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Abstract

Convolutional neural network (CNN) pruning has be-

come one of the most successful network compression ap-

proaches in recent years. Existing works on network prun-

ing usually focus on removing the least important filters

in the network to achieve compact architectures. In this

study, we claim that identifying structural redundancy plays

a more essential role than finding unimportant filters, the-

oretically and empirically. We first statistically model the

network pruning problem in a redundancy reduction per-

spective and find that pruning in the layer(s) with the most

structural redundancy outperforms pruning the least impor-

tant filters across all layers. Based on this finding, we then

propose a network pruning approach that identifies struc-

tural redundancy of a CNN and prunes filters in the selected

layer(s) with the most redundancy. Experiments on various

benchmark network architectures and datasets show that

our proposed approach significantly outperforms the pre-

vious state-of-the-art.

1. Introduction

Convolutional neural networks (CNNs) [22] have devel-

oped substantially in recent years and are widely used in

various applications, such as object classification [2, 21],

image synthesis, [8, 42], super-resolution [4], and game-

playing [34, 40]. State-or-the-art performance are achieved

by designing wider and deeper CNNs [41, 13, 18]. How-

ever, the over-parameterization problem of CNNs prevents

them from being applied to resource-limited devices, such

as mobile phones and robotics [39, 32]. Many approaches

have been proposed to reduce the computation and storage

cost of CNNs, such as quantization [10], matrix decomposi-

tion [48], network pruning [11, 24, 46, 44, 15], and knowl-

edge distillation [16]. Network pruning is one of the most

popular methods and attracts enormous attention.

Generally, network pruning can be categorized into

weight (unstructured) pruning [11] and channel (structured)

pruning [24, 35, 43, 46]. Weight pruning zeros out spe-

cific weights in filters and results in unstructured sparsities.

To accelerate the pruned CNNs, specialized hardware and

software have to be developed [9]. Channel pruning, which

removes the whole convolutional filters, is a more flexible

method without the need for special hardware. As the entire

filters are deleted, a considerable pruning ratio can usually

be achieved with little performance degradation. Many of

the existing channel pruning approaches rely on finding and

pruning the least important filters, or the filters that share the

most similarities with others across all layers [24, 35, 15, 3].

For example, [35] uses the Taylor series to estimate the loss

change after each filter’s removal and prune the filters that

cause minimal training loss change. It has been a common

belief that with a better filter ranking criterion, there is a

better chance to drop the least important filters and get a

compact network with less performance loss.

However, our studies on channel pruning contradict this

common belief. Using statistical modeling to measure the

redundancy in each convolutional layer, we theoretically

show that (in certain cases, even randomly) pruning filters

in the layer with the most redundancy outperforms prun-

ing the least important filters across all layers. To our best

knowledge, this is the first study that theoretically analyzes

the rationale behind network pruning from a redundancy re-

duction perspective. With this finding, we propose a layer-

adaptive channel pruning approach based on structural re-

dundancy reduction (SRR), which is achieved by establish-

ing a graph for each convolutional layer of a CNN and us-

ing two quantities associated with the graph, i.e., ℓ-covering

number and quotient space size, as the measurement of the

redundancy in each layer. After that, unimportant filters in

the identified layer(s) with the most redundancy, rather than

the least important filters across all layers, are pruned.

We summarize the contribution of this study as follows.

(1) We theoretically analyze network pruning with statisti-

cal modeling from a perspective of redundancy reduction.

We find that pruning in the layer(s) with the most redun-

dancy outperforms pruning the least important filters across

all layers. (2) We propose a layer-adaptive channel pruning

approach based on structural redundancy reduction, which
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builds a graph for each convolutional layer of a CNN to

measure the redundancy existed in each layer. This ap-

proach prunes unimportant filters in the most redundant

layer(s), rather than the filters with the least importance

across all layers. (3) We validate the proposed approach on

various network architectures and datasets. Experiment re-

sults demonstrate that our approach achieves state-of-the-art

performance compared with recent channel pruning meth-

ods. More specifically, our pruned ResNet50 model on Im-

ageNet can reduce 44.1% FLOPs while losing only 0.37%
top-1 accuracy.

2. Related work

2.1. Early works and weight pruning

Network pruning is a long-standing topic that can be

traced back to the 1990s [12, 23]. In the era of deep learn-

ing, [11] is one of the most famous early works that prunes

weights below a threshold. After that, various weight prun-

ing approaches have been proposed [1, 28, 50]. As men-

tioned before, weight pruning causes unstructured sparsities

in a network, which is difficult to be used without special-

ized software and hardware [9].

