is about twice as fast as the NN at the task of generating
an affinity graph. The run time is roughly proportional to the number of
parameters, and the NN has twice as many as the CN. More important
CN makes fewer split-and-merge errors, leading to superior segmentation
performance.

While both the CN and NN can learn the affinity graph generation
task without hand selection of features, the CN achieves both superior
speed and accuracy compared to the NN. This is probably because the CN
representation is more efficient for image processing tasks than the NN.
The difference between the CN and the NN on this data set is not large and
therefore may not be statistically significant. However, the differences in
affinity prediction as well as segmentation performance seem to be larger
in preliminary investigations using larger data sets not reported here.

Appendix B: Segmentation Algorithms

B.1 Gradient Learning by Backpropagation. We use the backpropaga-
tion procedure detailed by LeCun et al. (1989) to train our CN. To speed
up convergence of the gradient procedure, we used some simple tricks
from LeCun, Bottou, Orr, & Muller (1998), which we detail here.

The CN used in this letter corresponds to the directed graph in Figure 2,
where the nodes represent images and the edges represent filters. It con-
tains three hidden layers, each with six feature maps. Each feature map is
constructed according to equation 2.1 by filtering the images corresponding
to incoming nodes with three-dimensional filter kernels of size 5 × 5 × 5.
Thus, running the network to produce the nearest-neighbor affinity graph
requires 96 separate convolutions.

We initialize all the elements of the filters wab and the biases ha randomly
from a normal distribution of standard deviation σ = 1/

√
|w| · |b|, where

|w| is the number of elements in each filter (here, 53) and |b| is the number of
input feature maps incident on a particular output feature map. This choice
mirrors a suggestion in LeCun, Bottou, Orr, & Muller (1998) that weight
vectors have unit norm.

We trained the randomly initialized CN using the iterative optimization
procedure of stochastic gradient descent with diagonal rescaling. On each
iteration, a mini-batch was generated by randomly sampling 6 × 6 × 6
image patches from the training image. Backpropagation was performed to
compute the gradient, which was then rescaled by a diagonal approxima-
tion to the Hessian as in LeCun, Bottou, Orr, & Muller (1998) with a learning
rate of 10−4. Training was stopped after 80 epochs were performed, as the
training error had plateaued. There was rarely need for cross-validation as
little overfitting was observed.
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B.2 Normalized Cuts. The multiway normalized cut problem is posed
as finding the partition of a graph G into k groups of nodes Vi such that the
following objective function is minimized:

NCut({V1, . . . ,Vk}) = min
V1,...,Vk

k
∑

i=1

links(Vi ,G\Vi )

degree(Vi )
, (B.1)

where G\Vi is the set of vertices not in Vi . The number links(Vi ,G\Vi ) are
usually referred to as the cut value since they represents the sum of all the
edges cut due to the partition Vi . Here, the cut value is normalized by the
association of this region given by degree(Vi ) (which is the sum of all edges
between nodes in Vi ). Roughly speaking, links(Vi ,G\Vi ) is proportional to
the surface area of of the region Vi , while degree(Vi ) is proportional to the
volume. So normalized cuts may be thought of as generating partitions
with minimal surface-area-to-volume ratios.

Since the problem of optimizing equation B.1 is known to be NP-hard,
Shi and Malik (2000) suggested a polynomial time approximation based on
spectral methods. This algorithm was prohibitively slow and memory in-
tensive for our application, because a k-way segmentation requires finding
at least k + 1 eigenvectors of a very large matrix. Instead, we used the fast
multiscale kernel weighted k-means algorithm, which finds local minima
of the normalized cuts cost function (Dhillon, Guan, & Kulis, 2005). For
large problems such as ours (more than 100,000 nodes), this algorithm is
significantly faster than the spectral method and achieves better results.

We found that superior segmentations were obtained if the affinity graph
was first coarsened by finding atomic regions. This is a standard procedure
in segmentation algorithms where strongly connected regions are grouped
together to form super-pixels. Edges between the super-pixels now corre-
spond to the sum of all affinities between original nodes in each super-pixel.

When algorithm was run, the desired number of segments, k, was set
to the true number of segments, which was known in the training and test
sets. While this information would not be available in practice, it was used
here to optimize the performance of normalized cuts.

Appendix C: Performance Metrics

We detail the performance metrics used to measure performance: the
precision-recall method used to evaluate affinity-graph learning and the
split-merger counts for evaluating segmentation performance.

