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Abstract: It is necessary to detect the structural damage condition of essential buildings immediately
after an earthquake to identify safe structures, evacuate, or resume crucial activities. For this reason, a
CNN methodology proposed to detect the structural damage condition of a building is here improved
and validated for two currently instrumented essential buildings (Tahara City Hall and Toyohashi
Fire Station). Three-dimensional frames instead of lumped mass models are used for the buildings.
Besides this, a methodology to select records is introduced to reduce the variability of the structural
responses. The maximum inter-storey drift and absolute acceleration of each storey are used as
damage indicators. The accuracy is evaluated by the usability of the building, total damage condition,
storey damage condition, and total comparison of the damage indicators. Finally, the maximum
accuracy and R2 of the responses are obtained as follows: for the Tahara City Hall building, 90.0%
and 0.825, respectively; for the Toyohashi Fire Station building, 100% and 0.909, respectively.

Keywords: convolutional neural network; power wavelet spectrum; damage detection; structural
health monitoring

1. Introduction

The damage condition of essential buildings immediately after an earthquake is one
of the most critical indicators for future decision-making by the government, owners, and
stakeholders. Acceleration or displacement recordings from instrumented buildings during
earthquakes offer valuable information to identify and monitor their damage extent. Thus,
structural health monitoring is an expanding field that allows for establishing procedures
to screen the structural status of buildings. For example, in order to tackle federal buildings,
Mehmet Çelebi from the United States Geological Survey (USGS) reported guidelines for
the seismic instrumentation of structures as part of a USA project in 2002 [1]. On the other
hand, the structural information obtained from the building after an earthquake can be
used for different purposes, which depend on the detail level. For instance, the usability
of the buildings related to protecting their occupants is needed immediately, and a deep
behavioral understanding of the structure is obtained after months [2]. However, the
current conventional post-earthquake actions report the usability of buildings in days or
even weeks after the event [3].

Structural responses such as the maximum inter-storey drift and acceleration can
be used in order to determine structural integrity. Hazus is a geographic information
system-based natural hazard analysis tool, used by the Federal Emergency Management
Agency of the USA, and the Hazus earthquake model evaluates the damage probability
of buildings and infrastructures considering inter-storey drift and acceleration limits to
establish the structural and nonstructural damage states [4].

The accuracy of the structural responses depends mainly on the adopted structural
model and the type of structural analysis. For example, a lumped mass model (LMM)
is less accurate than a three-dimensional frame model (3D-FM) of high-rise or irregular
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structural configuration buildings. Nevertheless, the computation time with an LMM is
much shorter. To improve the convergence and computational speed of building structural
analyses, Koh et al. proposed an improved condensation-based method for 3D-FM. Besides
this, Yoon et al. proposed a methodology to determine the LMM parameters via nonlinear
analyses of 3D-FM, and applied it to an irregular structural configuration and high-rise
building [5].

Recently, Machine Learning (ML) has been studied to assess damage without response
analysis of structures. ML is the part of artificial intelligence that uses statistical methods
to obtain experience (learning process) from main features to predict future actions or
responses. An accurate prediction is obtained if the number of features increases [6]. Deep
Learning (DL) is a subset of ML inspired by the work of neurons in a brain. DL makes a
multi-layer neural network computation to perform this task [7]. The Convolutional Neural
Network (CNN) is a part of DL that works by analyzing visual imagery. Since CNN can
manage a large amount of data through the pixels of the images, its accuracy is commonly
higher than that of other ML methods. For example, Hasan et al. developed a comparative
analysis to classify vegetation species using three ML methods: the support vector machine
(SVM), artificial neural network (ANN), and CNN, and the accuracy obtained was 91%,
94%, and 99%, respectively [8]. Keeling et al. compared CNN with ML methods for text
classification, including Logistic Regression, SVM, and Random Forest. The precision rate
of 75% showed that CNN performs slightly better than others on average [9]. Jiang et al.
compared the performance in image classification of capsule network (CapsNet), CNN,
and fully convolutional network (FCN) methods, concluding in general that the CNN and
FCN models obtained a better performance than CapsNet [10].

