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Abstract. Predicting trajectories of pedestrians is quintessential for au-
tonomous robots which share the same environment with humans. In
order to effectively and safely interact with humans, trajectory predic-
tion needs to be both precise and computationally efficient. In this work,
we propose a convolutional neural network (CNN) based human trajec-
tory prediction approach. Unlike more recent LSTM-based moles which
attend sequentially to each frame, our model supports increased paral-
lelism and effective temporal representation. The proposed compact CNN
model is faster than the current approaches yet still yields competitive
results.
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1 Introduction

Autonomous robots like self-driving cars on a road or a food-delivery robot in a
restaurant must share the same space with humans. In order to do so in a safe
and acceptable manner, these robots must be able to understand and cooperate
with humans. One task of paramount importance for avoiding collisions and for
smooth maneuvering is to accurately predict the future trajectories of humans
in their shared space. Further, given the wide diversity of platforms and envi-
ronments for which prediction may be required (e.g. small robots with limited
computing capabilities or without connectivity to cloud computing resources),
simple models with better time complexity are desired.

Traditionally, hand-crafted features were used for trajectory prediction and
modeling motion of pedestrians’ trajectory with respect to others surrounding
them. [1] propose a discrete choice framework for pedestrian dynamics, mod-
eling short-term behavior of individuals as a response to the presence of other
pedestrians. The Social Force model [2] incorporates two interactive forces for
microsimulation of crowds. Attractive forces guiding the pedestrians towards
their goal and repulsive forces for encouraging collision avoidance in-between
the pedestrians and in-between a pedestrian and environmental obstacles. Ya-
maguchi et al. [3] solves the same problem as an energy minimization problem.
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While successful, hand-crafted features are hard to scale since influencing factors
must be described explicitly.

In recent years, Deep Neural Networks (DNN) have been utilized for the
trajectory prediction task since they utilize a data-driven approach to tease out
relationships and influences which may not have been apparent. These DNN-
based approaches [4–7] have demonstrated impressive results. Almost all of these
approaches are based on Recurrent Neural Networks (RNNs) [8] since a trajec-
tory is a temporal sequence. As RNNs share parameters across time, they are
capable of conditioning the model on all previous positions of a trajectory. Al-
though theoretically, RNNs can retain information from all previous words of a
sentence, practically they fail at handling long-term dependencies. Also, RNNs
are prone to the vanishing and exploding gradient problems when dealing with
long sequences.

Long Short-Term Memory (LSTM) networks [9], a special kind of RNN ar-
chitecture, were designed to address these problems. Although LSTMs have been
found to address the sequence based problems effectively but they need quite a
bit of task-specific engineering like clipping gradients. Also in RNNs, predictions
for later time-steps must wait for the predictions from preceding time-steps and
hence can’t be parallelized during training or inference time.

Recently, Convolutional Neural Network (CNN) based architectures have
provided encouraging results in sequence-to-sequence tasks [10] like machine
translation [11,12], image generation [13] and Image Captioning [14]. Inspired by
these, we study CNNs for the task of trajectory prediction. This is the first work
we are aware of to use an end-to-end convolutional architecture for trajectory
prediction (Deo and Trivedi [15] used convolutional pooling for incorporating
social context from hidden states of the LSTM network). We believe the CNN
is superior to LSTM for temporal modeling since trajectories are continuous
in nature, do not have complicated “state”, and have high spatial and tempo-
ral correlation which can be exploited by computationally efficient convolution
operations.

The major contribution of the work can be summarized as proposing a fast
CNN-based model for trajectory prediction that is competitive with more com-
plicated state-of-the-art LSTM-based techniques which require more contextual
information. We discuss our CNN architecture in Section 2. Section 3 provides an
experimental evaluation to highlight the efficacy of our approach and value due
to simplicity. Finally, in Section 4, we conclude the paper with closing remarks.

2 Trajectory Prediction Method

Recent work in prediction has utilized recurrent networks to model temporal
dependencies and sequence-like nature of trajectories using LSTMs. Most efforts
in this area look to augment position input with social [4, 5] or scene [6, 16]
context resulting in more complicated architectures. In contrast, our work seeks
to simplify the network architecture and make more direct use of trajectory
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structure (spatio-temporal consistency) by using highly efficient convolutions
temporal support.

