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Free-breathing cardiac magnetic resonance (CMR) imaging has short examination time with high reproducibility. Detection of the
end-diastole and the end-systole frames of the free-breathing cardiac magnetic resonance, supplemented by visual identi�cation,
is time consuming and laborious. We propose a novel method for automatic identi�cation of both the end-diastole and the end-
systole frames, in the free-breathing CMR imaging. 
e proposed technique utilizes the convolutional neural network to locate
the le� ventricle and to obtain the end-diastole and the end-systole frames from the respiratory motion signal. 
e proposed
procedure works successfully on our free-breathing CMR data, and the results demonstrate a high degree of accuracy and stability.
Convolutional neural network improves the postprocessing e
ciency greatly and facilitates the clinical application of the free-
breathing CMR imaging.

1. Introduction

CMR imaging has become an accurate and reproducible
method for le� ventricle (LV) function assessment [1]. Free-
breathing CMR imaging is an alternative method for the
evaluation of LV function [2, 3]. Compared with standard
breath-hold steady-state free precession (SSFP) CMR imag-
ing, free-breathing CMR imaging has short acquisition time
and prunes away unnecessary breath-hold step. 
erefore,
free-breathingCMR imaging is bene�cial for patientswho are
unable to hold their breath in clinical examination [4].


e LV function analysis using free-breathing CMR
imaging is time consuming. Due to respiratory motion,
the LV position is continuously changing along with the
diaphragm over multiple cardiac cycles, and the thoracic
position of each slice may be mismatched as a result. Figure 1
illustrates the changing LV position of end-diastole (ED)
frames in six cardiac cycles, where the LVposition in the third
cycle is lower than that in the other cycles.
e random choice

of one set of cardiac cycle images may lead to an error in LV
function evaluation. 
erefore, the visual identi�cation for
each slice is currently carried out by analyzing ED and end-
systole (ES) frames of cardiac cycles at the end-expiration
phase [5].
e processing time is about 1∼2min for each slice,
where the manual visual identi�cation increases the post-
processing computation, making the procedure extremely
laborious. 
erefore, an automatic identi�cation method of
the ED and ES frames is necessary for improving the free-
breathing CMR image processing. Petitjean and Dacher [6]
reported that the automatic identi�cation of ED and ES
frames is challenging and could be achieved by analyzing
the image sequence. Until now, automatic detection of ED
and ES frames needed breath-hold, and all frames should
be from the same cardiac cycle [7]. Dharanibai and Raina
[8] proposed a variance image method for localization of LV.
Zhong et al. [9] developed a spectrum-based computer-aided
tool to locate the LV. All above-mentioned methods cannot
be applied directly for the free-breathing CMR imaging due
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Figure 1: 
e changing position of LV in ED frame in six cardiac cycles.
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Figure 2: 
e changing LV center (red) along with the diaphragm
(green) over multiple cardiac cycles.

to the diaphragm motion and can be disturbed by multiple
cardiac cycles.

In free-breathing CMR imaging, the ED and ES frames at
the end-expiration are essential for LV function analysis. 
e
end-expiration should be determined prior to the detection of
the ED and ES frames. In this paper, the LV changing position
along with the diaphragm is calculated, and the LV center
is adopted to depict the respiratory motion by browsing
through all the image sequences. Figure 2 shows the changing
position of the LV center with synchronous diaphragm; the
LV center moves across the diaphragm in each frame by
putting a reference line on the LV center. With the advent
of arti�cial intelligence, Deep Learning Technology has been
developed in medical image processing, such as Convolu-
tional Neural Network (CNN) [10] and Deep Belief Network
(DBN) [11]. Avendi et al. [12] introduced CNN to locate the
LV position in a deformable-model method and tested it on
the MICCAI 2009 LV segmentation challenge database [13];
the results indicated that the method outperforms the other
state-of-the art techniques.However, the free-breathingCMR
images are di�erent from the MICCAI database. 
e CNN
model needs to be redesigned and �ne-tuned for processing
these CMR images.