Recently, studies have been conducted in the field of structural engineering to develop
CNN models that use the time domain responses as input data. For instance, Zhang
et al. developed a physics-guided convolutional neural network (PhyCNN) for data-driven
structural seismic response modeling. The proposed PhyCNN considers the ground motion
as input and the structural responses as output data to learn the feature mapping between
them [11]. Moreover, Teng S. et al. used the acceleration response in a one-dimensional (1D)
CNN followed by a decision-level fusion strategy to improve the accuracy of structural
damage detection [12]. Other studies considered more than one structural parameter to
increase the features of the input data. Park H. et al. established a CNN-based strain
prediction technique that enables structural safety evaluations in cases of the absence or
defect of strain sensors. The CNN model used dynamic acceleration and displacement
responses as input data to predict the strains of structural members [13]. Xu Y. et al. used
48 intensity measures to represent ground motion characteristics as input data to indicate
the damage state of structures [14].

On the other hand, studies have been conducted using frequency domain responses to
improve the accuracy of CNN prediction. For example, Oh B.K. et al. built a CNN model
using the displacement response, displacement frequency, and the wind speed frequency
of tall buildings as input maps to estimate the safety of instrumented columns from their
maximum and minimum strains [15]. Additionally, Liu T. et al. used the transmissibility
function (ratio of the cross-spectral density and the auto-spectral density of the response)
as input data for a 1D CNN to identify structural damage [16].

Time–Frequency Distribution (TFD) graphs represent time-domain and frequency-
domain features of a signal from only one image. Hence, TFD could be used as an input
map of the two-dimensional (2D) CNN algorithm. For instance, Ghahremani B. et al.
used the fast S-transform from the structural acceleration response as an input map of a
CNN model [17]. Similarly, Wang X. et al. applied the Hilbert–Huang time–frequency
spectrum in a 2D CNN model to identify damage conditions of a benchmark structure [18].
Furthermore, Lu X. et al. developed a CNN-based rapid post-event seismic damage
evaluation methodology using the continuous wavelet transform (CWT) to extract the
time and frequency features of the ground motion acceleration [19]. In addition, Moscoso
Alcantara et al. [20] developed a framework in which a 2D CNN model predicts the
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maximum ductility ratio, the inter-storey drift, and the maximum absolute acceleration
of each storey of the LMM using the acceleration record of a single sensor located on
the top floor of the building, where the wavelet spectra were obtained from the absolute
acceleration of this sensor and used as images for the input maps.

In this study, the authors update and improve the damage identification method
proposed by Moscoso Alcantara et al. [20] as follows:

• The structural models are 3D-FM. This allows all buildings to have different lateral
force-resisting systems, structural configurations, material types, and elastic and
inelastic behavior of their members;

• The validation of the CNN model is applied to two instrumented buildings in Japan;
• The structural responses used as damage identifiers are the maximum inter-storey drift

(SD) and the maximum absolute acceleration (AA) of each storey of the target buildings;
• A methodology to select records for each damage identifier is introduced using the

Incremental Dynamic Analysis (IDA) responses of each target building, where the
ground motions are scaled in order to cover the elastic and inelastic behavior of the
target building;

• The input map data for the training CNN model use the Wavelet Power Spectrum
(WPS) computed from the absolute acceleration response measured by the sensor
located on the top floor of each target building.

The accuracy of the results is evaluated by comparing the damage condition of the
building with the reference values.

Although training and validating the CNN model is computationally intensive, once
the CNN model is developed, the CNN algorithm trained for the target building can
automatically predict the elastic and inelastic structural responses, and detect the damage
condition immediately after the earthquake.

This paper contains sections as follows: In Section 2, the methodology is presented,
including an overview of the proposed research procedure. Section 3 shows the general
information about the target buildings. Section 4 establishes the nonlinear structural models
used for the target buildings. Damage levels based on the maximum inter-storey drift
and absolute acceleration as damage identifiers are defined in Section 5. Furthermore,
Section 6 presents the methodology used to select records from the database to reduce the
variability of structural responses. Section 7 specifies the wavelet power spectrum used
as input data for the CNN model, and its procedure and characteristics are described in
Section 8. Additionally, Section 9 defines the training and validation process used to obtain
a trained CNN model. This is applied to the target buildings, and their prediction results
are shown in Section 10. Finally, in Section 11, a summary of conclusions and a discussion
of the research results are presented.