2.1 Problem Setup

For trajectory prediction, we are given the trajectory of all the pedestrians.
It is assumed that each scene is pre-processed and we have the spatial co-
ordinates of every i-th pedestrian at time t as Xt = (xi

t, y
i
t). That is, we have

the pedestrian trajectory data as X = {X1, X2, X3, X4, . . . , Xn} for time steps
t = 1, 2, . . . , Tobs. Note: for simiplicity the pedestrian superscript i is not listed.
We have to predict the future trajectories of all the pedestrians for time steps
t = Tobs+1, . . . , Tpred as Ŷ = {Ŷ1, Ŷ2, Ŷ3, Ŷ4, . . . , Ŷm} all at once.

2.2 LSTM-Based Frameworks

Most current reserach in trajectory prediction has utilized LSTM cells for han-
dling temporal dependencies. The working of LSTM cells are governed by the
following equations:

ft = σg(WfXt + Ufht−1 + bf ) (1)

it = σg(WiXt + Uiht−1 + bi) (2)

ot = σg(WoXt + Uoht−1 + bo) (3)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (4)

ht = ot ◦ σh(ct) (5)

In these equations, Xt is the input vector to the LSTM unit, ft is the forget
gate’s activation vector, it is the input gate’s activation vector, ot is the output
gate’s activation vector, ht is the output vector of the LSTM unit and ct is the
cell state vector. w, u,B are the parameters of weight matrices and bias vectors
which are learned during the training.

The basic LSTM formulation has been extended to add more complicated
LSTM units by adding more contextual information such as social cues (influence
of neighboring humans) [4, 5] or environmental cues (influence of scene) [6, 17].
While these have been effective in improving prediction performance, they still
utilize the LSTM which has hidden state ht dependent on previous time-steps
and can not be parallelized. Sequential evaluation limits the speed of any LSTM-
based architecture.

2.3 CNN-Based Framework

In contrast with LSTM-based networks, our proposed network (Fig. 1) utilizes
highly parallelizable convolutional layers to handle temporal dependencies. The
CNN-network is actually a simple sequence-to-sequence architecture. Trajectory
histories are used as input and embedded to a fixed size through a fully con-
nected layer. Convolutional layers are stacked and used to enforce temporal con-
sistency. Finally, the features from the final convolutional layer are concatenated
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Fig. 1. Our convolutional model for trajectory prediction. Note that all operations are
feed-forward in nature and hence can be parallelized.

and passed through a fully connected layer to generate all predicted positions
(xt, yt)

t+tpred
t=t+1 at once.

The model is inspired by the work of [14] which has to predict a discrete
output for the neural machine translation task. In that setting, the output at
the next time step is highly dependent on the current time step for grammatical
coherency and CNNs performed well. The major differences between this work
and theirs are that trajectory prediction provides continuous output rather than
discrete items and our architecture predicts all future time steps at once. We
constantly pad the input to convolution layer such that output from the convo-
lutional layer is of the same size as input to the layer. This way, we can build
a neural network as deep as we want. We build the network deep enough to
capture the context from every time step of the observed trajectory. We discuss
more in the next subsection.

Through an ablation study (Section 3.2), we found that predicting one time
step at a time leads to worse results than all future times at once. We believe
this is due to error of the current prediction being propagated forward in time
in a highly correlated fashion. Also, unlike LSTM-based architectures which
utilize a recurrent function to compute sequentially, all the computation in the
proposed model are feed-forward in nature resulting in a significant performance
boost with respect to inference time. Additionally, the convolutions can be easily
parallelized.

2.4 Implementation Details

We use a kernel size of 3 for all the kernels, by ablation study we found that it
works better than other odd kernel sizes when we apply symmetric padding. As
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Fig. 2. For an input having eight temporal dimension and convolutional layers having
kernel size of three, we need at least four layer to capture the context from all time-
steps.

the observed trajectory length is eight for all the experiments we conduct, we
use a four-layered convolutional network. As shown in Fig. 2, All the features in
layer 4 capture context from all eight trajectory observations. Unlike temporal
convolutional networks (TCNs), we do not use dilated convolutions because we
do not want to lose information on such a small temporal dimension. Addition-
ally, we use full rather than causal kernels since the output is a prediction. The
embedding layer which converts the geometrical coordinates to embeddings has
a dimension of 32, and the subsequent convolution layers produce outputs of the
same dimensions. For optimization, we use Adam [18] with a learning rate of
0.001. We use a batch size of 32. The model is trained until the validation loss
(L2 loss) stops decreasing.