In this paper, we propose a novel method to detect the
ED and ES frames of each slice at the end-expiration phase
for the free-breathing CMR images. 
e CNN is designed to
locate LV in all frames of each slice. 
e LV center is located
by way of ellipse �tting. 
e cardiac motion and respiratory
motion signals are detected with the changing LV center.
With assistance fromnormalized cross-correlation and blood
pool area of LV, the ED and ES frames are determined at
the end-expiration stage by respiratory motion signal. 
e
proposed technique is tested on free-breathing CMR images.

e experimental results validate its accuracy for detection
of the ED and ES frames. 
e layout of the paper is as
follows. 
e datasets are presented in detail in Section 2.

e procedures of the method are presented in Section 3.
Section 4 demonstrates the experimental results. Section 5
presents discussions and analysis of the results. Finally, the
conclusions are given in Section 6.

2. Materials

2.1. Free-Breathing CMR Data. 
e study was approved by
the Institutional Review Board. Ten healthy subjects (5males,
5 females; age 25±4; BMI 21.3±1.9), with informed consent,
were recruited for the study. 
e heart function assessments
were carried out by using a 3.0 T MR scanner (TIM TRIO,
Siemens, Germany). 
e heart rate was monitored by using
ECG. Ten short-axis slices covering the whole heart from
apex to base were imaged using a free-breathing 2D real-time
SSFP. Karhunen-Loeve transform �lter was applied to these
slices along the temporal direction to increase the signal-to-
noise ratio. 
e imaging parameters were as follows: slice
thickness 8mm with 2mm gap, �eld of view (FOV) = 340 ×
287mm2, repetition time/echo time (TR/TE) = 2.5/1.1ms,
matrix size = 160×128, TPAT= 4, bandwidth = 1488Hz/pixel,
temporal resolution = 59.5ms, and cine duration of 5 s for
each slice, containing 84 frames covering end-expiration and
end-inspiration.

2.2. STACOM2011 LV Segmentation Challenge Database. 
e
data was obtained from the Cardiac Atlas Project Segmen-
tation Challenge [14], which was initiated at the 2011 LV
Segmentation Challenge in the 2011 STACOM Workshop. It
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Figure 3: 
e block diagram of CNN for the heart localization.

consisted of 200 subjects with coronary artery disease and
myocardial infarction. 
e dataset is divided into two sets
of 100 cases each involving training and validation. As the
training set contains the LV contours, we adopt the training
set to determine the parameters for localizing the heart region
in the CNN model.

3. Methods

3.1. Heart Region and LV Localization. Aiming at ED or ES
frame identi�cation and LV segmentation, it is necessary
to initially locate the LV region in each frame. Previous
localizationmethods need breath-hold imaging and assumed
that the heart is the only moving tissue [15, 16]. However, the
moving tissue did not only contain the heart, but also the
thorax and the diaphragm under free-breathing condition.
Our method brings in CNN to locate the LV. 
e training
process is divided into two steps, the heart region localization
and the LV localization. In the �rst step, the original image is
padded with zero and downsampled to size 64 × 64 to be the
input image. In the convolution layer, 50 convolved maps are
captured by adopting 50 �lters of size 9×9.
e weights of the
�lters are randomly initialized from a Gaussian distribution
with �xed zero mean and �xed standard deviation of 0.01.

e max pooling of size 8 × 8 and the stride of 8 are taken
to downsample the convolved maps to a size 7×7. In the end,
the max pooling feature layer of size 7×7×50 is connected to
fully connect the layer yielding 4096 outputs.
e outputs are
reshaped into a mask of size 64 × 64 in which the coordinates
of a white circle are taken as the heart region for the input
image. Figure 3 demonstrates the block diagram of CNN for
heart localization.

In the second step, the free-breathingCMRdata is padded
with zero and downsampled to size 64 × 64. 
en the down-
sampled data is the input for the trained network produced
at the �rst step. On account of the center coordinates of
the white circle in the images generated from the trained
network, we discern the same center in the free-breathing
CMR images.
e output is the corresponding binarymask in
the neural network layer. Figure 4 illustrates the input images
and the corresponding output image.
e center of the output
image is the same as the input image.