2. Methodology

As shown in Figure 1, there are two processes for obtaining the ML (CNN) model in
this methodology. They are called the training process (TP) and the validation process (VP).
Hence, the selected records (see Section 6) are divided into two parts for each process. In
total, 90% of the ground motions are used for the TP, and 10% for the VP.

In the TP, there are two subprocesses, the data preparation process and the training
of the model process. The input data (WPS) and the output reference (SD or AA on each
floor) are obtained from the IDA in the data preparation process. The trained CNN model
is obtained in the training of the model process and used in the VP.

In the VP, the data preparation process is used in order to predict new input data and
output references. Subsequently, the trained CNN model (from the TP) is validated when
the highest accuracy is found by comparing it to structural damage identification.
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Figure 1. Methodology flowchart to obtain the Convolutional Neural Network model.

3. Target Buildings

Two target buildings are considered to validate a CNN model. They are instrumented
buildings in Japan: Tahara City Hall (steel structural system) and Toyohashi Fire Station
building (steel-reinforced concrete structural system).

3.1. Tahara City Hall Building

The Tahara City Hall is a local government office building located in Toyohashi city of
Aichi prefecture in Japan (see Figure 2). This building is an instrumented building, and
the location of the sensor is shown in Figure 3. The main structural characteristics are
as follows:

• The structural system of the building is a moment-resisting frame in steel;
• The number of floors is six, and the storey heights are 1st storey = 4.45 m, 2nd to 4th

storey = 4.10 m, 5th storey = 4.40 m, and 6th storey = 4.35 m;
• The storey weights are 1st storey = 15,068 kN, 2nd storey = 13,422 kN,

3rd storey = 15,290 kN, 4th storey = 9899 kN, 5th storey = 10,387 kN, and
6th storey = 11,853 kN;

• I cross-section and box cross-section for beams and columns, respectively;
• The X-direction presents an irregular configuration in its elevation (see Figure 3). Only

the X-direction is analyzed in this study;
• The natural period (T1) of the building in the X-direction is 0.681 s (1.468 Hz) with an

effective modal mass ratio of 0.77. The second mode period (T2) is 0.264 s (3.788 Hz)
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with an effective modal mass ratio of 0.145. The values are obtained from numerical
simulations of the structural model according to Section 4.

Figure 2. Tahara City Hall Building.

Figure 3. General drawings of Tahara City Hall building. (a) Plan of 1st storey view. (b) Plan of 2nd
and 3rd stories’ views. (c) Plan from 4th to 6th storey view. (d) Elevation of X-direction view.

3.2. Toyohashi Fire Station Building

The Toyohashi Fire Station is a fire station located in Toyohashi city of Aichi prefecture
in Japan (see Figure 4). This building is an instrumented building, and the location of the
sensor is shown in Figure 5. The main structural characteristics are as follows:
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• The structural system of the building is a moment-resisting frame in steel-reinforced
concrete (SRC);

• The number of floors is six with a basement, and the typical storey height is 4.00 m;
• The storey weights are basement = 18,019 kN, 1st storey = 14,570 kN,

2nd storey = 12,483 kN, 3rd storey = 12,470 kN, 4th storey = 13,043 kN,
5th storey = 12,412 kN, 6th storey = 11,834 kN, and 7th storey = 10,588 kN;

• The steel I cross-sections are embedded in RC rectangular beams and columns;
• Both the X- and Y-directions are regular configurations, as shown in Figure 5. Only

the X-direction is analyzed in this study;
• The natural period (T1) of the building in the X-direction is 0.748 s (1.337 Hz), with an

effective modal mass ratio of 0.62. The second mode period (T2) is 0.277 s (3.610 Hz)
with an effective modal mass ratio of 0.12. The values are obtained from numerical
simulations of the structural model according to Section 4.

Figure 4. Toyohashi Fire Station Building.

Figure 5. Cont.
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Figure 5. General drawings of Toyohashi Fire Station building. (a) Plan of basement view. (b) Plan
from 1st to 6th storey view. (c) Plan of 7th storey view. (d) Elevation of X-direction view.