3 Experiments

Following common practice in literature (e.g. [4]), experimental evaluation is
conducted on publically available pedestrian trajectory datasets. Evaluation uti-
lizes eight historical samples (3.2 s) to give a long-term prediction of the next
12 samples (4.8 s).

3.1 Datasets and Evaluation Criteria

Two publicly available datasets which provide over 1500 pedestrian trajectories
in varied crowd settings are utilized in our experiments. The ETH dataset [19]
consists of the ETH and HOTEL scenes while the UCY dataset [20] has the
UNIV, ZARA1, and ZARA2 scenes. The trajectories are rich with challenging
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human-human interaction scenarios such as group behavior, non-linear trajecto-
ries, people crossing paths, collision avoidance, and group formation and disper-
sion. All trajectory data has been converted from image to real-world coordinates
and interpolated at 2.5 Hz.

As with prior work [5] [21], we use two metrics for computing prediction
error:

1. Average Displacement Error (ADE): Computes the mean of euclidean dis-
tance between the points in predicted trajectory and the corresponding
points in ground truth for all predicted time steps.

ADE =

∑Tpred

t=obs+1

∥

∥

∥
Yt − Ŷt

∥

∥

∥

Tpred − Tobs

2. Final Displacement Error (FDE): The Euclidean distance between final des-
tination as per the ground truth and the predicted destination at end of the
prediction period Tpred.

FDE =
∥

∥

∥
YTpred

− ŶTpred

∥

∥

∥

Similar to [4] [5], we follow leave-one-out approach. We train on four of the
five crowd scenes and test on the remaining set. The trajectory is observed for
8-time steps (3.2 seconds), then the model makes the prediction for 12-time steps
(4.8 seconds).

Table 1. Quantitative ADE/FDE for the task of predicting 12 future time steps given 8
previous time steps. More contextual information is provided from left to right (+social,
++raw scene image)

Dataset Ours LSTM S-GAN+ S-LSTM+ S-GAN-P+ SoPhie++

ETH 1.04/2.07 1.09/2.41 0.81/1.52 1.09/2.35 0.87/1.62 0.70/1.43
HOTEL 0.59/1.17 0.86/1.91 0.72/1.61 0.79/1.76 0.67/1.37 0.76/1.67
UNIV 0.57/1.21 0.61/1.31 0.60/1.26 0.67/1.40 0.76/1.52 0.54/1.24
ZARA1 0.43/0.90 0.41/0.88 0.34/0.69 0.47/1.00 0.35/0.68 0.30/0.63
ZARA2 0.34/0.75 0.52/1.11 0.42/0.84 0.56/1.17 0.42/0.84 0.38/0.78

AVG 0.59/1.22 0.70/1.52 0.58/1.18 0.72/1.54 0.61/1.21 0.54/1.15

3.2 Quantitative Evaluation

In Table 1, we compare prediction results against five different architectures:

1. LSTM: A simple Long Short-Term Memory architecture without any pooling
mechanism, i.e. it doesn’t consider any social context.
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2. S-LSTM [5]: This model combines LSTMs with a social pooling mechanism
to provide social context in a fixed rectangular grid.

3. S-GAN [4]: This model uses LSTM and variable social max-pooling mecha-
nism in a Generative Adversarial Network (GAN) architecture to generate
multiple plausible trajectories. The S-GAN-P variant also uses a social pool-
ing mechanism.

4. SoPhie [6]: Apart from having LSTM and pooling for features in a GAN
setting, this model applies a scene attention mechanism over the features
extracted from images of the scene to augment trajectory information.

The results are organized by increasing contextual information (e.g. social pool-
ing or raw images for scene information) from left to right. Note: that LSTM,
S-LSTM, and S-GAN results in Table 1 were reported in [4].