2.2. Channel pruning

Channel pruning [24, 35, 15, 37] removes the entire fil-

ters in a network so that there is no need for specialized

hardware. Among all channel pruning approaches, iden-

tifying and pruning the least important filters is one of the

most popular branches, and can be further divided into three

categories. (1) Ranking and pruning filters with a certain

criterion. [24] and [38] prune the filters with small weight

magnitudes or activation values in the corresponding feature

maps. [17] uses the average percentage of zero (APoZ) ac-

tivation neurons as the criterion and deletes the filters with

small ApoZ. First and second-order Taylor expansion are

used to estimate the loss change after each filter’s removal

and the filters that cause minimal loss change are removed

[35, 49]. HRank [25] leverages the information in the fea-

ture maps to rank the filters. (2) Reconstruction error mini-

mization. Thinet [31] and NISP [47] prune the filters whose

removal leads to minimal reconstruction error of the next

layer. (3) Similarity measurement. These approaches use

various strategies, such as geometric median [15] and clus-

tering [51, 6], to identify the most replaceable filters, or

those functionally share the most similarity with others.

2.3. Pruning as network structure optimization

Recently, a number of empirical studies indicate that the

network structure after pruning, rather than the removal of

unimportant filters, plays a decisive role in maintaining the

performance of a network. [29] trained several compact

networks obtained by pruning approaches but with random

initialization. Surprisingly, comparable or even better per-

formance can be achieved compared with fine-tuning the

pruned models. [33] reports that a network’s performance

can be recovered even after random pruning. Related to

these works, we also find that pruning unimportant filters

is not always essential. But beyond that, we theoretically

show that pruning in the layers with large redundancy out-

performs pruning the least important filters and propose to

prune a network based on structural redundancy reduction.

3. A theoretic analysis of network pruning

We statistically formulate the channel pruning problem

from a redundancy reduction perspective. In our context,

layer redundancy refers to the number of filters in a con-

volutional layer. We will later show that the redundancy

can be measured with other quantities in real applications.

Suppose we have a two-layer CNN1 with m and n filters,

where n ≫ m. Let {ξ1, ξ2, · · · , ξm} and {η1, η2, · · · , ηn}
be one dimensional positive random variables (RVs) rep-

resenting each filter’s contribution to the network perfor-

mance. For example, a filter’s contribution can be repre-

sented as the absolute value of training accuracy drop or

training loss change after pruning that filter. We call the

two layers ξ layer and η layer for convenience. We first

highlight our finding and then prove it from a statistical

modeling perspective.

Claim: If a layer has much higher redundancy, pruning

filters in that layer, either randomly or selectively, outper-

forms pruning the least important filters across all layers.
We choose positive constants a, b > 0, and use the ran-

dom events (
∑m

i=1 ξi ≥ a) and (
∑n

i=1 ηi ≥ b) to de-
scribe the layers ξ and η “performing well”. Then the per-
formance of a system (i.e., the whole neural network) p
is measured by the sum of probabilities of the two events
(see Equation (1)). We define one system (p1) to perform
better than another (p2) if p1 > p2. A natural question
is, if we prune a filter from the network, i.e., remove one
variable from {ξ1, ξ2, · · · , ξm, η1, η2, · · · , ηn}, how does
the system performance change? There are the following
cases (the performances of the systems are listed in Equa-
tions (1)-(5)): (1) no pruning; (2) randomly pruning a filter
in the η layer, without loss of generality, we assume the
last one ηn is pruned; (3) pruning the least important filter
η = min{η1, ..., ηn} in the η layer; (4) pruning the least

important filter ξ = min{ξ1, ..., ξm} in the ξ layer; and (5)

pruning the globally least important filter, i.e., min{ξ, η}.

po = P (

m
∑

i=1

ξi ≥ a) + P (

n
∑

i=1

ηi ≥ b) (1)

pηr = P (

m
∑

i=1

ξi ≥ a) + P (

n−1
∑

i=1

ηi ≥ b) (2)

1This configuration can be extended to a multi-layer network (number

of layers ≥ 3) with no difficulty.
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pη = P (

m
∑

i=1

ξi ≥ a) + P (

n
∑

i=1

ηi − η ≥ b) (3)

pξ = P (

m
∑

i=1

ξi − ξ ≥ a) + P (

n
∑

i=1

ηi ≥ b) (4)

pg =
m

m+ n
pξ +

n

m+ n
pη (5)

It is worth mentioning that we consider the network per-

formance from a perspective of redundancy (or capacity).

That is why we do not divide the probabilities in Equations.

(1)-(5) by m or n. a or b can be considered as a threshold.

As long as the total contribution of the filters in a layer is

greater than the threshold, there is no performance loss. If a

layer has too much redundancy (too many filters in our con-

text), then it’s very likely that the total contribution of the

filters can still be greater than the threshold after pruning

some of them.
Note that 0 ≤ ηn − η ≤ ηn, we have

P (

n−1
∑

i=1

ηi ≥ b) ≤ P (

n
∑

i=1

ηi − η ≥ b) ≤ P (

n
∑

i=1

ηi ≥ b), (6)

which indicates pηr ≤ pη ≤ po. For the filters in the η layer,

we naturally assume that the contribution of a filter to the

network’s performance cannot be infinite, i.e., the variances

of filters’ contributions are uniformly bounded.