In this study, the signals of the sensors have been simulated from the 3D structural
models, which were constructed element by element based on the structural drawings.
After the earthquake, the sensors will be activated and read the acceleration when a
threshold is reached. Subsequently, all data are automatically stored on the network cloud
and can be used to assess the damage. However, for future research, it is recommended
to use other methods in order to reconstruct the missing data due to anomalies and other
factors [21,22].

4. Nonlinear Structural Models for the Target Buildings

The structural models for the target buildings consist of three-dimensional elements
with elastic and inelastic behavior. The software STERA_3D [23] developed by one of the
authors was used, wherein the frame beam elements were modeled using nonlinear flexural
springs at their ends and a nonlinear shear spring in the middle, as shown in Figure 6.

Figure 6. Beam model with nonlinear flexural and shear springs [23].

Figure 7 shows the hysteresis models of flexural springs. Figure 7a shows the de-
grading trilinear slip model for the RC sections. Figure 7b shows the bilinear model for
steel sections.
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Figure 7. Hysteresis model. (a) Degrading trilinear slip model for RC sections; (b) bilinear model for
steel sections [23].

Likewise, the frame column elements are modeled as multi-spring models considering
a nonlinear interaction between the bidirectional–flexural and axial effects (Mx-My-Nz,
as shown in Figure 8a). The springs are distributed in the RC and steel cross-sections, as
shown in Figure 8b. Moreover, Figure 8c shows the hysteresis model for steel and concrete
springs. The nonlinear shear springs in the X- and Y-directions are defined independently.

Figure 8. (a) Column model with multi-springs to consider Nz-Mx-My nonlinear interaction;
(b) concrete and steel springs; (c) hysteresis model for steel and concrete springs [23].

5. Damage Identification of the Target Buildings

The inelastic 3D-FMs for the target buildings are made to obtain structural responses
in detail. The damage condition will be identified from the maximum structural responses
SD and AA on each storey.

The usability of the building is defined in order to evaluate the habitability of the
building, and is represented by safe use, restricted use, and unsafe use, as shown in Table 1.
The levels of damage condition shown in Table 1 are the same as in Moscoso et al. [20].
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Table 1. Damage conditions from the structural responses [20].

Usability of the Building Safe Use Restricted Use Unsafe Use

Damage Condition No Damage Minimum Damage Significant Damage Severe Damage Collapse

Inter-storey drift ratio <1/300 ≥1/300 but <1/150 ≥1/150 but <1/100 ≥1/100 but < 1/75 ≥1/75
Acceleration (gal) <250 ≥250 but <500 ≥500 but <1000 ≥1000 but < 1500 ≥1500

6. Selection of Ground Motion Records

A record database was generated from the records obtained in the Center for Engi-
neering Strong Motion Data by USGS and the California Geological Survey. This center
receives worldwide records from the cooperation of international strong-motion seismic
networks [24].

In order to consider the ground motion records with high intensity and reduce the
number of samples (less than 3000), the records with a PGA greater than 400 gal and a time
range from 5% to 95% of the Arias intensity have been selected [25]. Finally, 183 ground
motion records have been selected in this study for the database.

In the structural analysis, the variability of the structural responses of the building
depends mainly on the ground motion used. On the other hand, the prediction accuracy of
ML is improved when the output variability is reduced. Therefore, a methodology to select
the records from structural responses has been developed using the IDA of each target
building. Figure 9 shows the procedure for determining the ground motion records from
the database.

Figure 9. Selection of ground motion records for inter-storey drift and acceleration flowchart.
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For the IDA, the demand measure is either the SD or AA (on the vertical axis), and
the intensity measure is the 5% damped spectral acceleration matched at the fundamental
period (Sa(T1, 5%) on the horizontal axis). Sa(T1, 5%) is selected to represent the seismic
intensity, where the main modal mass contribution is obtained. Besides this, a normal
distribution is considered to represent the variability of the structural responses along
Sa(T1, 5%). Thus, 68% of the structural responses are represented within±1σ (one standard
deviation) of the mean, resulting in a confidence interval from 16% to 84% fractile.