A�erwards, we choose a heart region of size 64×64whose
center is the corresponding center of the input image as
demonstrated in Figure 4. 
en the heart region of the input
image is adopted to train the network for the LV localization.
Parameters for the CNN model remain the same as that
created in our �rst step. 
e input image of size 64 × 64 is
considered as the heart region for the original image, and
then the output image of size 64 × 64 becomes the binary
mask of the LV region.
e center of the endocardial contour
is determined by the center coordinates of the white region
in the output mask. Figure 5 displays the block diagram
for the LV localization according to the LV center and the
endocardial contour.


e network is trained prior to the LV localization. 
e
100 subjects in the STACOM 2011 database are brought
in for parameter training of the heart region localization,
where each subject is associated with 170 to 476 images.

e remaining 9 subjects of the free-breathing CMR data
are trained for the LV localization, where each subject is
matched with 840 images. 
e remaining 1 subject of the
free-breathing CMR data is le� for e�ect testing.We augment
the training dataset through image translation, rotation, and
image intensity alteration. Finally, 1700 to 8400 images are
associated with each subject. For the �rst step, the labeled
image of the STACOM 2011 data is created based on the
provided contours, where the labeled image is a binary mask
having a white round foreground and a black background. In
the second step, the labeled image for the free-breathingCMR
data is generated by way of region growing method.
e seed
point is con�rmed by manually clicking the LV center on the
input image. Figure 6 demonstrates the input image and the
labeled image of the STACOM 2011 data as well as that of the
free-breathing CMR data.

3.2.�e Detection of the LV Center. Although the LV identi�-
cation is achieved from the trained network, the center of the
segmented LV endocardial contour is inaccurate for detecting
the ED and ES frames.
e LV center needs to be recon�rmed
again. We consider the center of the endocardial contour
obtained from CNN model as the seed points for region
growing.
e optimal segmentation threshold is calculated by
the Otsu method [17] for each frame.
e neighboring points
which are higher than the threshold are added to seed points,
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Figure 4: 
e input images (b) and the corresponding binary masks (a) produced by the trained network. 
e center of the output image is
the same as that of the input image.
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Figure 5: 
e block diagram of the LV localization.

and the lower points are denoted as the endocardial contour.

en the LV blood pool is segmented by making use of the
output image. In order to decrease the in�uence of papillary
muscles and trabeculations in detecting the LV center, the
convex hull of the LV blood pool is implemented before the
LV ellipse �tting.
en the least squares method is applied for
the LV ellipse �tting and the LV center localization. Figure 7
presents the LV ellipse �tting curve as well as the convex hull
and the LV center.

3.3. Respiratory Motion Fitting. 
e relative position of the
LV center and the boundary of the image are taken as
the distance between the LV center and the boundary of
the image. Since the heart position is changing along with
the diaphragm, the relative position of the LV at the end-
expiration is higher than that at the end-inspiration; the
center position of the LV is adopted for depicting the

respiratory motion. Due to the contraction of LV, the signal
curve is unsmooth and exhibits �uctuations. Considering
the higher contraction frequency of the heart compared
with the respiratory frequency, a low-pass �lter is applied
for smoothing the curve in order to obtain the respiratory
motion signal, and the Hanning window is chosen for weak
signal �uctuations. Figure 8 describes the signal detection of
respiratory motion and cardiac motion.

3.4. The Detection of the End-Expiration Phase. Free-
breathing CMR imaging contains several pairs of ED and
ES frames. 
e ED and ES frames at the end-expiration are
dedicated for the LV function analysis. It is critical to identify
the end-expiration precisely before locating the ED and ES
frames, whereas the maximum and the minimum areas of
the LV ellipse �tting correspond to the ED and ES frames
separately.
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Figure 6: Input image (a) and labeled image (b) of the STACOM 2011 data and free-breathing CMR data.
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Figure 7: 
e result of the LV ellipse �tting in one cardiac frame: (a) the center of the endocardial contour; (b) region growing result; (c)
blood edge; (d) convex hull curve; (e) LV ellipse �tting curve and the LV center.
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Figure 8: Respiratory motion and cardiac motion signal detection. 
e horizontal axis represents the cardiac image frames numbered 1 to
84. 
e vertical axis represents the relative position which is the distance between the LV center and the boundary of the image.
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Figure 9: 
e detection at the end-expiration. 
e blue circle
denotes the end-expiration. Frames (A) and (B) are the �rst frame
and last frame in the end-expiration.