∃C1 > 0, s.t. Dηi ≤ C1, i = 1, 2, · · · , n. (7)

By Chebyshev’s inequality, for any real number ǫ > 0,

P (
1

n
|

n
∑

i=1

(ηi − Eηi)| ≥ ǫ) ≤
D(

∑n

i=1
ηi)

ǫ2n2
. (8)

With Equation (7), it is obvious that we have Cov(ηi, ηj) ≤
√

Dηi · Dηj ≤ C1.

We further define that there are C2n (0 ≤ C2 ≤ 1)
pairs of correlated filters in the η layer, i.e., #{(i, j) :
Cov(ηi, ηj) 6= 0, i 6= j, i, j = 1, · · · , n.} ≤ C2n. Then we
have,

D(

n
∑

i=1

ηi) =

n
∑

i=1

Dηi +
∑

i 6=j

Cov(ηi, ηj)

≤ C1n+ C1C2n = C1(1 + C2)n.

By Equation (8),

P (
1

n
|

n
∑

i=1

(ηi − Eηi)| ≥ ǫ) ≤
C1(1 + C2)

ǫ2n
→ 0.

This means 1

n

∑n

i=1
(ηi−Eηi) converges in probability to zero,

i.e., 1

n

∑n

i=1
(ηi − Eηi)

P
−→ 0. Suppose the number of filters in

the η layer n is large enough, say n > 2b
ǫ0

.

We consider that a filter’s contribution needs to be positive, but

it could be infinitely small, i.e., the expectation of filters’ contri-

butions have a uniform positive lower bound.

∃ǫ0 > 0, s.t. Eηi ≥ ǫ0, i = 1, 2, · · · , n. (9)

With Equation (9), we have,

P (
1

n

n
∑

i=1

(ηi − Eηi) > −
ǫ0

2
) = P (

n
∑

i=1

ηi >

n
∑

i=1

Eηi −
ǫ0

2
n)

= P
(

n
∑

i=1

ηi >
ǫ0

2
n+

n
∑

i=1

(Eηi − ǫ0)
)

≤ P (

n
∑

i=1

ηi >
ǫ0

2
n) ≤ P (

n
∑

i=1

ηi > b).

Letting n → +∞, taking the limit and note that
1
n

∑n
i=1(ηi − Eηi)

P−→ 0, we have

lim
n→∞

P (

n
∑

i=1

ηi > b) ≥ lim
n→∞

P (
1

n

n
∑

i=1

(ηi − Eηi) > −
ǫ0

2
) = 1,

lim
n→∞

P (

n
∑

i=1

ηi − ηr > b) = lim
n→∞

P (

n
∑

i=1

ηi − η > b) = 1,

and then we have pηr ≈ pη ≈ po for n large enough. Note

that pξ ≤ po ≈ pη and observe that pg is the weighted

average of pξ and pη . Hence we have pξ ≤ pg ≤ pη . It

is worth mentioning that we cannot imply pg ≈ pη from

Equation (5) by letting n → ∞ because we do not assume

m/n → 0.

In summary, we have pξ ≤ pg ≤ pηr ≤ pη ≤ po, which

indicates that (even randomly) pruning a filter in the layer

with much larger redundancy outperforms pruning the least

important filter across all layers. Here we consider the CNN

as a black-box and we do not assume any prior distribution

for the RVs to achieve a good generalization. So the conclu-

sion holds no matter how the RVs are distributed. Indeed,

the conclusion relies on the assumption n → +∞. How-

ever, the assumption can be relaxed in real world applica-

tions such that pη ≥ pg still holds on average (though not

in every filter selection step). Appendix A presents some

intuitive examples on a number of networks, which empir-

ically provides evidence to validate the analysis above. As

shown in Appendix A, the number of filters in a redundant

layer does not need to be very large. Even when we use this

naive strategy (randomly pruning filters in the layer with the

most number of filters) with a standard AlexNet, it outper-

forms a number of popular pruning approaches. As we can

see in the following, for more sophisticated architectures

that contain less redundancy, such as ResNet, with a well

designed metric to measure the layer redundancy, our pro-

posed approach that prunes the least important filters in the

layer(s) with larger redundancy outperforms recent pruning

approaches that removes the least important filters across all

layers.