C.1 Precision-Recall Curves. The precision-recall curve is constructed
by computing the values of precision and recall for all values of the classifier
threshold, and this methodology has been used to evaluate segmentation
algorithms (Martin et al., 2004). Precision measures the fraction of examples
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classified positive that are truly positive, while recall measures the total
fraction of positive examples that are classified positive. A good classifier
would have a precision close to 1 for all values of recall except when recall
equals 1. The curve can be characterized by a single F -score, which is the
maximum of the weighted harmonic mean of precision p and recall r over
the curve, F = max pr/(αp + (1 − α)r ), where here the weighting factor is
α = 0.5. Higher F -scores indicate better performance. An advantage of the
precision-recall measure is that it can emphasize performance on the rarer
of the two classes.

Note that for consistency with Martin et al. (2004), we compute precision-
recall for the detection of boundaries. In our affinity representation, bound-
aries correspond to negative examples. Hence, in our case, we compute
precision and recall for the detection of negative examples by inverting the
classification.

There are two important differences between our evaluation and that of
Martin et al. (2004). First, we measure precision-recall curves for affinity
graphs rather than boundary detection. Second, we do not perform any
matching procedure, such as the bipartite boundary matching in Martin
et al. (2004) to improve the correspondence between our affinity graph and
the ground-truth affinity graph. In these differences, our measures are more
similar to those used by Fowlkes et al. (2003).

C.2 Splits and Mergers. The number of splits and mergers caused by
the algorithm is a useful measure of segmentation performance. Split errors
are quantified as the number of fragments an object in the ground truth
data set is broken into. Merge errors are quantified simply as the number
of times objects in the ground truth were erroneously connected to each
other. These quantities are computed as a function of two segmentations:
the ground truth and a test segmentation.

A bipartite graph is constructed where the nodes of the graph fall into
two groups. The first group of nodes represents the objects in the ground-
truth segmentation, with one node for each object. Similarly, the second
group of nodes represents the objects in the test segmentation. Edges in
this bipartite graph are undirected and unweighted and drawn between
a ground-truth node and a test node if they claim a common region in
the image. This graph now represents the overlap between objects in each
segmentation. This overlap graph can be used to compute the number of
splits and merges in the test segmentation. A perfect segmentation with
no splits or merges would result in a one-to-one correspondence of nodes
in the overlap graph, with each node having exactly one edge. Splits and
mergers result in changes of the degree of the overlap graph.

A split is said to occur when an object in the ground truth is erroneously
broken into more than one object in the test segmentation. In the overlap
graph, this corresponds to a situation where one node in the ground truth
has edges to more than one node in the test segmentation. The number of
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Figure 13: Bipartite graph representing splits and mergers. Test segmentation
is overlaid on the ground-truth segmentation, and the overlap between objects
is measured. Overlap codified as a bipartite graph is shown for the example
cases of (a) perfect segmentation, (b) merger, (c) split, and (d) two splits and a
merger.

splits corresponds to the number of edges of a ground-truth node in excess
of 1. This may be computed by subtracting the number of ground-truth
nodes with edges, from the total number of edges in the bipartite graph.

A merge is said to occur when an object in the ground truth is erroneously
joined with another ground-truth object. This happens when a test object
overlaps with more than one ground-truth object. In the overlap graph, this
corresponds to nodes in the ground truth becoming connected via nodes
in the test segmentation. A merge has occurred between a pair of ground-
truth objects if there is at least one node in the test segmentation that has
edges to both ground-truth nodes. To compute the number of merges, we
first compute the distance matrix for all pairs of ground-truth nodes. The
number of merges corresponds to the number of pairs of ground-truth
nodes with distance equal to 2. This implies that they are connected by the
shortest possible path in the bipartite graph via one test node. For a small
fraction of pairs of objects, there may be more than one such shortest path
corresponding to situations as depicted in Figure 13. Here a coincidence
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of splits and merges leads to the same two objects being merged in two
different locations. We choose to count such merges only once since the
same two objects are involved.

It should be noted that the measurement of splits and mergers is agnostic
to variations in the number of voxels in the estimated and ground-truth
objects. Therefore, a neurite with an extra voxel or a missing voxel would
not contribute to split or merge errors. A missing voxel that does not lead to
the splitting of a neurite (in the case of an extremely narrow neurite) causes
no errors, and an extra voxel is not measured as a merge error as long as it
does not lead to the merging of two neurites. Thus, the split-merge metric
is robust to minor variations in the sizes of segments.
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