We find that our model consistently outperforms the LSTM baseline even
though they are utilizing the same basic position inputs. We speculate that this
is because the CNNs do a better job at handling long-term dependencies than
the LSTM specifically for continuous numerical regression where the notion of
state is not complicated. Interestingly, ours is the best performing architecture
for the HOTEL scene even without the use of social or environmental cues. This
is likely due to the simplicity of the scene since even a simple linear regressor
provides better results (0.39/0.72) than all reported here [4]. However, the simple
CNN still performs very well even in more complicated scenarios (UNIV and
ZARA2) and actually beats techniques that utilize social context. The UNIV
result is most surprising since it is the most complicated scene with large crowds
of people. In these situations, social context may not be relevant (Fig. 4(b)). In
fact, the average performance is quite similar to S-GAN (provides many plausible
trajectories), better than S-GAN-P (multiple trajectories with social pooling),
and competitive with SoPhie even though those techniques use social context
and scene image context (in the case of SoPhie).

Table 2. Speed comparison with other architectures

LSTM S-GAN S-GAN-P Ours

Time (s) 0.009 0.022 0.067 0.002
Speed-Up 7.44× 3.0× 1× 33.5×

The main advantage of our proposed CNN prediction architecture is the com-
putational efficiency of convolution operations which can be highly parallelized.
A speed comparison is provided in Table 2 which reports inference time in sec-
onds and speed up factor with respect to the baseline S-GAN-P. The high speed
of our method makes it well suited for mobile robot applications which need to
make predictions in real-time.

Furthermore, to decide the number of layers we trained our architecture
with different numbers of convolutional layers. Table 3 indicates that four layers
performed the best. We believe this happens because three-layered networks are
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Table 3. CNN layer ablation study

Layers Three Four Five

ADE 0.60 0.58 0.70
FDE 1.30 1.20 1.40

not able to capture context from all time-steps and five-layered networks are
over-parametrized.

(a) (b)

Fig. 3. Multi vs. Sequential Output. Trajectory prediction sequentially point-by-point
performs poorly due to error propogation to future time-steps (trajectory curves off).
Our multi-output model tends to be more resistant to such error accumulation.

3.3 Qualitative Evaluation

In Fig. 3 and Fig. 4, we examine the quality of trajectories produced by the CNN
architecture. One important finding was that sequential prediction (similar to
LSTM-based models) performed very poorly (Fig. 3). Prediction error for the
maroon curve was propagated forward resulting in trajectories that “curved off”
over time. In contrast, the multi-output CNN architecture was more resistant to
this type of error accumulation.

Fig. 4 provides a comparison between the CNN (blue) and S-GAN (maroon).
(a) provides an exmample when the CNN has a better prediction than S-GAN.
In (b), S-GAN’s social pooling causes poor prediction since it thinks all five
pedestrians should be moving as a group. Their prediction of the two right
moving pedestrians is strongly pulled to the left resulting in large error. In
contrast, the CNN is able to independently predict with better results. The UNIV
scene in particular is quite dense making the pooling operation challenging.
In (c), both CNN and S-GAN fail as seen in the center. In particular, three
pedestrians seem to move in unison to avoid something in the scene and therefore
neither algorithm is aware. Finally, (d) shows an example of S-GAN performing
better than CNN. It is interesting to note that for both (a) and (d), neither
technique is actually working that well. Also, it is difficult to fully understand
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(a) (b)

(c) (d)

Fig. 4. Qualitative Comparison on UNIV. (a) CNN model is better able to interpolate
while the S-GAN model seems to accumulate error in subsequent time-steps. (b) Social
pooling erroneously combines all five pedestrians and thinks they all should be moving
left. Without pooling, the CNN model is able to better predict the two pedestrians
moving right. (c) Both models do a poor job of prediction, especially in the center. (d)
SGAN provides a better prediction than CNN.
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what is happening without overlaying the trajectories on the image frame. This
strongly hints that trajectories alone (even with social pooling) is not sufficient
to make robust prediction.

Note that unlike state-of-the-art architectures (e.g. S-GAN and SoPhie), our
CNN prediction architecture does not include any context outside of individual
trajectory information. Similar social pooling schemes could be added and fur-
ther improvements are expected. Additionally, S-GAN reported a 49× speed up
over S-LSTM which would make our CNN architecture 500× S-LSTM.

4 Conclusions

We present a convolutional architecture based neural network model for trajec-
tory prediction. The simple model gives competitive results with the current
state-of-art LSTM-based models while providing better inference time perfor-
mance. We hope that following this work, more people would be interested in
utilizing clever convolutional architectures for trajectory prediction. Given the
current architecture is quite simple, future work will examine the use of dilated
convolutions to decrease the number of layers while maintaining the same recep-
tive field and incorporating social context into the model.
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