4. Methodology

4.1. Notations and preliminaries

Network pruning. Suppose a CNN has L layers. For

the i-th layer, the number of the input and output chan-
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Layer 1 Layer 2 Layer 3
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Redun
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Layer 1 Layer 2 Layer 3

Original CNN

Layer 1 Layer 2 Layer 3
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important
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Pruning 

ratio 

achieved

Pruning ratio not achieved

Figure 1. Overall workflow of the proposed approach. The number below each graph refers to the measurement of redundancy, which are

just used for the illustration purpose and do not reflect the real measurements of the graphs.

nels are represented by Ni and Ni+1. Therefore, the

CNN’s parameters W can be represented as {W(i) ∈
R

Ni+1×Ni×hi×wi , i = 1, 2, · · · , L}, where hi and wi are

the filter’s width and height. Channel pruning is formulated

to find a set of parameters W′ optimized on certain objec-

tive functions such that ||W′||0 < K, where || · ||0 denotes

the ℓ0 norm and K limits the number of non-zero filters in

W
′. Depending on different configurations, the objective

functions can be minimizing a CNN’s cost function, drop

of training accuracy, or the reconstruction error, etc.

Graph theory. Let X be a finite set. An undirected graph

is a pair (X,E), where E is a symmetric subset of X ×
X \ {(x, x) : x ∈ X}. We call x ∈ X a vertex (or a

node) and (x, y) ∈ E an edge. For x, y ∈ X , a path from

x to y is a finite sequence {x0, x1, · · · , xn} ⊂ X such that

x0 = x, xn = y and (xi, xi+1) ∈ E. In general, the above

path may not be unique if such a path exists. Denote d(x, y)
the minimal length of paths from x to y if x and y can be

connected by a path; d(x, y) = 0 if x = y; and d(x, y) =
+∞ if x and y cannot be connected by a path. Then it

is clear that d(x, y) is an integer value metric. Recall that

the degree of a vertex x ∈ X is the total number of edges

connected to x, i.e., deg(x) = #{(x, y) : (x, y) ∈ E}
(#A is the total number of elements in A).

4.2. Pruning with structural redundancy reduction

Overall architecture. We showed that pruning filters in

the layer with larger redundancy outperforms pruning the

least important filters across all layers. Our approach fo-

cuses on measuring how much redundancy exists in each

layer and pruning filters from the most redundant layer(s)

(Fig. 1). To measure the structural redundancy in a net-

work, for each layer, we build an undirected graph in which

each vertex represents a filter and the edges are defined with

the distances between filter weights. We use two quanti-

ties associated with the graph, i.e., quotient space size and

ℓ-covering number, as a measurement of how much redun-

dancy exists in each graph, which is considered as the re-

dundancy exists in each layer. At each time step, after the

graph establishment and redundancy quantification, we ran-

domly remove a vertex and its associated edges from the

graph identified as with the most redundancy. Then we

recalculate the redundancy after graph reconstruction for

the next iteration. This process continues until a target is

reached (e.g., a certain number of filters are pruned). Fi-

nally, we prune the filters in each layer according to the re-

maining number of vertices in each graph with a certain fil-

ter selection criterion. Note that in the filter pruning phase,

filters are ranked separately in each layer, rather than glob-

ally across all layers. Since the redundancy identification

phase has selected a different number of filters in each layer,

our approach is a layer-adaptive approach.

We present the details of our approach as follows: graph

establishment, calculation of quotient space size and ℓ-
covering number, intuition and quantification of graph re-

dundancy, and filter selection.

Graph establishment. To illustrate how to build a

graph for a convolutional layer, we use X to represent the

filter weights of a certain layer W(i) for simplicity. We first

flatten and normalize the filter weights, which changes their

lengths to 1. After that X becomes a finite subset of n di-

mensional unit sphere S
n = {x ∈ R

n : |x| = 1} in R
n,

where n = Ni × hi × wi and |x| is the length of x in R
n.

We define a graph on X as follows (assuming the elements

in X are distinct). We choose a positive real number γ > 0
and define an edge set on X as

E = {(x, y) ∈ X ×X \∆ : |x− y|/
√
n ≤ γ},

where ∆ = {(x, x) : x ∈ X} is the diagonal of X , and

|x − y| is the Euclidean distance on R
n. Then we get a

graph (X,E). By definition (x, y) ∈ E implies x and y are

approximately equal if γ is small.

ℓ-covering number. Recall that (X, d) is a metric space,

where d is the graph metric defined previously. Let ℓ > 0
be a fixed natural number, a subset X0 ⊂ X is called an

ℓ-cover set of X , if X ⊂
⋃

{B(x′, ℓ) : x′ ∈ X0}, where

B(x′, ℓ) = {x ∈ X : d(x′, x) ≤ ℓ} is the ball centered

at x′ with radius ℓ. This means X is covered by the balls

{B(x′, ℓ) : x′ ∈ X0}. We call the following quantity the

ℓ-covering number of X:

N c
ℓ = (N c

ℓ (X) =)min{#X0 : X0 is an ℓ-cover set of X}.