Therefore, in order to cover elastic and inelastic behavior ranges, the IDA curves use a
confidence interval from 0% to 84% fractile of the structural responses. Besides this, 1/50
has been established as the maximum inter-storey drift limit. The selected records and
Sa(T1, 5%) have been derived from accomplishing both previous conditions for SD. The
IDA scale factors are such that the resultant spectral acceleration (∆Sa) is 25 gal if Sa(T1,
5%) max is less than 1000 gal, and 50 gal if Sa(T1, 5%) max is greater than 1000 gal. The IDA
curves for AA, the same confidence interval, scale factors, and maximum Sa(T1, 5%) have
been used to find their selected ground motion records. These criteria have been developed
after several structural analyses carried out in this research.

6.1. Selection of Records

Figures 10 and 11 show the IDA curves for SD and AA of the database and selected
records. The black dashed lines are the 0%, 50%, and 84% fractiles. Besides this, the damage
condition threshold limits are depicted by the green, yellow, orange, and red dashed lines.

Figure 10. IDA Curves of Tahara City Hall Building. (a) IDA curves of the database for SD; (b) IDA
curves of selected records for SD; (c) IDA curves of the database for AA; (d) IDA curves of selected
records for AA.



Sensors 2022, 22, 6426 11 of 22

Figure 11. IDA Curves of Toyohashi Fire Station Building. (a) IDA curves of the database for SD;
(b) IDA curves of selected records for SD; (c) IDA curves of the database for AA; (d) IDA curves of
selected records for AA.

Figures 12 and 13 show the acceleration response spectra (Sa) of the selected records
subdivided into training and validation records used for the CNN models for SD and AA
analyses. Besides this, the validation records for the SD and AA analyses are the same, in
order to consider the same earthquake events. Additionally, Sa is 100 gal at the fundamental
period of each target building.

6.1.1. Selection of Records for Tahara City Hall Building

After selecting the records, 130 and 142 records have been chosen for SD and AA,
respectively, shown in Figure 10b,d.

The selected records are split into 120 and 132 for the training of CNN models for SD
and AA. Besides this, ten records have been used for the validation process in both analyses.

6.1.2. Selection of Records for Toyohashi Fire Station Building

After selecting the records, 115 and 144 records have been chosen for CNN models for
SD and AA, respectively, shown in Figure 11b,d.

The selected records have been split into 99 and 126 for the training of CNN models for
SD and AA. Besides this, 16 records are used for the validation process for both analyses.
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Figure 12. Acceleration response spectrum of Tahara City Hall Building at T1 = 0.681 s and
Sa(T1) = 100 gal. (a) Training records for SD; (b) Training records for AA; (c) Validation records
for SD and AA analyses.

Figure 13. Acceleration response spectrum of Toyohashi Fire Station Building at T1 = 0.748 s and
Sa(T1) = 100 gal. (a) Training records for SD; (b) training records for AA; (c) validation records for SD
and AA analyses.
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7. Wavelet Power Spectrum as Input Data of CNN

The acceleration record of the upper floor is obtained from the sensor installed on the
target building. Since these records are non-stationary signals, they are transformed in
order to capture their characteristics in the time and frequency domains. In this study, the
wavelet transform is used.

Wavelet functions convolute the original signal into a space and scale field. The scale
decomposition (related to the frequency domain) is obtained by dilating and shortening
the wavelet. On the other hand, space decomposition comes from their variability in time
(position) [26,27].

The wavelet signal is called the mother wavelet. The wavelet used in this study is
the Morlet wavelet (complex-valued wavelet), which is the product of a sine (complex
exponential) wave and a Gaussian envelope, as defined by Equation (1) [27]:

ψ0(x) = π−
1
4 ·e−

x2
2 ·e−iω0x (1)

where ω0 is the nondimensional frequency. In this study, ω0 is taken to be 6 in order
to accomplish the admissibility property, according to [26]. Subsequently, ψ0 will be
normalized to keep constant the total energy when it is scaled. Furthermore, the parameters
“a” and “b” are included in the Morlet wavelet in order to modify the scale and space
(translation), respectively. The normalized Morlet wavelet is defined by Equation (2).

ψ

[
(t− b)δt

a

]
=

(
δt
a

)1/2
·ψ0

[
(t− b)δt

a

]
(2)

The continuous wavelet transform (CWT) of a discrete signal s(t) is defined by Equation (3):

W(a, b) =
N−1

∑
t=0

s(t)ψ
∗
[
(t− b)δt

a

]
(3)

where “N” is the number of samples of the signal and the asterisk symbol (*) indicates the
complex conjugate of the wavelet.