In view of the positions of the ED and ES frames in
the image sequence in the same slice, the number of frames
(�f ) of one cardiac cycle can be calculated. As the relative
position of the end-expiration is higher than that at the end-
inspiration, we regard the maximum value of the sum of the
relative position of �f frames as the end-expiration. 
en
the� cardiac image frames in each slice can be divided into
� −�f + 1 regions and denoted by the following equations:

�f∑
�=1
�(�) ,

�f+1∑
�=2
�(�) , . . . ,

�∑
�=�−�f+1

�(�) , (1)

where �(�) stands for the relative position of � frames. 
e
maximum sum of �(�) is considered to be the starting
position of the end-expiration. For example, if�f is 14 and the
total number of frames in each slice is 84, and the maximum
value of the sum of �(�) is 12, then the end-expiration is
realized to be covering frames numbers 12 to 25. Figure 9
exhibits the end-expiration with �f frames from the �rst
frame (A) to the last frame (B).

3.5. �e Identi
cation of the ED and ES Frames. 
e mini-
mum of the normalized cross-correlation (NCC) is selected
to locate the ED and ES frames for the standard breath-hold
SSFP cine [7].
e NCC is de�ned according to the following
formula:

NCC

= ∑�∑� (	1 (
, �) − 	1) (	2 (
, �) − 	2)
√(∑�∑� (	1 (
, �) − 	1)2) (∑�∑� (	2 (
, �) − 	2)2)

, (2)

where 	1 and 	2 stand for two images and 	1 and 	2 denote
the mean value of 	1 and 	2. 
e NCC value is always in
the range [0, 1], which denotes the similarity between two
images. If the value of NCC is near zero, the two images are
regarded as totally di�erent. As the ED and ES frames are
di�erent images, the minimum of NCC is used for a
rming
the ED and ES frames. However, the free-breathing CMR
imaging contains several pairs of the ED and ES frames.

e NCC cannot be directly applied to the identi�cation of
the ED and ES frames. We choose thus a square window
of size 40 × 40 whose center is the same as the LV center.

en, we let �(�, �) denote the window of slice � at frame
�, � ∈ (�, �), where � and � denote the �rst frame and the
frame in the end-expiration, respectively. 
e value of NCC
is computed among all possible image pairs ranging from
�(�, ��) to �(�, ��) in order to produce the matrix �. 
e
index of the minimum of the matrix � is denoted as the ED
and ES frames separately. Given that the area of the LV ellipse
�tting of the ED frame is larger than that of the ES frame, the
order of the ED and ES frames is determined by comparing it
with the area of the LV ellipse �tting.

4. Experiment and Results


e network was trained by Ca�e in a window operating
system as a deep learning framework [18] in which 9 subjects
are enrolled for training and 1 subject for testing. 
e
detection method was developed using MATLAB 2014a,



Computational and Mathematical Methods in Medicine 7

Apex
Apex

(a)

(b)

Figure 10: 
e CMR images of the apical slice (a) and the basal slice (b).
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Figure 11: Representative example of the segmented LV endocardial contours of the ED frame (a) and the ES frame (b) by the CNN model
from the �rst slice (apex) to the tenth slice (basal) in the end-expiration.