Decomposition of a graph. We call a graph connected

if for any x 6= y, there exists a path from x to y. In this

case d(x, y) < ∞ for all x, y ∈ X . For an unconnected

graph (X,E), we define the notation “∼” on X as fol-

lows: x ∼ y if and only if there exists a path from x to

14916



y. Then it is clear that “∼” is an equivalence relation. Let

X/ ∼= {X1, X2, · · · , Xk} be the quotient space. This

mathematical concept means that: using an equivalence re-

lation, we can decompose the set X as a disjoint union

X = X1∪X2∪· · ·∪Xk such that the elements in the same

Xi are equivalent. We call the number k (the total number

of equivalence classes) the quotient space size. Intuitively,

k is the number of unconnected sub-graphs of (X,E).
Graph redundancy, intuition and quantification. In-

tuitively, larger values of the quotient space size and ℓ-
covering number indicate a more complicated set of data

(with less redundancy). In fact, x ∈ B(x′, ℓ) if and only if

d(x, x′) ≤ ℓ, so x and x′ are approximate equal. Hence the

covering number can be approximately considered as the

total number of vectors in X that are linearly independent.

In our implementation we simply use ℓ = 1, with the con-

sideration of both performance and computation efficiency.

Based on the above analysis, we define the graph (layer)

redundancy as in Equation (10).

R(X) =
N

w1k + w2N c
1

, (10)

where {w1, w2} is a probability weight that balances the

importance of k and N c
1 , N is the number of filters. Be-

sides the graph redundancy, we also investigate other cri-

teria (i.e., the number of filters and principal component

analysis (PCA)) to measure the structural redundancy in the

ablation study.

Estimate of the 1-covering number. Since the calcula-

tion of ℓ-covering number is NP-hard and time-consuming

in practice [7], we propose a lightweight method to esti-

mate N c
1 . Let X0 be the 1-cover set of a graph X , such

that #X0 = N c
1 . We estimate #X0 as follows. Fix an

integer ℓ(= 1 or 2) and let x
(ℓ)
1 ∈ X , s.t. deg(x

(ℓ)
1 ) =

max{deg(x) : x ∈ X}. We define a finite sequence

{x(ℓ)
1 , x

(ℓ)
2 , · · · , x(ℓ)

nℓ
} by induction: If we have defined x

(ℓ)
k ,

then there are two possible cases: (i) X =
⋃k

i=1 B(x
(ℓ)
i , ℓ),

i.e., the family of balls {B(x
(ℓ)
i , ℓ) : 1 ≤ i ≤ k} is an ℓ-

cover of X . Then we stop the construction of the sequence

and get {x(ℓ)
1 , x

(ℓ)
2 , · · · , x(ℓ)

nk
}. (ii) Otherwise, choose (any)

x
(ℓ)
k+1 ∈ X\⋃k

i=1 B(x
(ℓ)
i , ℓ), s.t.

deg(x
(ℓ)
k+1) = max{deg(x) : x ∈ X\

k
⋃

i=1

B(x
(ℓ)
i , ℓ)}.

We repeat the above process eventually, and get the se-

quence

{x(ℓ)
1 , x

(ℓ)
2 , · · · , x(ℓ)

nℓ
}, l = 1 or 2.

It is obvious that we have N c
1 = #X0 ≤ n1 because the

family {B(x
(1)
k , 1) : 1 ≤ k ≤ n1} is a 1-cover of X . More-

over, for any i 6= j (i, j ≤ n2), we have d(x
(2)
i , x

(2)
j ) ≥ 3.

On the other hand, for each x0 ∈ X0, and any x, y ∈
B(x0, 1), we have d(x, y) ≤ d(x, x0) + d(x0, y) ≤ 2. Re-

call that X0 is a 1-cover set of X , then for any x
(2)
i , there

exists (may not unique) x0 ∈ X0 such that x
(2)
i ∈ B(x0, 1).

Moreover, for i 6= j, x
(2)
i and x

(2)
j cannot be in the same

ball B(x, 1) (otherwise d(x
(2)
i , x

(2)
j ) ≤ 2, a contradiction).

We see n2 ≤ #X0 = N c
1 . Hence n2 ≤ N c

1 ≤ n1.

We can use Ñ c
1 = 1

2 (n1+n2) to estimate N c
1 , if |n1−n2|

is acceptably small. Although we cannot theoretically find

its upper bound, extensive experiments on various networks

show that Ñ c
1 is good enough as an estimation of N c

1 , and

the computing time of Ñ c
1 is negligibly small (see the Anal-

ysis and ablation study section).

Filter selection strategy. After identifying the layers with

large redundancy, we prune unimportant filters from these

layers. We can either train a pruned network architecture

from scratch with random initialization or prune certain fil-

ters from the pre-trained network and do fine-tuning. There

are various approaches for unimportant filter selection. In

our study, we use a very common and simple strategy, i.e.,

pruning the filters with smaller absolute weights [24]. This

method avoids feeding a large number of training samples

into the CNN to get filter rankings, which is usually compu-

tationally intensive [38, 35]. But in general, our approach

can be used together with any filter selection criterion.