CWT is a complex function because of the Morlet wavelet. Therefore, the module of
CWT is the wavelet spectrum (WS), defined by Equation (4), and the square of the module
is the wavelet power spectrum (WPS), defined by Equation (5).

WS(t, f ) = |W(a, b)| =
√

W2
real + W2

imaginary (4)

WPS(t, f ) = WS2 (5)

WS was used by Moscoso et al. for the maximum absolute acceleration response on the
upper floor. These results were used as images for the input data of the CNN model [20].
However, since WPS increases the coefficients of WS exponentially, the main characteristics
of the signal are intensified in order to train the CNN model. For example, Figure 14 shows
a random acceleration response, WS and WPS in 2D and 3D. Notice that WPS depicts the
main frequencies more evidently than WS.
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Figure 14. (a) Original signal; (b) two-dimensional WS; (c) two-dimensional WPS; (d) three-dimensional
WPS; (e) three-dimensional WPS.

8. Convolutional Neural Network (CNN) Model

Figure 15 shows a general CNN model. The input, convolutional, pooling, and fully-
connected layers compose the architecture of the CNN model in this study. Each target
building has a particular CNN model architecture, which depends on its accuracy after
evaluation.

Figure 15. A general CNN model.
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The set of images is the input layer. In this study, CNN uses the images obtained
from the WPS. Moreover, the convolutional layer is formed from the convolutional process,
padding, and activation function methods, as shown in Figure 16.

Figure 16. Convolutional layer.

As known, a convolutional process is a mathematical operation of two functions. The
functions used in CNN are arrays of data. The set of WPS is the first array, and the second
is a set of filters used to extract and learn the main features of the first one. They are called
kernels (K) or feature detectors. Since CNN is part of the ANN, a kernel is a set of updatable
weights for the training process of the CNN model.

According to the prediction project, the CNN uses one-, two-, or three-dimensional
space. This study used a two-dimensional space. Equation (6) defines the convolutional
operation in CNN [28]:

FM(a,b) = (WPS·K)(a,b) = ∑
c

∑
d

K(c,d)·WPS(a−c,b−d) (6)

where FM is the feature map, WPS is the wavelet power spectrum used as input data, and
K is the kernel array.

In order to keep the size of the original image of the feature map, the same-padding or
zero-padding method is used in this study. This method adds zeros along the border of the
original image. Furthermore, every value of the feature map is evaluated by the activation
function method, which allows for learning the nonlinearity features of the CNN model.
The rectified linear unit function (ReLU) is used in this study and is defined by Equation (7):

y =

{
0, i f x < 0
x, i f x ≥ 0

(7)

The pooling layer reduces the resolution and sizes of the feature maps, resulting in a
lower computational cost. The maximum pooling layer, or max-pooling, is used for this
research. The max-pooling divides the feature maps into sub-arrays with the size P × P,
and the result is the maximum value of this. The CNN model without the max-pooling
of Moscoso et al. converged more effectively. Nonetheless, the CNN model used for this
study converged more efficiently using max-pooling layers because of the more significant
amount of data. The number of the convolutional or max-pooling layer depends on the
architecture of the CNN model (see Table 2).

Table 2. Hyperparameters of CNN models.

Layer Type Hyperparameter
Tahara City Hall Building Toyohashi Fire Station Building

SD AA SD AA

01 Convolutional
Number of kernels 8 8 8 8

Size of kernels 3 × 3 3 × 3 3 × 3 3 × 3

02 Pooling Size of pooling filter 2 × 2 2 × 2 2 × 2 2 × 2

03 Convolution
Number of kernels 8 8 8 8

Size of kernels 3 × 3 3 × 3 3 × 3 3 × 3

04 Pooling Size of pooling filter 2 × 2 2 × 2 — 2 × 2
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Table 2. Cont.