which ran on a computer with an Intel 3.4 GHz CPU and
8GB RAM. Due to dataset shortage, we leave one of the free-
breathing CMR datasets for testing each time, and we chose 9
of the free-breathing CMR datasets for training.
e training
process was repeated 10 times for the second step. For the sake
of verifying the detection accuracy, the ED and ES frames
of each slice were visually identi�ed by two radiologists and
then compared with the automated detection results. 
e
detection results of the ED and ES frames of 10 subjects are
illustrated in Tables 1 and 2, respectively. T and F represent
the true and false detection results of the ED and ES frames,
respectively. S1∼s10 denote the ten short-axis slices from apex

to base and ED ± n or ES ± n denote the deviation for ED
or ES detection in � frames. We consider the ED ± n and
ES ± n as false detection for the detection accuracy. 
e
detection accuracy of the proposed method on 10 subjects is
summarized in Table 3. It is shown in Figure 10 that some
images in the apical and basal slices lead to detection failure.
Figure 11 presents the segmented LV endocardial contours of
the ED frame (a) and the ES frame (b) by the CNN model
from the �rst slice (apex) to the tenth slice (base) in the end-
expiration. 
e average processing time was 0.35 s for each
frame for the LV localization. 
e total detection time of the
ED and ES frames was 22 s for each slice.
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Table 1: 
e detection results of the ED frame in 10 subjects from
the �rst slice (s1) to the tenth slice (s10). ED± n denotes the deviation
of the ED detection in n frames. T and F represent the true and false
detection results, respectively.

Subject 1 2 3 4 5 6 7 8 9 10

s1 F F T T F F T F F F

s2 T T T T T T T T T T

s3 T T T T T T T T T T

s4 T T T T T T T T T T

s5 T T T T T T T T T T

s6 T T T T T T T T T T

s7 T T T T T T T T T T

s8 T T T T T T T T T ED − 1
s9 T ED + 1 T F T T T T T ED + 1

s10 F F F F F F F F F F

Table 2:
e detection results of the ES frame in 10 subjects from the
�rst slice (s1) to the tenth slice (s10). ES ± n denotes the ES detection
deviation in n frames. T and F represent the true and false detection
results, respectively.

Subject 1 2 3 4 5 6 7 8 9 10

s1 F F F T F F T F F F

s2 T T T ES + 1 F T T T T T

s3 T T T T T T T T T T

s4 T T T T ES − 1 T T T T T

s5 T T T T T T T T T T

s6 T T T T T T T T T T

s7 T T T T T T T T T T

s8 T T T T T T T T T T

s9 T T ES − 1 F T ES + 2 T T ES + 2 ES + 1

s10 F F F F F F F F F F

5. Discussion

In this paper, we propose a new method for the ED and ES
frames detection in free-breathing CMR imaging covering
several cardiac cycles. CNN was adopted to locate the heart
region and the LV center. We choose the position of the LV
center for �tting the respiratory motion signal. On account
of the minimum of the normalized cross-correlation and the
area of the LV ellipse �tting in the end-expiration, the ED
and ES frames can be identi�ed accordingly. 
e proposed
technique is validated on 10 subjects comprising 8400 images.

e average processing time of the LV localization is 0.35 s for
each image.
edetection time of the EDandES frames is 22 s
for each slice. Compared with the visual inspection method
which takes 1 to 2 minutes per image, the proposed method
reduces the postprocessing time tremendously.

Table 1 shows the detection results of the ED frame of 10
subjects from the apical slice to the basal slice. 
e proposed
method could detectmost ED and ES frames correctly at end-
expiration in sequence images for the free-breathing CMR
imaging, especially for the mid-ventricular slice. However, as
for the apical and basal slices, some ED frames could not be
detected successfully. 
e main reason stems from the small

LV chamber or no LV chamber in apical slice, and also certain
basal slices were beyond the ventricle and incorporated the
le� atrium [6]. In the case of other slices, the trained network
was able to guarantee the center of the white circle of the
output image to be located inside the LV region. Nevertheless,
the center point was not the LV center. In order to �nd the LV
center with success, the LV ellipse �tting is adopted and has
proven to be the e
cient way. 
e deviation of the ED frame
may occur in two or three consecutive frames. Although
those consecutive images would have the same area as the LV
ellipse �tting and the relative position, the deviation of the ED
frame makes it di
cult to distinguish the correct ED frame
except by using visual inspection.