5. Experiments

5.1. Experiment settings

We first evaluate our approach with the single-shot prun-

ing scheme (pruning a large number of filters at one time),

with two-widely used benchmark datasets (CIFAR-10 [20]

and ImageNet ILSVRC-2012 [2]) on ResNet. We also

present the results with the progressive pruning scheme

(pruning a small number of filters and fine-tuning the re-

maining network for mutiple times), which are presented in

the Appendix due to the space limitation.

For single-shot pruning, we use ResNet{20,56} on the

CIFAR-10 dataset and Resnet50 on ImageNet to evaluate

the performance, in terms of accuracy drop and FLOPs re-

duction. We used the widely-used ResNet architecture as

described in [13]. For the CIFAR-10 experiments, the mod-

els are trained following the setup in [15]. For the ImageNet

experiments, pre-trained models from torchvision are used.

We first evaluate the layer redundancy in the pre-trained

models and identify the number of filters to be pruned in

each layer, with our proposed approach. Then we prune the

filter in each layer with the corresponding numbers identi-

fied and fine-tune the slimmed network. We follow the fine-

tuning strategy in [14]. For CIFAR-10, we fine-tune each

pruned network for 200 epochs, with a learning rate start-

ing from 0.1, which is divided by 10 at the epochs 60, 120,
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Model Approach Acc. before prune Acc. after prune Acc. drop FLOPs drop

ResNet20

MW 92.35% 90.93% 1.42% 41.0%

SFP 92.20% 90.83% 1.37% 42.4%

GM 92.20% 91.09% 1.11% 42.2%

TAS - 92.88% 0.00% 45.0%

SRR-GR 92.27% 92.48% -0.21% 45.8%

ResNet56

MW 93.51% 92.90% 0.61% 51.5%

NISP - 93.01% - 35.5%

GAL 93.26% 93.38% -0.12% 37.6%

DCP 93.80% 93.49% 0.31% 49.8%

HRank 93.26% 93.17% 0.09% 50.0%

SCP 93.69% 93.23% 0.46% 51.5%

SFP 93.59% 92.26% 1.33% 52.6%

GM 93.59% 92.93% 0.66% 52.6%

TAS - 93.69% 0.77% 52.7%

SRR-GR 93.38% 93.75% -0.37% 53.8%
Table 1. Results of ResNet on CIFAR-10. MW results is with our own implementation. GR is graph redundancy.

and 160. For ImageNet, we fine-tune each pruned network

for 150 epochs, with a learning rate starting from 0.1, which

is divided by 10 every 30 epochs. For all the models, we use

an SGD optimizer with a momentum of 0.9, a weight decay

of 2e−5, and a batch size of 256. For the graph associated

parameters, we use w1 = 0.35, w2 = 0.65 to emphasize the

importance of ℓ-covering number. We choose γ = 0.034
to achieve the best performance. We implement the experi-

ments with Pytorch 1.3 [36].

We compare the performance of our approach with sev-

eral recent channel pruning methods, namely, minimum

weight (MW) [24], Taylor expansion [35], average per-

centage of zero activation neurons (APoZ) [17], soft filter

pruning (SFP) [14], discrimination-aware channel pruning

(DCP) [52], neuron importance score propagation (NISP)

[47], slimmable neural networks (SNN) [46], autopruner

(AP) [30], generative adversarial learning (GAL) [27], geo-

metric median (GM) [15], transformable architecture search

(TAS) [5], cluster pruning (CUP) [6], ABC [26], trained

rank pruning (TRP) [45], soft channel pruning (SCP) [19],

and high-hank (HRank) [25].

5.2. Performance evaluation

CIFAR-10. Results of pruning ResNet20 and ResNet56 on

CIFAR-10 are presented in Table 1. Our approach prunes

a large percent of FLOPs from both architectures without

performance degradation, which outperforms the previous

state-of-the-art with an obvious margin. For ResNet20, we

prune 45.8% FLOPs and the test accuracy is increased by

0.21%. Our pruned ResNet56 model reduces 53.8% FLOPs

and achieves a test accuracy of 93.75%, which outperforms

the baseline by 0.37%.

ImageNet. Results of ResNet50 on ImageNet are shown

in Table 2. Our pruned model with 44.1% FLOPs reduc-

tion only loses 0.37% top-1 accuracy and 0.19% top-5 accu-

racy. When pruning comparable FLOPs, the top-1 accuracy

of the previous state-of-the-art approaches usually drop by

more than 1%. As the pruning ratio increases to 55.1%, the

proposed approach can still achieve a promising test accu-

racy (1.02% and 0.51% drop for top-1 and top-5 accuracy),

which is the best performance compared with recent works.

These results verify the effectiveness of our approach on the

single-shot pruning scheme. It is worth mentioning that the

MW approach can be considered as a baseline of our ap-

proach because we add a redundancy identification stage

before using MW for filter pruning. It is observed that

pruning filters uniformly with MW results in unsatisfactory

results (71.24% top-1 accuracy). After identifying the re-

dundancy and pruning the corresponding number of filters

in each layer, the performance is significantly improved by

around 4%.