Layer Type Hyperparameter
Tahara City Hall Building Toyohashi Fire Station Building

SD AA SD AA

05 Convolution
Number of kernels 8 8 8 8

Size of kernels 3 × 3 3 × 3 3 × 3 3 × 3

06 Pooling Size of pooling filter 2 × 2 2 × 2 — 2 × 2

07 Convolution
Number of kernels 8 8 8 8

Size of kernels 3 × 3 3 × 3 3 × 3 3 × 3

08 Pooling Size of pooling filter 2 × 2 2 × 2 2 × 2 2 × 2

09 Fully connected Output 6 6 7 7

After the convolutional and max-pooling layers, the outputs are connected to a one-
dimensional array, the fully connected layer. This layer is connected to the dense layer,
which provides the predicting results. The predicting results are the structural responses
of each storey of the target building. As mentioned, the structural responses are used
as damage indicators. It is an iterative process performed until finding the lowest Mean
Squared Error (MSE), which is the error used in this study and defined by Equation (8).
The iteration is called an “epoch”, and 50 epochs are considered in this study.

MSE =
1
N
·

N

∑
i=1

(
ypred − yre f

)2
, (8)

where ypred and yre f are the prediction and reference results, respectively, and N is the
number of samples. The criteria of the error measure could be modified in order to improve
the forecasting accuracy [29].

The hyperparameters used in this study are shown in Table 2. They were obtained
after several processes of training and validation. However, methods are recommended to
optimize the hyperparameters [30,31].

9. Training and Validation Processes

As mentioned in the methodology (Section 2), there are two processes used to obtain a
trained CNN model, the training process (TP) and the validation process (VP).

In the TP, the CNN model is trained using the WPS of the absolute acceleration on
the top floor of the target building. Then, the prediction results of the CNN model are
compared to the SD and AA of each floor of the target building. The IDA numerical
procedure is called the data preparation process in the methodology, and obtains the SD
and AA. The TP provides a prepared model to make predictions; however, its accuracy
should be checked in the validation process.

In the VP, new input data are obtained by the data preparation process. The new WPS
is used in the trained CNN model and automatically predicts the results (SD or AA). The
following results are compared to reference data:

• The usability of the building, in which the availability of the building occupancy is
evaluated after an earthquake,

• The total damage condition, in which it is possible to identify the damage state of the
target building,

• Storey damage condition, in which it is possible to identify the damage state of each
floor of the target building,

• Total comparison of the SD or AA.

In general, one of the most potent advantages of the ML method in SHM is the rapid
prediction result when an earthquake occurs. In other words, even though the TP and VP
take a long time to obtain the final CNN model, it is carried out before the earthquake, and
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the prediction is obtained automatically. Therefore, it is possible to identify the damage
states of actual buildings (3D regular or irregular structural configurations) immediately
after the earthquake.

10. Prediction Results of Target Buildings

The results of predicting the responses and damage levels of the target buildings are
summarized as follows:

• Figures 17 and 18 show SD and AA results of the Tahara City Hall building, respectively;
• Figures 19 and 20 show SD and AA results of the Toyohashi Fire Station

building, respectively;
• Figures 17a, 18a, 19a and 20a show the training loss using MSE, which decreases with

the epochs increasing in TP;
• A confusion matrix is used to evaluate the prediction accuracy of the total and storey

damage condition (see Figures 17b,c, 18b,c, 19b,c and 20b,c). The confusion matrix
represents the correct and incorrect predictions through the number of coincidences
with the reference data. The rows and columns of the matrix are tagged as the predicted
and the true label, respectively. Therefore, the number of well-matched predictions is
located on the diagonal of the matrix.

• Figures 17d, 18d, 19d and 20d show the accuracy of the damage condition of each floor.
• Figures 17e, 18e, 19e and 20e show the comparison of the prediction results using the

coefficient of determination or R-squared as defined by Equation (9):

R2 = 1−
∑N

i

(
yre f , i − ypred, i

)2

∑N
i

(
yre f , i − yre f

)2 (9)

where ypred and yre f are the prediction and reference results, respectively. Furthermore, yre f
is the mean of the reference values and N is the number of samples.
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Figure 17. SD results of the TP and VP for Tahara City Hall building: (a) Convergence curve—loss in
the TP; (b) confusion matrix—usability of the building by VP; (c) confusion matrix—total damage
condition by VP; (d) confusion matrix—storey damage condition by VP; (e) total comparison of SD.