Table 2 presents the detection results of the ES frame on
10 subjects. 
e deviation of the ES frame also occurs in two
or three consecutive frames, especially in themid-ventricular
slice as the area of the blood pool in the ES frame is smaller
than in the ED frame. All these make it more di
cult to
identify the correct ES frame. 
e detection accuracy of the
ES frame is decreased. Nevertheless, the proposed method
could correctly detect the end-expiration in each slice and
�nd the ED and ES frames at the end-expiration in sequence
images for the free-breathing CMR imaging as compared
with the previous techniques.

Table 3 presents the detection accuracy of our proposed
method. 
e average accuracy of the ED and ES frames of
all slices is 76.5%. 
e average accuracy without the �rst
slice (apex) and the tenth slice (base) is 92.5%. 
e accuracy
is computed as the ratio of the number of correct frames
and the total number of frames. 
e respiratory motion can
be depicted according to the cardiac motion. It is di
cult
to detect the LV center aiming at the respiratory motion
�tting. Figure 10 shows images in apical and basal slices.
Based on these images, we cannot �nd the LV chamber.
ese
images would decrease the detection accuracy. We combine
the ellipse �tting of the LV area and NCC to �nd the ED and
ES frames at the end-expiration for respiratorymotion signal.
However, in most studies of LV function assessment, the
LV function analysis excludes these slices and the evaluation
of the LV function would not be a�ected. An example is
demonstrated in Figure 11 of the segmented LV endocardial
contours of the ED frame and ES frame by way of the trained
CNN model. As for s1∼s9 slices, the segmented contours are
on the endocardial border of LV, which can be brought in
for detecting the ED and ES frames. As for the tenth slice,
the limited number of training subjects leads to inaccurate
results. More accurate methods would segment the ED and
ES frames with level set [19] or would adopt the endocardial
contours from the trained network. Since the aim of this
paper is to detect the ED and ES frames, advancing the LV
segmentation method will be our further research work.

Finally, one di
culty in detecting the center of LV of
the free-breathing CMR data is the smallness of the training
dataset, especially for theCNN that requires a large amount of
image data. In order to overcome this problem, the STACOM
2011 data is introduced for network training in the �rst step.
Although the STACOM 2011 data have many subjects, the
imaging parameters and methods are di�erent between the
two distinct datasets in our experiment.
e network requires
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Table 3: Detection accuracy of the proposed method on 10 subjects.

Subject 1 2 3 4 5 6 7 8 9 10 Average value

Accuracy
(including apical and basal slices)

80% 75% 80% 75% 70% 75% 90% 80% 75% 65% 76.5%

Accuracy
(without apical and basal slices)

100% 93.75% 93.75% 81.25% 87.5% 93.75% 100% 100% 93.75% 81.25% 92.5%

several hours of parameter training. In order to reduce the
training process and improve the accuracy of detection of the
ED and ES frames, it is necessary to obtain more subjects of
the free-breathing CMR data. We will collect more data from
volunteers and test them in Deep Learning Network in the
near future.

6. Conclusion


e presented method requires some manual operation in
the training process, but then, the LV center, respiratory
motion signal, and the ED and ES frames can be detected
automatically in our assembly line. 
e proposed technique
adopted the CNN of deep learning framework to detect
LV. 
e STACOM 2011 database was brought in to train
the neural network for the heart region localization, which
is an important pretreatment for processing free-breathing
CMR data. 
e LV ellipse �tting method was employed to
acquire the respiratory motion signal. 
e minimum of the
normalized cross-correlation and the area of LV ellipse �tting
were utilized to identify the ED and ES frames. 
e results
showed that the presented method has high accuracy and
stability. Compared with the visual inspection and previous
techniques, the improvement for the detection of the ED and
ES frames is substantial. 
is technique greatly reduces the
postprocessing time, normally taken by visual identi�cation,
and facilitates the application of free-breathing CMR imaging
in clinical settings. In the future, we will focus on fully
automatic segmentation of the ED and ES frames in free-
breathing CMR imaging.
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