6. Analysis and ablation study

6.1. lcovering number estimate and computation
time

We first show the effectiveness of our approach for l-

covering number estimate. We build a series of graphs for

each layer of a pre-trained AlexNet and VGG16 by chang-

ing γ from 0.001 to 0.3 and visualize n1 and n2 (defined

in the Methodology section) for the illustration purpose

(Fig. 2(a-b)). Obviously, n1 ≈ n2 in nearly all cases. The

same trend is also observed in ResNet. Actually, in all of

our experiments, we do not observe any large deviations

between n1 and n2. It is with negligible influence to use

Ñ c
1 = 1

2 (n1 + n2) as an estimate of N c
1 , whose values is

between n1 and n2.

We also evaluate the computing time for estimating the

1-covering number N c
1 . To obtain N c

1 , a complete search of

all combinations of vertices has to be done to see if all the

vertices are covered by the selected balls, We name this ap-

proach as the oracle approach. We measure the computation
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Approach
Top-1 acc. Top-5 acc. Top-1 acc. Top-5 acc. Top-1 Top-5 FLOPs

baseline baseline after prune after prune acc. ↓ acc. ↓ ↓
MW 76.13% 92.86% 71.24% 90.38% 4.89% 2.48% 41.8%

SFP 76.15% 92.87% 74.61% 92.06% 1.54% 0.81% 41.8%

GM 76.15% 92.87% 75.03% 92.40% 1.12% 0.47% 42.2%

GAL 76.15% 92.87% 71.95% 90.94% 4.20% 1.93% 43.0%

TAS - - 76.20% 93.07% 1.26% 0.48% 43.5%

HRank 76.15% 92.87% 74.98% 92.33% 1.17% 0.54% 43.8%

SNN - - 74.90% - 1.10% - 43.9%

SRR-GR 76.13% 92.86% 75.76% 92.67% 0.37% 0.19% 44.1%

TRP - - 74.06% 92.07% - - 44.4%

AP 76.15% 92.87% 74.76% 92.15% 1.39% 0.72% 51.2%

GM 76.15% 92.87% 74.13% 91.94% 2.02% 0.93% 53.5%

ABC 76.01% 92.96% 73.86% 91.69% 2.15% 1.27% 54.0%

SCP 75.89% 92.98% 74.20% 92.00% 1.69% 0.98% 54.3%

CUP - - - - 1.47% 0.88% 54.5%

GAL 76.15% 92.87% 71.80% 90.82% 4.35% 2.05% 55.0%

SRR-GR 76.13% 92.86% 75.11% 92.35% 1.02% 0.51% 55.1%
Table 2. ResNet50 results on ImageNet. Results of MW, APoZ, and Taylor are based on our own implementation.
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Figure 2. (a-b) The value of n1 and n2 by changing γ from 0.001 to 0.3. Black solid line refers to n1 = n2. (c-d) The network structure

comparison when 40% filters are pruned from AlexNet using different γs.

Num of 1-covering Time with Time with

filters number oracle method our method

64

1 0.001 0.0015

2 0.045 0.0013

3 1.384 0.0020

4 28.21 0.0026

192

1 0.023 0.0014

2 0.974 0.0027

3 90.29 0.0028
Table 3. Average computation time of the oracle and our proposed

method for the 1-covering number calculation/estimate (in secs).

time of the oracle approach and our proposed lightweight

approach for calculating 1-covering number. It is clear that

with the oracle method, the computation time grows dras-

tically as the number of filters and the actual value of N c
1

increase. It is even not temporally feasible to use the oracle

approach when N c
1 > 4. In contrast, the time used with

our method for Ñ c
1 is negligibly short and is merely influ-

enced by the number of filters in the layer and the value of

Ñ c
1 . These results indicate that our proposed approach for

the estimate of N c
1 is valid and efficient. Therefore, the real

Approach MW MA Taylor Random

Accuracy 75.99% 75.84% 75.95% 75.82%
Table 4. Performance with different filter selection criteria after

pruning 30% FLOPs of AlexNet.

running time of the proposed approach is almost the same

as existing methods with the same filter selection criteria.