Figure 18. AA results of the TP and VP for Tahara City Hall building: (a) convergence curve—loss in
the TP; (b) confusion matrix—usability of the building by VP; (c) confusion matrix—total damage
condition by VP; (d) confusion matrix—storey damage condition by VP; (e) total comparison of AA.
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Figure 19. SD results of the TP and VP for Toyohashi Fire Station building: (a) convergence curve—
loss in the TP; (b) confusion matrix—usability of the building by VP; (c) confusion matrix—total
damage condition by VP; (d) confusion matrix—storey damage condition by VP; (e) total comparison
of SD.

Sensors 2022, 22, 6426 20 of 23 
 

 

 
(e) 

Figure 19. SD results of the TP and VP for Toyohashi Fire Station building: (a) convergence 
curve—loss in the TP; (b) confusion matrix—usability of the building by VP; (c) confusion ma-
trix—total damage condition by VP; (d) confusion matrix—storey damage condition by VP; (e) to-
tal comparison of SD. 

 

(a) (b) 

 
 

(c) (d) 

 
(e) 

Figure 20. AA results of the TP and VP for Toyohashi Fire Station building: (a) convergence 
curve—loss in the TP; (b) confusion matrix—usability of the building by VP; (c) confusion ma-
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Figure 20. AA results of the TP and VP for Toyohashi Fire Station building: (a) convergence 
curve—loss in the TP; (b) confusion matrix—usability of the building by VP; (c) confusion ma-

Figure 20. AA results of the TP and VP for Toyohashi Fire Station building: (a) convergence curve—
loss in the TP; (b) confusion matrix—usability of the building by VP; (c) confusion matrix—total
damage condition by VP; (d) confusion matrix—storey damage condition by VP; (e) total comparison
of AA.

Table 3 shows the evaluation accuracy of the target buildings in the VP. The results are
summarized below:

• For the Tahara City Hall building, the maximum accuracy and R2 are 90.0% (usability
of the building) and 0.825, respectively;

• For the Toyohashi Fire Station building, the maximum accuracy and R2 are 100%
(damage condition of the basement) and 0.909, respectively;

• In general, the accuracy of the estimation of SD is the highest.

Table 3. Evaluation accuracy of target buildings.

Accuracy Evaluation
Tahara City Hall Building Toyohashi Fire Station Building

SD AA SD AA

Usability of the building (Accuracy) 90.0% 84.2% 94.1% 88.1%

Total damage condition (Accuracy) 76.1% 74.5% 82.2% 71.2%

Storey damage
condition (Storey

accuracy)

Basement – – 100% 60.0%
Storey 1 76.8% 58.7% 96.9% 63.6%
Storey 2 76.9% 64.4% 94.1% 65.3%
Storey 3 76.3% 69.2% 92.4% 65.8%
Storey 4 74.8% 71.3% 91.1% 65.2%
Storey 5 74.4% 71.4% 89.9% 63.0%
Storey 6 75.3% 71.9% 88.8% 62.7%
Storey 7 – – 87.8% 62.7%

Total comparison (R2) 0.825 0.817 0.909 0.732
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11. Conclusions and Discussion

In this research article, a previous methodology proposed by the authors has been
improved and applied to two instrumented buildings in Aichi Prefecture in Japan, called
Tahara City hall and Toyohashi Fire Station. The summary of the proposed methodology is
as follows:

• CNN models are trained per target building using the WPS of the absolute acceleration
of the top floor record as input data to predict the SD and AA values. SD and AA are
used as indicators to detect the damage state of the structures;

• A methodology to select records in order to reduce the variability of the structural
responses using IDA is proposed, wherein the confidence interval between the 0% and
84% fractiles is adopted;

• The evaluation accuracy is discussed on the usability of the building, total damage
condition, storey damage condition, and total comparison of the damage indicator;

• The maximum accuracy and R2 for the Tahara City Hall building are 90.0% (usability
of the building) and 0.825, respectively;

• The maximum accuracy and R2 for the Toyohashi Fire Station building are 100%
(damage condition of the basement) and 0.909, respectively;

• In general, the accuracy of the estimation of SD is the highest.

Finally, the improved methodology based on CNN immediately detects the structural
damage condition of buildings, considering only one sensor on the top floor. Since the train-
ing and validation process are computed before, a prediction can be obtained immediately
after an earthquake.
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