6.2. Filter selection criteria

In previous experiments, we use the minimum weight

criterion to prune filters. We further investigate whether dif-

ferent filter selection criteria have any influence on the per-

formance. We use AlexNet on CIFAR-10 for illustration,

by pruning 30% FLOPs and fine-tuning the remaining net-

works for 100 epochs with a learning rate of 1e−4. Results

(Table 4) indicate that choosing filters with the minimum

weight strategy achieves the best accuracy (75.99%). How-

ever, using other filter selection criteria results in a similar

performance, and the accuracy only drops 0.17% even we

randomly prune filters in the layers identified as with large

redundancy by our approach. Therefore, our proposed ap-

proach is not sensitive to filter selection criteria, which fur-
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Approach
Top-1 acc. Top-5 acc. Top-1 acc. Top-5 acc. Top-1 Top-5 FLOPs

baseline baseline after prune after prune acc. ↓ acc. ↓ ↓
SRR-NOF

76.13% 92.86%

74.88% 92.27% 1.25% 0.59% 44.0%

SRR-PCA 75.19% 92.48% 0.94% 0.38% 44.1%

SRR-GR 75.76% 92.67% 0.37% 0.19% 44.1%
Table 5. Performance of the pruned ResNet50 networks with different redundancy reduction measurements.

ther validates the fact that pruning filters in the layers with

large redundancy is more essential than identifying unim-

portant filters.

6.3. The value of gamma

We change the distance threshold γ for graph establish-

ment to analyze its influence on the performance. We keep

using AlexNet on CIFAR-10 as an example by pruning 40%
of the filters with γ = 0.003, 0.034, and 0.3. Results

(Fig. 2(c-d)) shows that with a large γ, the last four layers

remain the same number of filters, which indicates that the

layer with the largest number of filters are identified as the

redundant layer at each time (Fig. 2(c)). When γ is small,

nearly the same percent of filters are removed from all lay-

ers (Fig. 2(d)). With a suitable value of γ (0.034), our ap-

proach identified Layer 3 as the most redundant layer. Layer

4 and 5 are also redundant to some extent but Layer 4 is

with a little more redundancy. Different from other exist-

ing works, our approach suggests that Layer 1 should not

be pruned if we only aim to remove 40% of the filters from

AlexNet. These results are consistent with the definition of

layer redundancy (in the Methodology section). For a layer

with n filters, when γ → 0, it is clear that k = n, N c
1 = n,

and R(X) = 1. Therefore, all layers have the same level of

redundancy and the approach becomes a uniform pruning.

When γ → +∞, k = 1, N c
1 = 1, and R(X) = n, which in-

dicates that the layer with the most number of filters is with

the largest redundancy. Our approach can be considered as

a dynamic architecture search approach controlled by γ.

6.4. Other criteria for structural redundancy iden
tification

Since there are few studies that consider network prun-

ing from the perspective of structural redundancy reduc-

tion, we further investigate the effectiveness of structural

redundancy reduction for channel pruning with the follow-

ing layer redundancy measurement metrics. (1) SRR-NOF:

This strategy simply uses the number of filters in the con-

volutional layers as the measurement of layer redundancy.

The layer with more filters is considered as with more re-

dundancy. In the redundancy identification phase, for each

iteration, a filter from the layer with the most number of

filters are removed. If there exist more than one layer con-

taining the same number of the most filters, a filter is re-

moved from a randomly chosen layer. When the require-

ment is reached, the network is pruned with the minimum

weight criterion according to the remaining number of fil-

ters in each layer. (2) SRR-PCA: This strategy uses princi-

pal component analysis (PCA) on the intermediate feature

maps of a network to measure the correlation between fil-

ters. We first feed training samples to the CNN and record

the flattened feature maps of each convolutional layer. Then

we fit PCA on these flattened feature maps and get a list of

percentage of variance explained by each of them for all

convolutional layers. We select the N smallest percentage

of variances across all layers and count how many items are

selected in each convolutional layer. Finally, we prune the

filters in each layer accordingly, with the minimum weight

ranking criterion. (3) SRR-GR: This strategy uses graph

redundancy as described in the Methodology section. The

training and pruning configuration are the same as in the

Experiment section.

Experiment results (Table 5) show that by pruning 44%
FLOPs from ResNet50, even with a naive layer redundancy

measurement (i.e., the number of filters in the layer), the

performance is comparable to recent studies. PCA identifies

the layer redundancy better than NOF and with SRR-PCA,

the drops of top-1 and top-5 accuracy further decrease to

0.94% and 0.38%. With the graph redundancy-based ap-

proach, the pruning performance is significantly improved.

These results validate that (1) structural redundancy reduc-

tion is an efficient approach for channel pruning, and (2) the

proposed graph redundancy-based approach is a promising

way for layer redundancy measurement.

7. Conclusion

We theoretically studied the rationale behind network

pruning from a perspective of redundancy reduction via a

statistical modeling and discovered that pruning filters in the

layer(s) with the most structural redundancy plays a more

essential role than pruning the least important filters across

all layers. We proposed to identify the level of redundancy

existed in each convolutional layer of a CNN via a graph es-

tablishment for each layer and two graph-related quantities

as the measurement of the redundancy. After that, filters are

pruned from the selected layer(s) by a simple filter selection

criterion. Experimental results validated that our approach

improved the state-of-the-art on image classification tasks.

We believe that the proposed approach can be effective on

more complicated tasks such as object detection and image

synthesis, which is left for future research.
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